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GENOCCHI OPERATIONAL MATRIX METHOD AND THEIR
APPLICATIONS FOR SOLVING FRACTIONAL WEAKLY SINGULAR
TWO-DIMENSIONAL PARTIAL VOLTERRA INTEGRAL EQUATION

Amirahmad Khajehnasiri,!, Ali Ebadian®

The present paper introduces numerical techniques in order to approximate the
solution of fractional weakly singular partial Volterra integral equation in two dimen-
sions. For this purpose, an operational matrix was developed on the basis of the Genocchi
polynomials for the purpose of fractional integration. By employing the 2-D Genocchi
polynomials and the fractional derivatives of the unknown functions, the 2-D fractional
singular integro-differential equations were converted into a nonlinear system. One may
present an approxrimate solution to the original problem by solving the same system.
In the last stage, the effectiveness and wvalidity of the technique were demonstrated by
providing a number of examples.

Keywords: Two-dimensional Genocchi polynomials (2D-GPs), Fractional integral equa-
tion, Fractional derivative, Operational matrix.

1. Introduction

Even though fractional calculus and the foundation of its theory date back over three
centuries, it has been in recent times that academics and scholars have paid attention to this
theory. A great number of scientific discoveries and real-world phenomena can be modeled
directly via fractional models [1, 2]. In addition, numerous scientific fields, such as physics,
economics, and even biology, are faced with dilemmas associated with Volterra integral equa-
tions. [3, 4]. In addition, fractional integral differential equations play key roles in a variety
of scientific disciplines. There are still numerous numerical techniques that are applicable in
order to approximate solutions to such problems, even if obtaining exact solutions to such
problems is too complicated or absent. The techniques of applying numerical approaches
were utilized primarily for the purpose of fractional integro-differential equations. In sci-
entific investigations, one may use integro-differential equations of fractional order in order
to model different phenomena, including electromagnetics, signal processing, viscoelasticity,
economics, etc. [6, 7, 10].

Piecewise functions, in particular orthogonal functions, are employed in the approximation
theory in order to reach an approximately exact solution of equations characterized by high
precision. The use of operational matrices may simplify complicated problems and decrease
the required calculation time. As a result, it is an efficient technique in order to reach a
solution characterized by lower time and costs. Such as CAS wavelets [23], B-spline [29],
Tau method [21], Legendre scaling function [25], Triangular functions [33, 27], Laguerre
series [30], Hybrid Bernstein Block-Pulse functions [9], Bernstein operational matrix [31],
Jacobi operational matrix [32], Homotopy analysis method [22], Boubaker Hybrid Functions
[26], Collocation method [24], Wavelets method [12], Boubaker polynomials [28], Block-pulse
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functions (BPFs) [8, 11].

A great number of engineering and scientific fields employ Genocchi polynomials to solve
equations and approximate them. For example, E. Hashemizadeh et al. utilized Genocchi
polynomials in order to solve Volterra integral equations weakly singular kernels [20]. A.
Kanwal et al. have employed the Genocchi polynomials technique in order to solve the diffu-
sion wave equation [19]. By employing Genocchi polynomials, Singh and Saha Ray tried to
approximate the stochastic Ité-Volterra integral equation [18]. In addition, Genocchi poly-
nomials have been used to solve the fractional Rosenau-Hyman equation [17]. By employing
two-dimensional Genocchi polynomials, Dehestani discovered the approximate solution of
partial integro-differential equations [16] and utilized Genocchi wavelet in order to discover
the solution of fractional differential equations with delay [15]. In addition, Isah studied the
Genocchi wavelet operational matrix for the purpose of fractional differential equations [13].
Pana et al. used Genocchi polynomials to find the approximate solution of nonlinear type
of fractional differential equations [14]. A great number of earlier studies have employed
the concept of the singular integro-differential equation, as well as the fractional class of the
same equations. A number of orthogonal functions have been used to solve the fractional
singular integro-differential equations. For instance, Nemati et al. presented a fast algo-
rithm on the basis of the Chebyshev polynomials in order to seek the approximate solution
for the FIDEs featuring weakly singular kernels [35]. Singh et al. could find the approxi-
mate solution for the FSIDEs featuring operational matrix technique [36]. By employing the
two-dimensional operational technique, Behera and Saha Ray could solve weakly singular
partial integro-differential equations in 2020 [37]. In addition, Ghanbari et al. reached the
numerical solution to a particular set of FIDEs featuring weakly singular kernels [38].

