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ROBUST CONTROL FOR UNCERTAIN TIME DELAY 
PROCESSES 

Victor ISPAS1 

Această lucrare tratează problema conducerii robuste a sistemelor liniare cu 
incertitudine cu argument întârziat ce conţin elemente de execuţie cu saturaţie. 
Utilizând fundamente teoretice, cum ar fi teoria Razumikhin cu privire la 
stabilitatea sistemelor cu incertitudine cu argument întârziat, teoria Lyapunov a 
stabilităţii ecuaţiilor diferenţiale funcţionale, tehnici de optimizare via inegalităţi 
liniare matriciale, această lucrare propune o procedură de determinare a unui 
criteriu pătratic compatibil cu incertitudinile unui sistem cu argument întârziat şi o 
procedură de sinteză a unei legi de conducere robuste pentru sistemul în cauză ce 
urmează a fi implementată folosind elemente de execuţie cu saturaţie. 

This paper is concerned with the problem of robust control of linear systems 
with delay dependence containing saturating actuators in the presence of non-linear 
parametric perturbation. Based on Razumikhin’s approach to the stability of 
uncertain systems with delay dependence, on Lyapunov theory to the stability of 
functional differential equations and on optimization technical via matrices linear 
inequalities, this paper propose an procedure for determine a square criteria 
compatible with the uncertainness of the concerned system and for synthesize of 
robust control law for the concerned system. 

Keywords: time delay system, stabilization robustness, non-linear parametric 
perturbation, saturating actuators 

 
1. Introduction 
 
In the last years three major thinks play an important role in the control 

theory, thus Yola showed that it is possible to parametrize all stabilizing controller 
for a particular system, Zames postulated that measuring performance in terms of 
the ∞-norm rather than the traditional 2-norm, might be much closer to the 
practical needs, Doyle argued that model uncertainty is often described very 
effectively in terms of norm bounded perturbations. For this perturbations and the 
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H∞ performance objective he developed a power full tool (the structured singular 
value) for testing robust stability (i.e. stability in the presence of model 
uncertainty).  

In [1], Ioan Dumitrache et al approach one of the main problems of Smith 
predictor-based control of time delay process: the availability of an adequate 
model. In that paper, is presents a hierarchical control structure based on Smith 
predictor and a fuzzy decision system. Considering more operating regimes, the 
decision system selects the appropriate model parameters based on an on-line 
identification of the process parameters in order to preserve the performance 
robustness in presence of uncertainties.   

In [2], Corneliu Popeea and Boris Jora presents a computational oriented 
overview on the order reduction problem for passive (positive real) linear systems. 
The numerical difficulties associated with the standard order reduction procedure, 
which involves the stabilizing solutions of two Riccati equations, are discussed. 
Some new approximate methods are proposed. 

The traditional role of the gas turbine as fast response unit, ideal for 
improving primary control response of the power system, has been to a certain 
extent lost, due to relatively high constraints in ramping up and down the power 
output during the normal operation. This trend must be fully reflected in the 
modeling and simulation of the gas turbines in power system analysis programs. 
The [3] is a contribution to the systematic analysis of power-frequency control 
concepts for multi shaft high power gas turbines and the enhancement of their 
modeling in conventional power system analysis software. 

Structures with inverse model represent one of the successful solutions for 
the real-time control of the nonlinear processes. The use of these structures 
imposes solving some specific problems, like determination of static characteristic 
of the process, construction of inverse model or robust control law design. In [4] a 
structure and the correspondent original methodology of designing and physically 
implementation based on inverse model command is proposed. The applicability 
of the structure is proved using a real-time structure with an RST control 
algorithm.  

In [5] are presents the advantages offered by the mathematical theory of 
linear time invariant system control problem and the advantages offered by the 
microprocessors directly applied to digital process control. The main advantage of 
proposed method is the independence of the sampling period by the step of 
sampling. More exactly, has been derived a method based on the digital version of 
the exact model matching problem in conjunction with an adequate selection of 
the sampling period. 

The [6] is a complete overview of the process control, prepares control 
design, implementation problems, problem formulations, analysis of posed control 
thesis of alternative control systems. 
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In [7] is presented a project about the system structure and the system 
design philosophy. 

