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NEW APPROACH FOR THE DUFFING EQUATION INVOLVING BOTH

INTEGRAL AND NON-INTEGRAL FORCING TERMS

Abbas Saadatmandi1, Somayye Yeganeh2

Duffing equations have a wide range of application in science and engi-

neering. In this research, the sinc-collocation method is presented for solving nonlinear
Duffing equation involving both integral and non-integral forcing terms. The properties
of sinc functions required for our subsequent development are given. These properties
are then used to reduce the computation of solution of Duffing equation to some alge-

braic equations. It is well known that the sinc procedure converges to the solution at
an exponential rate. Numerical examples are included to demonstrate the validity and
applicability of the new technique.
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1. Introduction

In this work, we develop a framework to obtain the numerical solution of the following
Duffing equation involving both integral and non-integral forcing terms

y′′(x) + σy′(x) + f(x, y(x), y′(x)) +

∫ x

0

k(x, t, y(t))dt = 0, 0 < x < 1, (1)

with separated boundary conditions

p0y(0)− q0y
′(0) = a, p1y(1) + q1y

′(1) = b, (2)

where f : [0, 1] × R2 −→ R and k : [0, 1] × [0, 1] × R −→ R are continuous functions. Also,
p0, q0, p1, q1, a, b ∈ R and σ ∈ R− {0} are such that p0, q0, p1, q1 > 0.
The Duffing equation in one form or another frequently appear in many physical and en-
gineering problems, e.g., chaotic phenomena, signal processing, fuzzy modelling, nonunifor-
mity caused by an infinite domain, nonlinear mechanical oscillators, orbit extraction and
brain modelling (see [16, 12, 5, 13, 10, 11, 15] and the references therein). Authors of [2]
introduced the existence and uniqueness of the solution of (1)-(2) by a generalized quasilin-
earization (QSL) technique. Also the analytic approximation of the forced Duffing equation
with continuous and discontinuous integral boundary conditions has been investigated in
[4, 3] through (QSL) technique. Furthermore, authors of [5] developed an algorithm for
the analytic solution of the forced Duffing type integro-differential equations with nonlinear
three-point boundary conditions.

There are few references on the numerical solution of the problem (1)-(2). In [11]
an improved variational iteration method is presented for solving this problem. As said
in [11], the main advantage of this modification over the standard variational iteration
method is that it can avoid unnecessary repeated computation in determining the unknown
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parameters in the initial solution. Yao [27] presented an iterative reproducing kernel method
for solving problem (1)-(2). Also in [15] the hybrid functions of block-pulse and Bernoulli
polynomials are used to approximate the solutions of (1)-(2). Furthermore, in [21] the
Legendre pseudospectral method was developed for solving this problem.

In the last three decades a variety of numerical methods based on the sinc approxima-
tion have been developed. References [26, 25, 14] provide overviews of the methods based on
the sinc function for solving ordinary differential equations, partial differential equations and
integral equations. Sinc methods have also been employed as forward solvers in the solution
of boundary value problems [22, 7, 24, 6, 9, 20], astrophysics equations [19], Blasius equa-
tion [18], elasto-plastic problem [1], heat distribution [8], integral and integro-differential
equations [23, 28, 29, 17].

In this paper, the solution of Duffing equation (1) with separated boundary condi-
tions (2) is presented by means of sinc-collocation method. Our method consists of reducing
the solution of Eq. (1) to a set of algebraic equations. The properties of sinc function are
then utilized to evaluate the unknown coefficients. It is known that the sinc collocation
method with n collocation points converges at the rate of exp(−κ

√
n) with some κ > 0

under certain condition [25].
The outline of the paper is as follows. First, in Section 2 we explain the formulation

of sinc functions required for our subsequent development. In Section 3, we illustrate how
the sinc method may be used to replace Duffing equation (1) with boundary conditions (2)
by an explicit system of nonlinear algebraic equations, which is solved by Newton’s method.
In Section 4, we report our numerical results and demonstrate the efficiency and accuracy
of the proposed numerical scheme by considering some numerical examples.