In our current work, the fractional weakly singular 2-D partial Volterra integral equation
(FWS2DPVIESs) is considered as the form:

w0 tus ) =ulo vats) + [ [ S gy,

(=90 —y)!

+/ / H(s, v, 8,y,u(s,y))dyds,
o Jo
with the following boundary condition

u(s,0) = wup(s), (1.1)
w(0,0) = o), (1.2)

where 0 < 0; < 1,0 < 02 < 1, and u(s,¢) is an unknown function which should be de-
termined. The known functions H (s, ¢, s,y,u(s,y)), 9(s,¢), uo(s) and ug(e) are defined on
interval Q = [0, 1] x [0, 1].

The rest of the present paper has been organized as follows. A number of basic char-
acteristics of fractional calculus will be introduced in the second section of the present paper.
Genocchi polynomials and function approximation and error analysis will be presented in
section 3. In section 4, the operational matrix of fractional differentiation and integration
has been presented and introduced. The numerical simulation will be carried out on the
basis of an operational matrix suggested in section 5. The technique will be presented by
providing a number of schematic examples in section 6, and for the purpose of better inter-
pretation, the numerical results will be compared with those of the earlier papers. A short
conclusion will be finally presented.

2. Preliminaries

The basic definitions and specifications of the fractional derivative and integral have
been presented in the following.
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Definition 2.1. One may consider a real function f(s), ¢ > 0 within the C,, space, u € R,
if a real number p > p exists in such a way that f(x) = <P fi(x), in which f1 € C[0,00). It
is evident that C, € Cg if B < p.

Definition 2.2. One may consider a function f(s), ¢ > 0 within the C). space if and only
if f™eC,, neN.

Definition 2.3. One may define the Riemann-Liouville fractional integral operator 19t of
order 61 > 0, of a function f € C,,u>1 as

f( )
(Iel)f(g) — fo (s=s)t— 61 s >0,
f( )v 91 = 07
for 65 > —1, the property of the operator 19" that is needed in this article as

10102 — (02 +1) 0140,
[0 +601+1)

Definition 2.4. The Caputo fractional derivative D% of order 6, is defined as
1 N ARIC)
cph = d 0
(D"NE) = 5y |, s >0
forn—1<60; <n,neN and f € C", where D = d% and T'(.) is the Gamma function.

Definition 2.5. The Caputo partial fractional derivative of u(s, 1) with respect to s of order
01 > 0 is define as

—
8" u(s, 1) { o Jy L) e n—1<6i<n, neN.

(“D&u)(s,0) =

0 0" u(s,t)
ag ' dgn )

91 =n,
Lemma 2.1. [5]. Ifn—1<6; <n, n €N, then Dfllelu(g,e) = u(s,t), and:
n—1
OFu(0F, 1) ¢F
I(ﬁDflu(g,L) =u(s,t) — Z ok ¢>0.
k=0

Definition 2.6. [34]. Let (61,02) € (0,00) x (0,00),0 = (0,0),Q := [0,a] x [0,b], and
u € LY(Q). The left-sided mized Riemann-Liouille integral of order (01,02) of u is defined
by
(I(g01792)u)(<7b)— / / (91 1) )(92_1)u(s,t)dyds. (2.1)
91 (02)

In particular

Lo )<<, 1) = u(s,0),

2. (IS7u)(s,0) = [T [V uls, t)dtds, (s,0) € Q,0 = (1,1),
3. (1) o, )(m 0) = (1"*)(0,£) = 0,z € [0,a],y € [0,b),
01,0 T(14A)xT w
R (1+/(\1+J’;)1§§F81;)+92)§)‘+91L +02 (6,1) € YN\ w € (—1,00).

3. Genocchi polynomials (GPs)
The GPs can be written as [17]

2uest
et + 1 Z ‘ < ﬂ-)

n=0

where GPs of order n defined on the interval [0,1] as follows:

Gn(s) = i: ( Z ) In—ps”,

p=0
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where g, = 2By, — 2k+1 B, is the Genocchi number, and B,, is the well-known Bernoulli
number.
Some properties of GPs are as follows:

(1) Gn(l) + Gn(o) =0, n>1,

dG,
@ 6,0, nz,
k 0, n < k.
g a0 [
dck k! » Gnk(s), n>kkmeNUO
! 2(=1)"n!Im!
= > 1.
(4) /0 Gn(§)Gm(§)d§ (n+m)' Gntm; nym =1
b
_ Gny1(b) — Gnya(a)
(5) /a Gn(s)ds = e .