The uncertain time delay systems are of interest to control theorists and 
practitioners for various reasons. Control problems have been formulated and 
solved for such systems since the classical period and the mostly known result is 
that based on Smith predictor. The systems thus designed could be either non-
robust or unstable. For this reason the more recent techniques based on state 
space, ensuring feedback stabilization and optimality of some quadratic criterion 
were applied [8]. 

In [9] are studies the Brunovsky forms and the connection between Hautus 
criteria and reaction equivalence. 

In [10] is presented a feedback control systems designing procedure on the 
basis of the root locus. In order to design the regulator compensatory one may 
use: phase-lead compensatory, phase-lag compensatory or both types.  

In [11] is used the thermal balance theoretical models in order to stay at a 
level imposed by the adjusted parameters.  

The problems of stability analysis and stabilization of dynamic systems 
with time delay are of theoretical and practical importance and have attracted 
considerable attention. A keen interest has been taken in robust stabilization for 
uncertain time delay systems containing saturating actuators.  

Based on Razumikhin’s approach to the stability of uncertain systems with 
delay dependence, on Lyapunov theory to the stability of functional differential 
equations and on optimization technical via matrices linear inequalities, this paper 
propose an procedure for determine a square criteria compatible with the 
uncertainness of the concerned system and for synthesize of robust control law for 
the concerned system.  

This paper is organized as follows: the section 1 is the introduction; the 
section 2 presents briefly the problem of robust control of the linear systems with 
delay dependence containing saturating actuators in the presence of non-linear 
parametric perturbation.; the section 3 gives the proposed robust control results 
for above problem; in the section 4 are presented the numerical examples; the 
section 5 gives the conclusion. 

 
2. Preliminary  
 
Consider the uncertain plant described by the following differential 

equation [12]: 
.

0 1 0 1( ) ( ) ( ( )) ( ( )) ( ) ( ( ), ) ( ( ( )), )= + − + + Δ + + −x t A x t A x t h t B B t u t f x t t f x t h t t       (2.1)  
for 0 0∀ > ≥t t , where ( ) nx t ∈  is the state vector,  ( ) mu t ∈  is the control 
vector, 0A  and 1A   are n n×  real matrices, B  and ( )B tΔ  are n m×  real matrices. 
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The time delay, ( )h t , is a nonnegative bounded and continuous function, i.e. 
0 ( ) *h t h< <  where *h  is a positive constant. Here, it is worth noticing that we 
do require for the time derivative of the time delay ( )h t  to be less than one. The 
initial condition for (2.1) is given by [12]: 

0 0( ) ( ) *θ ϕ θ θ= − ≤ ≤x t h t       (2.2) 
where ϕ  is a given continuous vector valued function on the interval established. 
Here ( )B tΔ  is the time-varying perturbation matrix of input matrix B .   

The uncertainties functions 0 ( ( ), )f x t t   and 1( ( ( )), )f x t h t t− , which are 
smooth vector valued functions satisfying 0 (0, ) 0,f t t= ∀  and 1(0, ) 0,f t t= ∀  , are 
unknown and represent the system’s nonlinear parametric perturbations with 
respect to the current state and the delayed state, respectively. In general, it is 
assumed that 0( ) , ( ( ), )B t f x t tΔ  and 1( ( ( )), )f x t h t t−  are bounded, i.e.:  

( )B t δΔ < , 0 0( ( ), )f x t t β< , 1 1( ( ( )), )f x t h t t β− <     (2.3) 

where 0,δ β  and 1β  are given [12]. The control vector ( ) mu t ∈  is assumed to 
belong to a compact set: { ( ) : ( ) }m

m Mu t u u t u∈ ≤ ≤ . 
 
Assumption 2.1:  

The pair 0 1( , )A A B+  can be stabilized and all the states of the system are 
available. 
 

Note that Assumption 2.1, which is equivalent with stabilizing the system 
(2.1) without time delay and uncertainty is necessary for the existence of a 
stabilizing memory less state feedback control law for the system (2.1). By 
implementing a saturated controller [12]: 

( ), m nu sat Fx F ×= ∈         (2.4) 
the system (2.1) becomes: 

.

