
U.P.B. Sci. Bull., Series C, Vol. 73, Iss. 3, 2011 ISSN 1454-234x

VÉRIFICATION DE SYSTÈMES GALS EN COMBINANT
LANGAGES SYNCHRONES ET ALGÈBRES DE PROCESSUS

Damien THIVOLLE1

Un sistem GALS (Globally Asynchronous Locally Synchronous) este
constituit dintr-o colecție de componente secvențiale și deterministe care se execută
în mod concurent și care comunică utilizând canale lente sau defectuoase. Acest
articol propune o metodologie generală pentru modelizarea și verificarea sistemelor
GALS utilizând o combinație de limbaje sincrone (pentru componentele secvențiale)
și calcule de procese (pentru canalele de comunicație și concurență asincronă).
Această metodologie este ilustrată cu ajutorul unui studiu de caz industrial furnizat
de Airbus: un protocol de comunicație TFTP/UDP între un avion și baza terestră,
modelizat cu atelierul Eclipse/TOPCASED pentru ingineria dirijată de modele, și
apoi analizat formal cu package-ul CADP pentru verificare și evaluarea
performanțelor.

A Gals (Globally Asynchronous Locally Synchronous) system typically
consists of a collection of sequential, deterministic components that execute
concurrently and communicate using slow or unreliable channels. This paper
proposes a general approach for modelling and verifying Gals systems using a
combination of synchronous languages (for the sequential components) and process
calculi (for communication channels and asynchronous concurrency). This
approach is illustrated with an industrial case-study provided by Airbus: a Tftp/Udp
communication protocol between a plane and the ground, which is modelled using
the Eclipse/Topcased workbench for model-driven engineering and then analysed
formally using the Cadp verification and performance evaluation toolbox.

Un système GALS (Globalement Asynchrone Localement Synchrone) est
normalement constitué d’une collection de composants séquentiels et déterministes
qui s’exécutent de façon concurrente et communiquent au moyen de canaux lents et
non sûrs. Cet article propose une approche générale pour la modélisation et la
vérification des systèmes GALS en utilisant une combinaison de langages
synchrones (pour les composants séquentiels) et d’algèbres de processus (pour les
canaux de communication et le parallélisme asynchrone). Cette approche est
illustrée par une étude de cas industrielle fournie par Airbus : une variante du
protocole TFTP pour les communications entre un avion et le sol, qui est modélisée
à l’aide de la plateforme Eclipse/TOPCASED puis analysée formellement au moyen
de la boîte à outils de vérification et d’évaluation de performances CADP.

Mots-clés: vérification formelle, systèmes GALS, CADP, SAM, LOTOS NT

1PhD student, INRIA Grenoble-Rhône-Alpes, 655 avenue de l’Europe, 38 330 Montbonnot Saint

Martin, France, University POLITEHNICA of Bucharest, Romania, e-mail:
damien.thivolle@inria.fr

76 Damien Thivolle

1. Introduction

Dans le domaine de l’électronique, la conception de circuits synchrones
(i.e., circuits dont la logique est gouvernée par une horloge centrale) est depuis
longtemps l’approche de choix. Dans le domaine du logiciel, les langages
synchrones sont définis sur des concepts similaires. Quelque soit leur syntaxe
concrète (flux de données ou formalisme d’automates), ces langages partagent un
paradigme commun : un programme synchrone est formé de composants qui
évoluent par des étapes discrètes et une horloge centrale garantit que tous les
composants évoluent simultanément. Chaque composant est normalement
déterministe, tout comme la composition de tous les composants. Cette hypothèse
simplifie grandement la simulation, le test et la vérification des systèmes
synchrones.

Ces vingt dernières années, les langages synchrones sont devenus la norme
pour la programmation de systèmes critiques embarqués comme les contrôleurs
que l’on peut trouver dans les avions, les voitures, les trains ou encore les
centrales nucléaires. Ces langages ont aussi trouvé une place dans la conception
des circuits électroniques. Comme exemples de langages synchrones, nous
pouvons citer ESTEREL [1], LUSTRE/SCADE [2], SIGNAL/SILDEX [3] et
ARGOS [4] . Nous invitons le lecteur à se référer à [5] pour une liste de succès
récents dans l’application des techniques de vérification formelle à des systèmes
avioniques complexes.