Let ¥(s) denote a set of orthonormal GPs as follows:

U(s) = [T1(<), Wa(s), ooy Un()) (3.1)

where U(s) for i = 0,1, ..., N, is one dimensional GPs. There polynomials can be written in
the following matrix form

() = PTn(s), (3:2)
where
1
o )9t 0 0
2 2
n n n
0 9n 1 In—1 n—1 g1
nxn
and
1
S
InE=| .
N

3.1. Function approximation

A function u(s) € L?([0,1]) can be expanded in terms of GPs as follows:

n

u(s) & ug(s) = Y eils) = CTU(¢) = ¥7(c)C, (3.3)
i=0
where
C = [co, 1,y Cny )7, (3.4)
then
C= Q_1<u(g),\11(§)), (3'5)

where @ is an n X n matrix and is defined as
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To expanded u(s,t) in terms of 2D-GPs, first, we define 2D-GPs as follows:

u(s,t) = Ui (o)W (e). (3.7)
Now, we define
U(s,) = [Wo.0(s,8), Wo1(5,0), 00y ¥om (S, 0), W01 (S, 1), wes Wi (s, )] (3.8)
obviously, we can results ¥(s,¢) as the following form:
U(g,t) =T(s) @ U(e), (3.9)
where ® is the kronecker product and
T(S) = [To(s), U1(s), e, U ()T, W(1) = [To(r), Uy(e), ..., Ty (2)]T. (3.10)

Now, suppose that u(s,t) € L?([0,1) x [0,1)). Clearly, we can expand u(s,t¢) in terms of
2D-GPs

n n
u(s,t) = ZZcijwlj(g, 1) = CTU(s,0) = 07T (s,0)C, (3.11)
i=0 j=0
where
C = [C0,05 €015 <y COms C1,05 -3 Cloms +ovy Cr 05 o5 Crum) -

To get the approximate function of [u(,¢)]P, now we have
[u(s,)]* = (U(s, YUYW (5, )U) = (UTW(s,1)) (¥ (5,)V)
UTU\I/(g,L) =07 (¢,1)Cy,

(e, )] = (T(,)U) (¥ (,0)C2) = (UTV(,0)) (¥ (s, 1)Cs)
UTCoW(s,0) = 07 (c,0)C5,

[u(s, )"

1

(U7 (5, U)W (6, 1) Cp1) = (UTW(5, ) (T (s, ) Cpr)
= UTép—lq/(gv L) = \IJT(ga L)Cpa
where Cy = (UTU)T, C3 = (UTC,)T and C, = (UTC,_1)T.

4. Operational matrices

Here, we obtain the operational matrix of GPs. To do this, we have:

/glll(t)dt — Tw(c), (4.1)
0

Y= </O<\I/(t)dt,\lf(§)> Q7

is an n x n OM of integration. By using Eq. (4.1), the OM of integration based on 2D-GPs
for variable ¢ is obtained as follows

/0 V(. y)ds = / (W(s) ® U(y))ds = ( / (<)ds) @ (y)

(T¥(<)) @ (1¥() = (T ) (¥(s) @ ¥(y))
= TU(y), (4.2)

where
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where [ is a identify matrix. In a similar way, for ¢ variable, we get

/0 U(x,1)de = /0 (U(z) @ U(e))de = ¥(z) ® (/0 U(e)de)

= 1) ® (TU(0) = (1o 1) (¥(z)® U())
= TL\I/(.’L',L). (43)

Now, for mixed variable, we conclude that

/Og /()L\I/(x,y)dxdy / / y))dxdy = (/ngp(x)dx)@( OL@(y)dy)

® (L) = (Tc@ X, )(P(s) ® ¥(1)
= *ru (g,b), (4.4)

where T, are matrixes of order (n +1)% and T, is an (n 4 1)2 x (n 4 1)? matrix with the
following form:

T O .. O
. o T 0
T =

00 .7

Let k(s,t,s,y) be a function of four variables on ([0,1) x [0,1) x [0,1) x [0,1)). It can be
approximated with respect to 2D-GPs as follows:

k(s 0, 8,9) = UL (¢,0). K.U(s,y), (4.5)

where U(¢, ) and U(s,y) are 2D-GPs vectors of dimension 4mqms and 4mszmy, respectively,
and K is a (dmyms) X (dmgmy) 2D-GPs coeflicients matrix.