0 1 0 1( ) ( ) ( ( )) ( ( )) ( ( )) ( ( ), ) ( ( ( )), )= + − + + Δ + + −x t A x t A x t h t B B t sat Fx t f x t t f x t h t t  
 (2.5) 

for 0 0∀ > ≥t t , where the saturation term is given by: 
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:
( ) ( ( , ) : {1,..., })

,

( , ) ,
0, 0

( , ) 1 {1,..., }

⎧ →
⎪ = ∈⎪
⎪ ⎧ ≥⎪ ⎪⎪

= ≤⎨ ⎨
⎪ ⎪ =⎪ ⎩
⎪
⎪ ≤ ≤ ∈
⎪⎩

m

i

i i
M i M
i i

i m i m

i

i

i

sat
sat u asat u i i m

u u u

asat u i u u u
u

asat u iw i m
u

     (2.6) 

The operation range of the nonlinear saturation is considered inside the sector 
[ ,1]w . The saturating actuator saturates at mu  and Mu , where [12]:  

1 ...⎡ ⎤= ⎣ ⎦
Tm

m m mu u u     1 ...⎡ ⎤= ⎣ ⎦
Tm

M M Mu u u    (2.7) 
Consider the system (2.1), satisfying Assumption 2.1. If the state feedback matrix 
F  is chosen in such a way that the inequality [12]:  

0 ( ) * *( ) ϕ
ψ

≤ ≤h t h h G       (2.8)  

where 

0 1
1( ) 2( ) 2 ( )

2
ϕ λ δ β δβ−

− + − +T T T TwG QG G PB G P FG G P G  (2.9) 

1 22 ( )ψ α ψ ψ+        (2.10) 

2
1 1 0 1

1( )
2

ψ +
+ +T TwG PA A BF G G PA G     (2.11) 

2 1 1 1 0 1
1( ) ( )

2
ψ δ β β−

+ + +
w GPA B GPA FG GPA G    (2.12) 

is satisfied with: 

0 1
10

2
+

+ + = = + +T
F F F

wA P PA Q A A A BF     (2.13) 

where Q  is a symmetric half positive matrix, 0 1( , )Q A A+  detectable pair,  then 
the system (2.1)+(2.2) is robustly globally asymptotically stabilisable via memory 
less state feedback control (2.4) where G  is any non singular matrix, and 

( )
( )
P
P

λα
λ

= .  
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3. The robust control 
 
This paper propose a method to determine the matrices F  and G , for 

robust control of the system (2.1)+(2.2) compatible with his uncertain. We 
establish 0ε >  for precision of calculus and 0ρ >  big enough for ensure the 
condition: sum of eigen value is positive in the case of 2 2×  matrices, using the 
Viete relation. Let  

2
nn n   ( 1)

2s
n nn +       (3.1) 

We establish a n n×  matrices families:  
{ : {1,..., }}=i nN N i n   { : {1,..., }}= =T

i i sS S S i n        (3.2) 
such that all the n n×  matrices, M , can be represented: 

1

nn

i i
i

M x N
=

=∑        (3.3)  

respectively 

1

sn

i i
i

M x S
=

=∑         (3.4)  

in the symmetric case, where ix  are scalars. Let  
1

1M Q−         (3.5)  
If we consider the inherent error of numerical representation, can be write  

1I M Q I Iε ε− ≤ − ≤       (3.6) 
Let 

1
1

1

sn
M
i i

i

M x S
=

=∑    
1

sn
Q
i i

i

Q x S
=

=∑     (3.7) 

where the variables 1M
ix  and Q

ix  will be determine. So  

1
1

1 1

s sn n
M Q
i j i j

i j
M Q x x S S

= =

=∑∑      (3.8)  

Let the set of pairs of integer:  
1 {( , ) {1,..., } {1,..., }: 0}M Q

s s i jI i j n n S S∈ × ≠    (3.9) 

For each 1( , ) M Qi j I∈ , will introduce a new variable, 1M Q
ijt  , and define the block-

diagonal matrix 1M Q
ijA  , such that:  
1

1

1 ρ ρ
ε

⎡ ⎤
= ⎢ ⎥+⎢ ⎥⎣ ⎦

M
i

ij M QQ
j ij

x
A

x t
 , 

1

1

2 ρ ρ
ε

⎡ ⎤−
= ⎢ ⎥− +⎢ ⎥⎣ ⎦

M
i

ij M QQ
j ij

x
A

x t
 , 1

1

2

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

ijM Q
ij

ij

A
A

A
   (3.10) 
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Can be observed that 1 0M Q
ijA ≥  is equivalent with 1 1≅M Q M Q

ij i jt x x . We can determine 

the coefficients 1M Q
ijkw   such that:  