2. Sinc function preliminaries

In what follows we outline some of the basic properties of the sinc functions. For
more detailed overview of the sinc function properties readers can study [25, 14].
On the real line R the sinc function is defined as

Sinc(x) =

{
sin(πx)

πx , x ̸= 0,

1, x = 0.
(3)

For any step-size h > 0, the translated sinc functions with evenly spaced nodes are given by

S(j, h)(x) = Sinc

(
x− jh

h

)
=

{
sin[πh (x−jh)]

π
h (x−jh) , x ̸= jh,

1, x = jh,
(4)

which are called the jth sinc functions. The sinc functions form an interpolatory set of
functions, i.e.,

S(j, h)(kh) = δjk =

{
1, j = k,

0, j ̸= k.
(5)

If a function f is defined on R, then the cardinal function of f , denoted C(f, h)(x), is defined
by

C(f, h)(x) =
∞∑

j=−∞
f(jh) Sinc

(
x− jh

h

)
, h > 0, (6)

whenever this series converges. The properties of this series are discussed thoroughly in [25,
14]. These properties are derived in the infinite strip DS in the complex plane,

DS =
{
w = u+ iv : |v| < d ≤ π

2

}
. (7)
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To construct an approximation on the interval (0, 1), which is used in this paper, we consider
the conformal map

ϕ(z) = ln

(
z

1− z

)
. (8)

The map ϕ carries the eye-shaped region

DE =

{
z ∈ C :

∣∣∣∣arg( z

1− z

)∣∣∣∣ < d ≤ π

2

}
, (9)

onto the infinite strip DS . The basis functions on the interval (0, 1) are taken to be the
composite translated sinc functions:

Sj(x) ≡ S(j, h) ◦ ϕ(x) = Sinc

(
ϕ(x)− jh

h

)
, (10)

where S(j, h) ◦ ϕ(x) is defined by S(j, h)(ϕ(x)). The inverse map of w = ϕ(z) is

z = ϕ−1(w) =
ew

1 + ew
. (11)

We define the range of ϕ−1(w) on the real line as

Γ =
{
ϕ−1(x) ∈ DE : −∞ < x < ∞

}
= (0, 1). (12)

Also, for the evenly spaced nodes {jh}∞j=−∞ on the real line, the image that corresponds to
these nodes is

xj = ϕ−1(jh) =
ejh

1 + ejh
, j = 0,±1,±2, ... (13)

In the following, for our subsequent development, a required definition and some theorems
related to functions of the class Lα(DE) are presented (for more details, see [25, 14]).

Definition 2.1. Let Lα(DE) be the set of all analytic functions u, for which there exists a
constant C, such that

| u(z) |≤ C
| ρ(z) |α

[1+ | ρ(z) |]2α
, z ∈ DE , 0 < α 6 1, (14)

where ρ(z) = eϕ(z).

Theorem 2.1. Let u ∈ Lα(DE), let N be a positive integer, and let h be selected by the
formula

h =

(
πd

αN

)1/2

, (15)

then there exists a positive constant c1, independent of N , such that

sup
x∈Γ

∣∣∣∣∣∣u(x)−
N∑

j=−N

u(xj)S(j, h) ◦ ϕ(x)

∣∣∣∣∣∣ ≤ c1e
−(πdαN)1/2 . (16)

The above expressions show that sinc interpolation on Lα(DE) converges exponen-
tially.

Theorem 2.2. Let u
ϕ′ ∈ Lα(DE), let δ

(−1)
kj be defined as

δ
(−1)
kj =

1

2
+

∫ k−j

0

sin(πt)

πt
dt,
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and take h =
(

πd
αN

)1/2
. Then there exists a constant c2, which is independent of N , such

that ∣∣∣∣∣∣
∫ xk

0

u(t) dt− h
N∑

j=−N

δ
(−1)
kj

u(xj)

ϕ′(xj)

∣∣∣∣∣∣ 6 c2e
−(πdαN)1/2 . (17)

In addition, we require derivatives of composite sinc functions evaluated at the nodes
xj . The expressions required for the present discussion are [25]

δ
(0)
ij = [S(i, h) ◦ ϕ(x)]|x=xj =

{
1, i = j,

0, i ̸= j.
(18)

δ
(1)
ij =

d

dϕ
[S(i, h) ◦ ϕ(x)]|x=xj =

1

h

{
0, i = j,
(−1)j−i

j−i , i ̸= j,
(19)

and

δ
(2)
ij =

d2

dϕ2
[S(i, h) ◦ ϕ(x)]|x=xj =

1

h2

{
−π2

3 , i = j,
−2(−1)j−i

(j−i)2 . i ̸= j.
(20)