4.1. Operational matrix of product

The 2D-OGPs operational matrix of the product is obtained in the present section.
If R represents a column vector as below,

R = [Roo, Ro1, s Rons R10s Ri1, ooy Riny ooy Ruoy Rty ooy Run]™ (4.6)

The R matrix satisfying the relation below is known as the operational matrix pertaining
to the product of two 2D-OGPs vectors.

W(s, )T (¢, )R = RU(q,0). (4.7)

In order to present an explicit presentation of R, the following routine is adopted. The
application of Eq (3.2) gives us the following

V(s ) (s, )R (T(<) @ W)U (s, )R = (PT0(c)) ® (PTo())¥7 ()R

= (P@P)(Tu(s) ® Tn(1)¥" (s, R
= an(ng)\IjT(gv VR, (4.8)

where P = P @ P and

Th(sot) = (1t et 6,60 ey 6™ ey 67 6 0 oy s T (4.9)
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Thus,
n n n n n n
\Il(gvb)\IlT(g’ L)R = ZZ%%; Syt ’Z TzJwa Syt a“'aZZTijLndjij(g,L)
=0 j=0 =0 j=0 =0 j—O
n n n n
eru<wm <» 7 ’Z T’LJCL 'l/}ZJ Syt 7... ermg L/ng Syt
7=0 =0 j= =0 j=0
n n
‘7zzrij§nbn¢ij(§aL)}T~ (4.10)
i=0 j=0

We approximate the functions (lbs’(/JZ'j (¢,¢) by using 2D-OGPs as follows

' ii(s,u ZZ’y”ls\I/pq Syt ngls\lf(gb), l,s=0,1,..,n. (4.11)
p=0 ¢=0
where
jls jls jl¢ jls jls jls
mjlé_hg)%)g’ry(l)jlqv' 7’7(1)jn§7' 77%‘37' 773;7' 7711]0gv' 5772%8] ’ (4'12)

and 751 is calculated as follows

Nijls = / / 1;5(s, 1) (s, t)dsde. (4.13)
From Eq (4.11), we have

D> rishitils ) =

i=0 j=0

n

n
Tij ZZW%WW (e Zzwm St ZZ%V”“

j=0 p=0¢=0 p=0 g=0 i=0 j=0

(
(

M:

@
Il
=)

= g7
= g7

Sy l’) [7’00!57 TN01lsy «++3 NOnlsy -++s MM0ls; Mnllss -+ nnnls]R
S5 L)) (4.14)

where 15 = 100155 011s5 > M0nlsy -+ Mn0lss Mnllss s Tnnis) R. Now, we define (n+1)? x (n+1)?
matrix n as follows

17 = 1110050015 -+ M0ns -+ 105 Ty s M) -
By inserting Eq (4.14) into Eq (4.10), we get
V(e, )P ()R = PIT(s,0)m00, O (s, )01, o0y U (S, )00y wves U (S, )10,
\IJT(ga L)"7n1a ey \IIT(§7 L)nnn]T

= P(\IIT(ng)[nom'r]Oh~--7770n7---777n0a77n1;--~777nn])T

= PpTU(s,1) = RU(s,0), (4.15)
and ~

U(s,)DUT(¢,1) = DU(s,1), (4.16)

where D is m-vector with elements equal to the diagonal entries of D.

4.2. Operational matrix of a 2D fractional integration of 2D-GPs

We define an m-set of 2D-BPF as
1, (7,1 — 1>h1 < ¢ <i1hy and ( 19 — 1)h L < Zghg,
bi17i2(g7L) = 1=0,1,2,--- 7(m*1)’ (417)
0, otherwise.