1 1
1

1 1 1

s s sn n n
M Q M Q
ijk jk i

i j k

M Q w t S
= = =

=∑∑∑      (3.11) 

Also, can be determined the symmetrical matrices, 1M Q
jkS , such that:  

1 1
1

1 1

s sn n
M Q M Q
jk jk

j k

M Q t S
= =

= ∑∑      (3.12)  

Therefore  

1 1

1 1 1

s s sn n n
M Q M Q
ijk jk i

i j k

I w t S I Iε ε
= = =

− ≤ − ≤∑∑∑   1 1

1 1

s sn n
M Q M Q
jk jk

j k

I t S I Iε ε
= =

− ≤ − ≤∑∑   (3.13) 

We define the matrix:  
1(1)

(2)
1

⎡ ⎤
⎢ ⎥
⎣ ⎦

T

M G
H

G t I
      (3.14) 

Can be observed that (1) 0H ≥   is equivalent with:  
(2)
1 0Tt I G QG− ≥       (3.15) 

 We define the matrices:  
(1)

1 1(1) (2) 1
1 1 1(2) (2) (2)

1 1 1 1 1

ρ ρ ρ ρ
ε ε

− ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥+ − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

t t L
L L L

t t t t L
  (3.16) 

Can be observed that 1 0L ≥  is equivalent with:  
(2) 2 (2)
1 1 1t t tε ε− ≤ ≤ +  i.e. 2 (2)

1 1≅t t       (3.17) 
Let 

1=
∑

nn
G
i i

i

G x N         (3.18)  

where the variables G
ix  will be determined. So  

( )
1

nn
T G

i i
i

G x Nσ
=

=∑        (3.19)  

where σ  is a conveniently choice permutation of nn  order. We have the 
expression:   

( )
1 1

n sn n
T G Q

i j i j
i j

G Q x x N Sσ
= =

=∑∑       (3.20)  

For each ( , ) {1,..., } {1,..., }n si j n n∈ ×  such that 0i jN S ≠  introduces the variable 
TG Q

ijt  and define the matrix 
TG Q

ijA  such that: 
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1
( ) ( )1 2

2

σ σρ ρ ρ ρ

ε ε

⎡ ⎤⎡ ⎤ ⎡ ⎤−
⎢ ⎥= = =⎢ ⎥ ⎢ ⎥

+ − + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

T

T T T

T T T

G G G Q
i i ijG Q G Q G Q

ij ij ijQ G Q Q G Q G Q
j ij j ij ij

x x A
A A A

x t x t A
 (3.21) 

Can be observed that 0
TG Q

ijA ≥   is equivalent with:  

( )

T TG Q G Q G Q
ij i j ijt x x tσε ε− ≤ ≤ +  i.e. ( )σ≅

TG Q G Q
ij i jt x x    (3.22)  

Can be determined the coefficients 
TG Q

ijkw  such that  

1 1 1

n n s T T
n n n

T G Q G Q
ijk jk i

i j k

G Q w t N
= = =

=∑∑∑       (3.23)  

We observe that 
TG Q

ijkw  not depend on G  or Q . We have:  

1 1 1 1

n n s n T T
n n n n

T G Q G Q G
ijk jk l i l

i j k l

G QG w t x N N
= = = =

= ∑∑∑∑     (3.24) 

For each ( , ) {1,..., } {1,..., }n ni l n n∈ ×  such that 0i lN N ≠  introduce the variable 
TG QG

jklt   and define the matrices 
TG QG

jklA  such that: 

1 2
ρ ρ ρ ρ

ε ε

⎡ ⎤ ⎡ ⎤−
= =⎢ ⎥ ⎢ ⎥

+ − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

T T

T T T T

G G
l lG QG G QG

jkl jklG Q G QG G Q G QG
jk ij jk ij

x x
A A

t t t t
 

1

2

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

T

T

T

G QG
jklG QG

jkl G QG
jkl

A
A

A
     (3.25)  

Can be observed that the inequality 0
TG QG

jklA ≥   is equivalent with: 
T T TG QG G Q G G QG

jkl jk l jklt t x tε ε− ≤ ≤ +  i.e. ≅
T TG QG G Q G

jkl jk lt t x      (3.26)  

