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A METHOD FOR THE RAPID NUMERICAL CALCULATION 
OF PARTIAL SUMS OF GENERALIZED HARMONICAL 

SERIES WITH PRESCRIBED ACCURACY 

S. BERBENTE∗ 

Se propune o metodă nouă pentru calculul rapid al sumelor parţiale ale 
seriilor armonice generalizate, cu o precizie prestabilită. Folosind integrări pe 
intervale alese avantajos se obţin expresii simple de calcul care reduc sumarea cu 
mai multe ordine de mărime. 

De asemenea, metoda permite găsirea unor expresii simple pentru margini 
ale erorilor suficient de strânse. Reducerea timpului de calcul faţă de rutinele 
extinse pe calculatoarele actuale este semificativă. 

One proposes a new method for the rapid calculation of partial sums of 
generalized harmonical series with prescribed accuracy. By using integration on 
advantageously selected intervals one obtains simple expressions of calculus 
reducing the summation to  serval orders of magnitude. 

As well, the given method allows finding simple expressions for error bounds 
in restricted intervals. 

The reduction of computation time as compared to the existing rutines is 
significant. 

1. Problem formation 

Let  )(α
mS  be the sum: 
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For m → α from (1.1) one obtaines the harmonical generalized series  
that for α > 1 is convergent. We call ( )α

NS  a partial sum. The problem is to 
accurate and rapid compute this sum for very large m, in particular m → ∞ for 
convergent series. 

To this aim, one considers the function: 
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which is infinite differentiable. Then we write a Taylor formula of the form: 
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where the rest R4 has the expression: 
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Further, one integrates the function f (x) within the limits [i - a, i + a], 

a∈(0;1) conveniently chosen. By denoting Iia this integral, and taking (1.3) into 
account, one yealds: 
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For the rest R4 , we have applied the mean value theorem. 
On the other hand, by direct integration of f(x), one obtains: 
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We want a simple expression for the sum: .1,
1
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to (1.6), one can get reduction of terms, if there is a number k ∈ N, such as:  
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From (1.7), one gets two possible values: 
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Now we write the relation (1.5) for a1 and a2: 
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By eliminating the term in 2/1 +αi , one gets: 
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Now we take the sum of (1.11) from i = n + 1, to i = n + p, p ≥ 1, to obtain:  
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were ( )αδ np  stands for the error term:  
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By denoting ( )α

+σ pn  the sum: 
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one gets the formula for calculation of the partial sum ( )α

mS  , m = n + p: 
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By using (1.6), one yields: 
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In the limit ,0,1 1 →→ αα one gets: 
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For 0=α , one recover the trivial case ( ) ( ) .0and, 00 ==+ nppn p δσ  For 

,,1 ∞→〉 mα  from (1.16) one obtains: 
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( )α
∞S ≈  ( )α

nS + ( )α
∞σ  . 

(1.16-b) 
 
 
 

(1.16-c)
 
 

2. The error evaluation 
 
In order to find a bound for the error ( )αδ np  (see 1.13), we consider, from (1.9) 

and (1.10), the most desadvantageous combination of  
21

and aiai ξξ  to get a 
maximum positive value: 
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i.e. the maximum difference of terms in paranthesis. 
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Further, we observe that for any twice differentiable function g(x), one 
obtains, by using a Taylor formula and an integation in the interval [i, i + 1], the 
expresion: 
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gmean being the mean value of g(x) in the interval (i, i + 1). 
Then, for g”(x) > 0, one obtain the ineguality: 
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that is, for g” > 0, the mean value is smaller than the function value in the middle 

of the interval ⎟
⎠
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Now, consider the function: 
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which is positive together with its derivative g”(x) for x > 3/2. Taking the interval  
[i, i + 1], i > 3/2, we find in the middle the value in parenthesis from (2.1): 
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In fact, the index i takes larger values ( 7≥i ). 
Thus, we get the error evaluation: 
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where the function G(x) comes from integration having the expression: 
 

( ) .25.0

2
3
1

33 ++ −

⎟
⎠
⎞

⎜
⎝
⎛ −

= αα x
x

xG  
(2.7) 

 
By denoting ( )αδ max∞n the limit for p → ∞: 
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one gets the absolute error evaluation: 
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3. Results. Comparisons. 

 
In Tables 1,2,3 are given the sums ( )α

nS  for α = 0.5, α = 1 (harmonical 
series) and α = 2 (convergent series) a desired accuracy of at least 5;6 and 7 exact 
decimal figures respectively. 

Table 1. 
α = 0.5 

n ( )5.0
exactnS  ( )5.0

max,∞nδ  

7 4.0178834 0.654 E - 5 
12 5.6111844 0.845  E - 6 
22 8.0266736 0.907 E - 7 

 
Exemple 1.  
Calculate sum  5,0

000.100S  with at least seven exact decimal figures, by using 
Table 1. 
 
Answer. One calculates  ( )5..0

000100σ  by using the relation (1.16): 
 

( ) ;97008496.6225.0
000.100 =σ   
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then:  

( ) ( ) ( ) 9967586.630SS 5.0
22
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Table 2.  

α = 1 
n ( )1

exactnS  ( )1
max,∞nδ  

8 2.7178571 0.832 E - 5 
12 3.1032107 0.807 E - 6 
20 3.5977397 0.938 E - 7 

 
Example 2.  
By using Table 2., calculate the sum of terms of the harmonical series 

found between one million and a billion, with at least seven exact decimal figures. 
Answer. One has to calculate the difference (see 1.16.a): 
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Remark. In this case, we have a difference error: 

( ) ( )
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1
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1
10,n

δ〈δ−δ  and one can expect even smaller errors than that 

presented in Table 2. By using a Pentium 3 computer at 500 MHz, the 
computation time is about 18 minutes.  

Table 3 
α = 2 

n ( )2
exactnS  ( )2

max,∞nδ  

7 1.5117971 0.524 E - 5
12 1.5649766 0.286 E - 6 
22 1.6004969 0.119 E - 7 

 
Example 3. Because for α = 2, one gets a convergent series we can 

calculate the sum (see 1.16.b; c): 
 

( ) ( ) ( ) 6449340.104443712.06004969.122
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In Table 4., the maximum error variation for n = 12, ( )αδ max,12 ∞  is 
presented: after an increasing on the interval [0; 0.75], the maximum error is 
decreasing constantly. 
 

Table 4.  
Error variation with α 

 
α 

 
0 

 
0.1 

 
0.25 

 
0.50 

 
0.75 

 
1.0 

 
1.5 

 
2 

( )α
∞δ max,12  

 × 10 6 

 
0 

 
0.274 

 
0.580 

 
0.895 

 
0.890 

 
0.807 

 
0.526 

 
0.287 
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