The function b;, ;,(s,¢) are orthogonal and disjoint, that is

biyip(St), i1 =1 and i = ja,
bm,n(c,L)bjl,n(g,L):{ 0’1’2( ) oltherj\;ise. 27 (4.18)
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The 2D-GPs can be expanded in terms to m-set of 2D-BPF's as
\II(§3 L) = (I)meBm(Cy L); (419)

where Bm(gy L) = (b0,0(§7 L)7 b0,1(§7 L)7 e 7b0,n(<7 [')7 e 7b1,0(§7 L)7 e bm,m(§7 L))T[23]7 and ¢
is an mn X mn product operational matrix. Next, we derive the Genocchi polynomials
OMFI. The OMFTI as follows

1 x t . - N .
W/o /0 (¢ —8)1 71— )2~ (s, y)dyds ~ F%20(c, 1) (4.20)

1 ¢ @ & ... guo1
0 1 Q1 2 e Sm—1
1 1 0 0 1 <& ... Snu-s
Fo102 — o . (4.21)
m91mf2 T'(6; + 2)['(62 + 2) -
0 0 [N 0 1 Q1
0 0 0 . 0 1 |
(1T m me mz o et
0 ]. 771 772 e 77m71
0 0 1 m ... 7Mm-3s
® o .. : ’
o 0o 0 ... 0 1]

o= (0+ 1) =274 4 (0 = 1)%H and n, = (0 +1)%F" — 20%H 4 (o — 1)+,
In the following, fractional integration of the 2D-BPFs vector has been presented.

(1992 B,,)(s,1) =~ F"%2 B, (s,0). (4.22)
Now, we derive the Genocchi polynomials OMFI.
(I W) (s,0) = Priin (s, ), (4.23)

where matrix P72 is called the Genocchi polynomials OMFI. Using Eqs.(4.19) and (4.22),
we have

(19920 (¢, 1) & (1792, B ) (5, 1) = Prsern (1772 B ) (6, 0) & @rsen FO%2 By (1),

(4.24)
By Eqgs.(4.23) and (4.24) we get
ngieﬁl‘l’(@ L) = (I)meFGl’egBm(g, L) = (I)meFel’%‘I);@le\If(g, l,). (4.25)
So, the Genocchi polynomials OMFI, ngf,fl, is given by
pite — @ OO0t (4.26)

4.3. Operational matrix of differentiation

The derivative operational matrix of OGPs with respect to ¢, is obtained as follows

v = L= Lene) = PEm©)
= PLT,(s) = PLP'¥(c) = LYU(), (4.27)

where L = PLP~!, according to Eq (4.27), differentiation of vector W(s,:) defined in Eq
(3.10) respect to ¢ and ¢, is approximated as

Ue(s,0) =Ue(a) @WU() = (LU(e) @ (I¥(r) = (L) (¥(s)) ® (e
= L.U(c,0), (4.28)
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and

V(o) = V()@ V() =~ (IV()®(LY() = ®L)(V()) @)
= L U(s,0), (4.29)
where, L. = L® I and L, = I @ L are (n + 1) x (n + 1)2 matrices.

5. The numerical scheme for the model

Consider the nonlinear FWS2DPVIEs:
Ca s
g, (6, 0) (s e) =uls,e) + g(s,¢ / / o (5 v) dyds

(c—s)- 01 — )0
+ / / H(s, 0,5, u(s, y))dyds, (5.1)
0 0

for solving Eq (5.1), we start by approximating the functions u. (s, ¢), u,(s, ), u(s,¢), g(s,¢),
u(s,0) and u(0,¢) interms of 2D-OGPs as follows

uc,(s,t) = CTU(s, 1), (5.2)

g(s,0) = GTU(s, 1), (5.3)

u,(0,0) = ZT0(s,0), (5.4)

u(s,0) = UTW(g, 1), (5.5)

u(0,0) = VTU(q, 1), (5.6)

u(0,0) = DT(q, 1) (5.7)

By integrating form both sides of Eqgs (5.2) with respect to ¢ and by using Eqs (4.25) and

(5.4), we have

u, (s, ¢)

S
u,(0,¢) + CT/ U(t,)dt = ZTU(s,0) + CTY (s,0)
0

= (ZT +COTY)W(s,0) = QTU(s,0). (5.8)
Similarly, by integrating from both sides of Eqgs (5.8) with respect to ¢ and using Eqs. (4.4)
and (5.5)-(5.7), we have

S L
u(s,e) = u(s,0) 4+ u(0,¢) —u(0,0) + CT/ / U(t,s)dsdt
o Jo
UTW(,0) + VIU(s,0) — DTW(¢, 1) + CTY,U(s, 1)
(UT +vT = DT + CTY ) ¥(s,1) = RTU(g, ). (5.9)
By differentiating from both sides of Eqgs (5.8) respect to ¢ and using Eq (4.29), we get
U (s,0) = QT (¢, 0) = QUL (g, 0). (5.10)