Can be determined the coefficients 
TG QG

ijklw  such that: 

1 1 1 1

n n s n T T
n n n n

T G QG G QG
ijkl jkl i

i j k l

G QG w t N
= = = =

= ∑∑∑∑       (3.27)  

We observe that 
TG QG

ijklw  not depend on G  or Q . Also, can be determined the 

matrices 
TG QG

jklN  such that:  

1 1 1

n s n T T
n n n

T G QG G QG
jkl jkl

j j k

G QG t N
= = =

= ∑∑∑      (3.28) 

Let  
2

TM G QG        (3.29) 
Define the matrix:   
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1(2)

1 2

⎡ ⎤
⎢ ⎥
⎣ ⎦

I r I
H

r I M
      (3.30) 

Can be observed that (2) 0H ≥  is equivalent with:  
2

1 0TG QG r I− ≥       (3.31) 
Let  

3
3

1

sn
M
i i

i

M x S
=

=∑       (3.32) 

where the variables 3M
ix  will be determined. We wish:  

2 3 3
TM M M=  i.e. 2 3 3

TI M M M Iε ε− ≤ − ≤     (3.33) 
We have:  

3 3
3 3 ( )

1 1

s sn n
M MT

i j i j
i j

M M x x S Sσ
= =

= ∑∑      (3.34) 

Introduce the set:  
3 3 {( , ) {1,..., } {1,..., }: 0}
TM M

s s i jI i j n n S S∈ × ≠     (3.35) 

Can be observed that 3 31
TM MM QI I= . For each 3 3( , )

TM Mi j I∈  define the variable 
3 3
TM M

ijt  and build the matrix thus:  
3

3 3

3 3 3

( )1 σρ ρ

ε

⎡ ⎤
= ⎢ ⎥

+⎢ ⎥⎣ ⎦

T

T

M
iM M

ij M M M
j ij

x
A

x t
 

3 3 3

3 3 3 3

3 3 3 3 3

1
( )2

2

σρ ρ

ε

⎡ ⎤⎡ ⎤−
⎢ ⎥= =⎢ ⎥

− + ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

T

T T

T T

M M M
i ijM M M M

ij ijM M M M M
j ij ij

x A
A A

x t A
   (3.36) 

Can be observed that 3 3 0
TM M

ijA ≥  is equivalent with:  
3 3 3 3 3 3

( )

T TM M M M M M
ij i j ijt x x tσε ε− ≤ ≤ +  i.e. 3 3 3 3

( )σ≅
TM M M M

ij i jt x x     (3.37) 
Observe that in this case can be considered σ  the identical permutation, hence 

3M  is symmetric. Can be determined the coefficients 3 3
TM M

ijkw  such that:  

3 3 3 3
3 3

1 1 1

s s s T T
n n n

M M M MT
ijk jk i

i j k

M M w t S
= = =

= ∑∑∑      (3.38) 

Mentioned that 3 3
TM M

ijkw  not depend on 3M . Also, can be determined the symmetric 

matrices 3 3
TM M

jkS  such that: 

3 3 3 3
3 3

1 1

s s T T
n n

M M M MT
jk jk

j k

M M t S
= =

=∑∑      (3.39) 
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From definition of 2M  we have:  

3 3 3 3

1 1 1 1 1 1 1

n n s n s s s T TT T
n n n n n n n

M M M MG QG G QG
ijkl jkl i ijk jk i

i j k l i j k

I w t N w t S Iε ε
= = = = = = =

− ≤ − ≤∑∑∑∑ ∑∑∑   (3.40) 

3 3 3 3

1 1 1 1 1

n s n s s T TT T
n n n n n

M M M MG QG G QG
jkl jkl jk jk

j j k j k

I t N t S Iε ε
= = = = =

− ≤ − ≤∑∑∑ ∑∑    (3.41)  

Let:  

1

1

1 3(3)

1 3

−⎡ ⎤
⎢ ⎥

−⎢ ⎥⎣ ⎦

t

T
t

s I t I M
H

t I M s I
    (3.42) 

Observe that (3) 0H ≥  is equivalent with:  

1

2
1 3 1 3( ) ( ) 0T

ts I t I M t I M− − − ≥     (3.43) 
If we continue in this manner obtain that the robust control problem of system 
(2.1)+(2.2) is equivalent with a feasibility problem ( ) 0F x ≥  where 

0
1

( )
p

i i
i

F x F x F
=

= +∑  with 0 ,..., pF F  symmetric matrices. The solution of this 

problem represents the solution of robust control problem. 
 