De plus en plus, les systèmes embarqués ne satisfont plus les propriétés
des systèmes synchrones. Les approches récentes (modular avionics, X-by-wire...)
introduisent un degré croissant d’asynchronisme et de non déterminisme. Cette
situation est connue depuis longtemps dans l’industrie des circuits électroniques
où le terme GALS (Globalement Asynchrone Localement Synchrone) est
employé pour désigner les circuits qui consistent en un ensemble de composants
synchrones (gouvernés par leur propre horloge) qui communiquent de façon
asynchrone. Ces évolutions remettent en cause la position bien établie des
langages synchrones dans l’industrie. En effet, l’introduction d’asynchronisme
invalide les propriétés de non déterminisme et d’instantanéité des systèmes
réactifs et rend donc caduques les techniques de vérification efficaces qui existent
pour ces systèmes. Il devient alors nécessaire d’adapter les techniques de
vérification existantes au cas des systèmes GALS.

Nous avons trouvé dans la littérature diverses tentatives visant à repousser
les limites des langages synchrones pour les appliquer à l’étude des systèmes
GALS. Suivant les résultats de Milner [6] qui ont montré que l’asynchronisme
peut être encodé dans le modèle de calcul synchrone, nombre d’auteurs [7] [8] [9]
[10] se sont efforcés de décrire les systèmes GALS à l’aide de langages
synchrones ; par exemple, le non déterminisme est exprimé par l’ajout d’entrées

Vérification de systèmes GALS en combinant langages synchrones et algèbres de processus 77

auxiliaires (oracles) dont la valeur est indéfinie. Le désavantage principal de ces
approches est que l’asynchronisme et le non déterminisme ne sont pas reconnus
comme des concepts de première classe donc les outils de vérification des
langages synchrones n’ont pas d’optimisations spécifiques au parallélisme
asynchrone (ordres partiels, minimisation compositionnelle...). D’autres
approches étendent les langages synchrones pour permettre un certain degré
d’asynchronisme, comme dans CRP [11], CRSM [12] ou encore multiclock
ESTEREL [13], mais, à notre connaissance, de telles extensions ne sont pas
(encore) utilisées dans l’industrie. Enfin, nous pouvons mentionner les approches
[14] [15] dans lesquelles les langages synchrones sont compilés et distribués
automatiquement sur un ensemble de processeurs s’exécutant en parallèle. Bien
que ces approches permettent de générer directement des implémentations de
systèmes GALS, elles ne traitent pas de la modélisation et de la vérification de ces
systèmes.

Une approche totalement différente serait d’ignorer les langages
synchrones et d’adopter des langages spécifiquement conçus pour modéliser le
parallélisme asynchrone et le non déterminisme, et équipés de puissants outils de
vérification formelle comme les algèbres de processus : CSP [16] , LOTOS [17]
ou PROMELA [18]. Un tel changement de paradigme est aujourd’hui impensable
pour des entreprises qui ont investi massivement dans les langages synchrones et
dont les produits à cycles de vie extrêmement longs demandent une certaine
stabilité en termes de langages de programmation et d’environnements de
développement.

Dans cet article, nous proposons une approche intermédiaire qui combine
les langages synchrones et les algèbres de processus pour modéliser, vérifier et
simuler les systèmes GALS. Notre approche essaie de retenir le meilleur des deux
paradigmes :

• Nous continuons à utiliser les langages synchrones et leurs outils pour
spécifier et vérifier les composants synchrones d’un système GALS.

• Nous introduisons les algèbres de processus pour : (1) encapsuler ces
composants synchrones ; (2) modéliser des composants additionnels dont
le comportement est non déterministe, comme par exemple des canaux de
communications non sûrs qui peuvent perdre, dupliquer et/ou permuter des
messages ; (3) interconnecter tous ces composants d’un même système
GALS grâce au parallélisme asynchrone. La spécification qui résulte est
asynchrone et peut être analysée par les outils accompagnant l’algèbre de
processus considérée.
Nous avons trouvé dans la littérature deux approches qui suivent une

direction similaire. Dans [19], des spécifications CRSM [12] sont
automatiquement traduites en PROMELA pour vérifier grâce au model checker
SPIN des propriétés exprimées comme un ensemble d’observateurs. Notre

78 Damien Thivolle

approche est différente car nous réutilisons les langages synchrones tels qu’ils
sont, sans qu’il soit nécessaire d’introduire un nouveau langage
synchrone/asynchrone comme CRSM.