Now, we calculate integral part

/</ <Sblsez{ Gl dyds_f/& )" (1 — )P T (¢ KU (<, )W (<, ) Cpdyds

(s — Y-

1

(s, K// ) )92*1\I/(§7L)\I/T(§,L)deyds

=07 (¢,.)KC, / / 8) 71— )27 (, 1) dyds

= 07 (¢, ) KC,pT(6:)T(B2) F+ %20 (, 1)
:QT (§,L),
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here Q = F(91)F(92)KC’pF91’92 is an 4mjme-vector with elements equal to the diagonal
entries of the following matrix Q = T'(6;)['(2) KC,F?1-%. By using Eq. (4) and (4.7), we
have

< L S L
/ / H(s, 0,5,y u(s,y))dyds = / / W7 (0, ) KW(, ) U7 (6, 1)Cydyds
0 0

= UT(c) K// (6,0)¥ (s,0)Cpdyds
= \I/T(§,L)KCP/ / U(q,t)dyds
o Jo

= \IIT(g, L)KCA'I,YQ\II(g7 L)

—_~—

= KC,T,¥(s,0). (5.11)
By inserting the Eqs (5.2)-(5.11) into Eq (5.1), we have
CTU(,)) + QT (¢,t) = RTU(¢,1)+GTU(¢,) + QT T(s,1)
+K'?C?’;TICL\I!(<, L), (5.12)
by setting o
0= KTC,x.,,
we will have )
CT+Q"=R"+G"+Q" + 0", (5.13)

As a nonlinear system of an algebraic equation, Eq. (5.13) can be determined by solving
the same system via Newton’s or other iterative techniques. As a result, an approximate
solution is

u(s,t) = CTW(s,1), (5.14)

can be computed for Eq (5.1).

6. Numerical examples

The accuracy and applicability of the suggested Genocchi polynomials operational
matrix technique are tested in the present section for fractional weakly singular partial
Volterra integral equation using a number of numerical examples, and the tables and figures
display the obtained results. Our suggested technique is examined in the following for the
fractional weakly singular partial Volterra integral equation in a variety of states.

Example 6.1. The below FWS2DPVIE is considered

Fg//g_sé — y)2[uls, y)|*dyds

U, (S,0) +u(s,0) = uls,t) + g(s, )

§
(2)
/ (4es)[u(s, y)])*dyds, (6.1)
with
8, 4096 w1 o 128 7 7
= 2+2+2+20—ch—q? — (o2 3,5 gy2
9(5:¢) SR T It (agnams T Y gerse Y
4 4 4
+T5<%L%sy ) — 1—5L s6 3L3§43y2 — 4% syt (6.2)
the exact solution is calculated and presented by u(s,t) = <%t + 12, and supplementary

conditions of u(s,0) = 0,u(0,0) = 0. The numerical results calculated by the purposed
method is shown in Table 1. The absolute errors (AEs) functions of n = 2,n = 5 and
0 = 0.95 have been plotted in Figures 1-2.
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TABLE 1. The AEs for Example 6.1.

~
~

n=23

n=>5

n="7

AAAAAAAAAA
RGN
@OO\]GJ\.C“H;QD[\DI—\
Soococoocooo
© 0 ~J O U i W N =
S N N e N N N N

2.365214 x 10~*
3.365874 x 10~*
1.355381 x 1073
9.196630 x 10~*
2.000506 x 10~*
1.696282 x 103
2.960114 x 104
6.775898 x 107>
1.754210 x 10~—*

8.254100 x 10~°
1.965402 x 10~*
9.030514 x 107°
7.121174 x 1075
7.477421 x 10~*
1.035208 x 106
2.955547 x 107°
2.985022 x 107°
7.411200 x 10~*

7.202079 x 10~7
1.702565 x 10~7
3.092219 x 106
3.416147 x 1077
2.544555 x 10~7
7.619858 x 108
1.440310 x 1077
3.255507 x 10~7
1.611203 x 10~7

FIGURE 1. Comparing numerical (Right) and exact (Left) solutions, u(¢, ), with n = 2 for

example 6.1.