 4. Computer simulation 
 

Consider the uncertain time delay system (2.1)+(2.2)  with: 

0 1

1 1
0 1

2 2

1 0 1 1.9
2.85 2 0 1

1
.01 1 0

1 0
( ) .2 .1sin 15 20

.01sin( ( )) .01sin( ( ( )))
( ( ), ) ( ( ), )

.01sin( ( )) .01sin( ( ( )))

χ
χ

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

= Δ = − ≤ ≤⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
= + − ≤ ≤

−⎡ ⎤ ⎡ ⎤
= − =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

A A

B B

h t t u
x t x t h t

f x t t f x t h t
x t x t h t

 

Let .9=w , according to procedure proposed find the matrices [ 3 2]= − −F  and 
1

.7
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

G  such that 0 1

.851
.152

−⎡ ⎤+
+ + = ⎢ ⎥−⎣ ⎦

wA A BF  . The memory less state 

feedback control law, ( ) ( ( ))u t sat Fx t= , is a robust control law for uncertain time 
delay concerned system. For computer simulation we analyze inclusive the case of 
additional uncertain, i.e. 0 0μ=disturbf f  and   1 1μ=disturbf f , where μ  is the 
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measure of the relative additional uncertain. Considering the output of the system 
1 2y x x= +  can use the control structure from Fig. 1. 

 
Fig. 1. SIMULINK scheme of control structured proposed 

Also, consider some significant value for the parameter μ, thus: μ=0 for the case 

of the free uncertain system, μ=1 for the case of the system affected by the 

expected uncertain, and, μ=1.5 for the case of the system corrupted by the large 
uncertain. The corresponding results are represented in Fig. 2, Fig. 3 and Fig. 4.  

 
Fig. 2. Response of the free uncertain system ( 0μ = ) 
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Fig. 3. Response of the system for uncertain expected ( 1μ = ) 

 
Fig. 4. Response of the system for more uncertain ( 1.5μ = ) 

 
The MATLAB language is used and the function of the CONTROL 

SYSTEM TOOLBOX package which allow the simple and efficient simulation 
for behavior of the systems concerned. 

The results presented allow that the method proposed in this paper to be 
recommended for use to solve the concerned problem. 
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5. Conclusion 
 

The problem of robust control for uncertain time delay systems, containing a 
saturating actuator has been addressed.  

The uncertain time delay systems are of interest to control theorists and 
practitioners for various reasons. Control problems have been formulated and 
solved for such systems since the classical period and the mostly known result is 
that based on Smith predictor. The systems thus designed could be either non-
robust or unstable. For this reason the more recent techniques based on state 
space, ensuring feedback stabilization and optimality of some quadratic criterion 
were applied 

The saturating actuator and sensors often bring, in the system, a nonlinear 
input and raise obvious intricacy in synthesize of the control law. However, in 
practice, owing to physical limitation, there usually exist nonlinearities in the 
control input. Some common examples are mechanical connections, hydraulic 
servo-valves and electric servomotors, magnetic suspensions, and bearings, and 
some biomedical systems.  

These effects of input nonlinearities usually result in the control performance 
degeneration or unstable for the control system. This paper solve the problem 
mentioned by to propose a procedure for determine a square criteria compatible 
with the uncertainness and a procedure for determine synthesize of robust control 
law for the concerned system. 

For a proof the results proposed, in this paper, is used the Razumikhin’s 
approach to the stability of uncertain systems with delay dependence, the 
Lyapunov theory to the stability of functional differential equations and the 
optimization technical via matrices linear inequalities. 

Was considered an uncertain time delay system with nonlinear input, was used 
a parameter, μ, for characterize the level of uncertain, also was performed 
simulations for the checking of the performance and the applicability of the 
proposed procedure. The theoretical developments are illustrated by solve a 
robustness problem with respect to parametric uncertainty for a time delay system. 

In conclusion, the results obtained allow that the method proposed in this 
paper is recommended for use in robust control of delay time plants.  
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