3. The sinc-collocation method

For the boundary conditions in Eq. (2), the sinc basis functions Si(x) do not have a
derivative when x tends to 0 or 1. Thus, we modify the sinc basis functions as w(x)Si(x),
where w(x) = x(1− x). Now the first derivative of the modified sinc basis functions are de-
fined and tend to zero as x approaches 0 or 1. To solve problem (1)-(2), we first approximate
y(x) as

yN (x) = Q(x) + UN (x), (21)

where

UN (x) = w(x)

N∑
i=−N

uiSi(x), (22)

and
Q(x) = c1q1(x) + c2q2(x) + c3q3(x) + c4q4(x). (23)

Here, q1(x), q2(x), q3(x) and q4(x) consist of the cardinal functions for univariate cubic Her-
mite interpolation [6]:

q1(x) = x(1− x)2, q2(x) = (2x+ 1)(1− x)2,
q3(x) = x2(3− 2x), q4(x) = x2(x− 1).

(24)

In Eq. (23), c1, c2, c3 and c4 are constants to be determined. The 2N + 1, coefficients
{ui}Ni=−N , and c1, c2, c3, c4 are determined by substituting yN (x) into Eq. (1) and evaluating
the result at the sinc points

xj =
ejh

1 + ejh
, j = −N − 1, . . . , N + 1. (25)

Note that
d

dx
[S(i, h) ◦ ϕ(x)] = ϕ′(x)

d

dϕ
[S(i, h) ◦ ϕ(x)], (26)

and
d2

dx2
[S(i, h) ◦ ϕ(x)] = ϕ′′(x)

d

dϕ
[S(i, h) ◦ ϕ(x)] + (ϕ′(x))2

d2

dϕ2
[S(i, h) ◦ ϕ(x)]. (27)

Using Eqs. (18)-(21), (26) and (27) gives

yN (xj) = Q(xj) + w(xj)uj , (28)
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y′N (xj) = Q′(xj) + w(xj)
N∑

i=−N

uiϕ
′
jδ

(1)
ij + w′(xj)uj , (29)

and

y′′N (xj) = Q′′(xj) + w(xj)
N∑

i=−N

ui

(
ϕ′′
j δ

(1)
ij + (ϕ′

j)
2δ

(2)
ij

)
+ 2w′(xj)

N∑
i=−N

uiϕ
′
jδ

(1)
ij

+w′′(xj)uj ,
(30)

where ϕ′
j = ϕ′(xj), ϕ

′′
j = ϕ′′(xj). Application of Theorem 2.2 to the integral in Eq. (1) gives∫ xj

0

k(xj , t, yN (t)) dt ≃ h

N∑
i=−N

k(xj , xi, yN (xi))

ϕ′(xi)
δ
(−1)
ji . (31)

By replacing Eqs. (28)-(31) in Eq. (1), we obtain

y′′N (xj) + σy′N (xj) + f(xj , yN (xj), y
′
N (xj)) + h

N∑
i=−N

k(xj , xi, yN (xi))

ϕ′(xi)
δ
(−1)
ji

= 0, j = −N − 1, . . . , N + 1,
(32)

where we used u−N−1 = uN+1 = 0. Also, substituting Eq. (21) in boundary conditions (2),
we get

p0c2 − q0c1 = a, p1c3 + q1c4 = b. (33)

Eqs. (32) and (33) give 2N + 5 nonlinear algebraic equations which can be solved for the
unknown coefficients ui and ci by using Newton’s method. Consequently yN (x) given in
Eq. (21) can be calculated.

Remark 3.1. It is worth indicating that the Newton’s method has a convergence rate of
quadratic order, which directly depends on the equations of (32)-(33) and initial guesses for
ui and ci. One way to discover the initial guesses is to solve the system analytically for the
very small N by means of software programs, such as MATLAB or Maple. The solution can
be calculated if the conditions for the existence of the solution and the convergence of the
Newton process are fulfilled.

4. Illustrative Examples

To incorporate our discussion above, in this section, we will apply the sinc-collocation
method to solve some examples. In all examples we choose α = 1

2 and d = π
2 which leads to

h = π√
N

. We use the absolute errors, EN (x) = |yN (x)−y(x)|, where y(x) denotes the exact
solution of the given example and yN (x) denotes the computed solution by our method.
Note that we have computed the numerical results by MATLAB programming.