FIGURE 2. Exact and approximation solutions with n = 5 of Example 6.1.
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Example 6.2. In the next example, the below FWS2DPVIE is considered

U, (S, 0) T uu(s,0) = uls,¢) +g(s,0) + ! 7L(€ —8)2 (0 — )% exp(s)Ve[uls, y)]dyds

L(3)T(5)o o

IS L
+ [ [ expto)vRluts. Pagds. (63)
o Jo
with
256
gls,t) = =323 45— m(gg exp(6)e® + ¢ % exp(s)i?)
1 1 1

—5 eXp(L)C%L7 + 3 eXp(L)§%L4 — eXp(L)g%L. (6.4)

One may calculate and present the exact solution using u(s,t) = ¢3 — 13, and supplementary
conditions u(s,0) = ¢ u(0,t) = —i3. The numerical results acquired using the suggested
technique are presented in Table 2. Figures 3-4 plots the absolute error function for n =

2,n=>5 and 0 = 0.95.

TABLE 2. The AEs for Example 6.2.

~
~—

n=23

n=>5

n="7

ccoocoococ oo on
© 00N> U Wi
PO 2@
© 00N oo by
SIS0

5.369872 x 103
5.741470 x 10~*
1.356777 x 1073
8.195790 x 10~3
2.000506 x 10~*
9.754202 x 1073
1.060184 x 104
6.025898 x 10~*
4.054210 x 10~*

1.141100 x 10~4
8.001412 x 10~4
7.032304 x 10~°
4.129834 x 107°
7.477421 x 10~*
1.035874 x 1075
7.955487 x 10~°
7.098722 x 107
8.498100 x 10~

1.107079 x 10~©
9.482565 x 106
3.092219 x 10~6
4.006147 x 1077
6.576505 x 106
4.600258 x 10~7
6.456310 x 106
4.298707 x 10~7
6.871203 x 10~7

FIGURE 3.
Example 6.2.

Comparing numerical (Right) and exact (Left) solutions, u(¢, <), with n = 2 for
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FIGURE 4. Exact and approximation solutions with n = 5 of Example 6.2.

Example 6.3. In the final example, the below FWS2DPVIE is considered

1 ;
st (60) w0 +9(60) + e [ / (= )3 (= 1)} [u(s, ) Pdyds
5 7
/ (205)3[u(s, y)]>dyds, (6.5)
with
65536 1 1 1
=92 ) 209022 P9 BB 1,66
9o:t) = 264 2 T 2= S e

the exact solution is calculated and presented by u(s,t) = <t, and supplementary conditions
of u(s,0) = 0,u(0,¢) = 0. The numerical results calculated by the purposed method is shown
in Table 3. The absolute error functions of n = 2,n =15 and 6 = 0.95 have been plotted in
Figures. 5-6.

TABLE 3. The AEs for Example 6.3.

(,¢) n=4 n=~6 n==_§

(0.1,0.1)  4.301514 x 107> 4.004101 x 10~7  9.214079 x 10~3
(0.2,0.2)  1.365171 x 107°  1.965402 x 10~7  4.702145 x 10~°
(0.3,0.3)  1.649781 x 10™*  3.075314 x 10~%  3.092219 x 106
(0.4,0.4)  7.153330 x 107°  2.145874 x 1077 3.476147 x 1078
(0.5,0.5)  2.045546 x 107> 4.475221 x 10~7  2.544555 x 10~
(0.6,0.6)  1.641082 x 107*  1.718208 x 1075  7.619858 x 103
(0.7,0.7) 2941257 x 107°  2.183547 x 10~7  1.103110 x 107
(0.8,0.8)  6.524798 x 107°  2.002522 x 107 2.242107 x 108
(0.9,0.9)  2.772410 x 10™*  7.418520 x 1075 1.625703 x 1078
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FIGURE 5. Comparing numerical (Right) and exact (Left) solutions, u(c, <), with n = 2 for
Example 6.3.

FIGURE 6. Exact and approximation solutions with n = 5 of Example 6.3.

7. Conclusion

The present paper has studied the use of GPs for the purpose of solving fractional
weakly singular 2-D partial Volterra integral equation. The advantages of the technique
include the lower costs required for setting up the system of equations without the need
for using projection techniques, e.g., the collocation, Galerkin, etc., and the very lower
computational costs of operations. From the computational perspective, this is one of the
benefits of the technique that makes it very cheap and simple. Also, using a number of
examples, its applicability and accuracy were verified. According to the numerical results,
the acquired solutions feature good accuracy. In addition, one may run the present technique
by increasing m2 and ml up to the points where the results settle down to a desirable
accuracy.
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