Example 1: Consider the Duffing equation [27],
y′′(x) + y′(x) + y(x)y′(x) +

∫ x

0

xty2(t) dt = f(x), 0 < x < 1,

y(0)− y′(0) = 0,
y(1) + y′(1) = 0,

(34)

where

f(x) = −3x− 3x2 +
5x3

2
+

2x4

3
− x5

4
− 2x6

5
+

x7

6
.

The exact solution of this problem is y(x) = 1 + x − x2. For the purpose of comparison in
Table 1, we compare the absolute error EN (x) of our method with N = 15 and N = 20 at
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the same points as [27] together with the results given in [27]. From Table 1 we see that the
sinc-collocation method is clearly reliable if compared with the method given in [27].

Table 1. Comparison of absolute error EN (x) for Example 1.

Exact Method of [27] Present method
x solution N = 15 N = 20
0.1 1.09 9.46600× 10−6 4.8910× 10−7 8.9651× 10−9

0.2 1.16 9.77708× 10−6 8.7097× 10−8 2.0289× 10−8

0.3 1.21 9.81938× 10−6 2.1538× 10−7 8.0284× 10−8

0.4 1.24 9.66575× 10−6 1.2703× 10−6 1.1747× 10−7

0.5 1.25 9.37204× 10−6 1.4226× 10−6 1.7725× 10−7

0.6 1.24 8.97794× 10−6 2.7771× 10−7 4.5333× 10−8

0.7 1.21 8.50917× 10−6 9.8545× 10−7 2.0085× 10−7

0.8 1.16 7.97984× 10−6 5.7859× 10−7 1.7829× 10−8

0.9 1.09 7.39469× 10−6 2.9480× 10−7 3.0525× 10−8

1 1 6.75105× 10−6 1.2745× 10−7 1.9952× 10−8

Example 2: As the second example, we consider the following problem
y′′(x)− 1.72y′(x) + e−y(x) −

∫ x

0

(1− 2t)y(t) dt = f(x), 0 < x < 1,

y(0)− 3y′(0) = −1,
y(1) + 3y′(1) = −1,

(35)

where

f(x) =
43

75
(2x− 1) cos(x− x2)− 2

3
cos(x− x2)− 1

3
(2x− 1)2 sin(x− x2)

+ exp

(
−1

3
sin(x− x2)

)
− 1

3
+

1

3
cos(x− x2). (36)

The exact solution of this problem is y(x) = 1
3 sin(x− x2). We applied the sinc-collocation

method presented in this paper with N = 25, 30. Figure 1 shows the absolute error functions
E25(x) and E30(x).

Example 3: We consider the following problem,
y′′(x) + y′(x) + y(x)(1 + y′(x)) +

∫ x

0

xty(t) dt = f(x), 0 < x < 1,

y(0)− y′(0) = −1,
y(1) + y′(1) = −1,

(37)

where

f(x) = x(2x− 1)(x− 1)− x(x− 1)− 2x− 1− 1

12
x4(3x− 4).

The true solution is y(x) = x(1 − x). The absolute error functions EN (x) for N = 15 and
N = 20 are plotted in Figure 2. For exploring the dependence of error of the solutions on the
parameter N , and to have an overview of the rate of convergence, we apply the presented
method on Examples 1, 2, and 3 for various values of N . The results are summarized in
Figure 3, where we plot the maximum absolute errors defined as:

eN = max{|yN (x)− y(x)|, 0 < x < 1}.
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Figure 1. Plot of EN (x) with N = 25 and N = 30 for Example 2.
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Figure 2. Plot of EN (x) with N = 15 and N = 20 for Example 3.
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Figure 3. Comparison of maximum absolute errors eN for different values
of N for Examples 1,2,3.

According to these experiments, we find that the presented method provides very accurate
results even for small N . Also if N increases, then the errors become smaller quickly.

5. Conclusion

The sinc-collocation method is used to solve the Duffing equation involving both inte-
gral and non-integral forcing terms. Properties of the sinc function are utilized to reduce the
computation of this problem to some algebraic equations. Several examples are given and
the numerical results demonstrate the reliability and efficiency of the new method proposed
in the current paper for solving this type of problem.
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