Dans [20], plus similaire à notre approche, le compilateur SIGNAL est
utilisé pour générer du code C à partir de programmes synchrones écrits en
SIGNAL. Ce code est ensuite encapsulé dans des processus PROMELA qui
communiquent par une abstraction d’un bus matériel. Enfin, le model checker
SPIN est utilisé pour vérifier des formules de logique temporelle sur la
spécification obtenue. L’approche que nous proposons suit le même principe mais
présente des différences clés avec [20] dans la façon d’intégrer les programmes
synchrones dans un environnement asynchrone:

• Le protocole de communication qui relie les deux programmes synchrones
présentés dans [20] est implémenté dans [21] en LUSTRE et SIGNAL. Ce
protocole présente un degré faible d’asynchronisme et aucun non
déterminisme. Il est d’ailleurs prouvé que ce protocole équivaut à un canal
FIFO sans perte à un élément. Notre approche est plus générale car la
communication entre le programme synchrone et son environnement peut
se faire soit directement à l’aide d’un canal de communication, soit par
l’intermédiaire d’un processus asynchrone auxiliaire qui implémente un
protocole donné.

• Le degré d’asynchronisme est encore limité par l’utilisation de la directive
“atomic” de PROMELA qui assure le non entrelacement de la séquence
d’actions qu’elle englobe avec les actions de l’environnement. Dans leur
approche, cette directive englobe la totalité des actions de chacun des deux
processus asynchrones qui encapsulent les deux programmes synchrones.
De cette façon, la réception des entrées dans l’un des processus
asynchrones, l’appel de la fonction C encodant le programme synchrone et
l’envoi des sorties à l’environnement sont une séquence atomique
d’actions. Les deux programmes synchrones ne peuvent donc pas
s’exécuter de façon concurrente ce qui, pour nous, ne constitue pas un vrai
exemple de système GALS. Au contraire, notre approche est
complètement asynchrone et les exécutions des processus asynchrones qui
encapsulent les programmes synchrones peuvent s’entrelacer. Notre
approche est donc plus générale car : (1) elle permet une modélisation plus
réaliste de la sémantique des systèmes GALS (elle ne requiert pas l’arrêt
du système tout entier durant le calcul de la réaction de l’un des
programmes synchrones) et (2) elle est applicable à un large panel
d’algèbres de processus dont la plupart (contrairement à PROMELA) ne
possède pas de directive “atomic” ; les seules contraintes pour ces algèbres
de processus sont de permettre à l’utilisateur de définir des types et des

Vérification de systèmes GALS en combinant langages synchrones et algèbres de processus 79

fonctions ainsi que d’avoir les primitives classiques pour exprimer le
parallélisme asynchrone.

• Dans leur approche, les processus asynchrones qui encapsulent les
programmes synchrones sont vides et ne font que transmettre les valeurs
reçues par l’environnement au programme synchrone. Dans la réalité, ce
schéma de systèmes GALS est trop restrictif car il arrive que des
programmes synchrones ne spécifient que la partie “contrôle” d’une
application et que ce soit les programmes asynchrones qui définissent le
flux de données. Dans notre approche, nous prenons cela en compte et le
degré de complexité du processus asynchrone encapsulateur peut varier
selon le système GALS à modéliser.
Nous illustrons notre approche par une étude de cas industrielle fournie

par Airbus dans le contexte du projet TOPCASED2 : un protocole de
communication entre un avion et le sol qui consiste en deux entités TFTP (Trivial
File Transfer Protocol) qui s’exécutent en parallèle et qui communiquent par un
canal UDP (User Datagram Protocol). Comme langage synchrone, nous
considérons SAM [22], (similaire à ARGOS [4]) qui a été conçu par Airbus et qui
est utilisé au sein de cette entreprise. Une suite logicielle pour SAM est distribuée
avec la plateforme open-source TOPCASED basée sur Eclipse. Comme algèbre
de processus, nous considérons LOTOS NT [23], une version simplifiée de la
norme internationale E-LOTOS [24]. Un traducteur automatique qui transforme
des spécifications LOTOS NT en spécifications LOTOS est développé au sein de
la boîte à outils CADP [25]. Ces spécifications LOTOS générées peuvent alors
être vérifiées et leurs performances évaluées.

Ce document est organisé comme suit. La section 2 explique les principes
de notre approche et illustre son application aux langages SAM et LOTOS NT. La
section 3 détaille l’étude de cas industrielle. La section 4 traite de la modélisation
formelle de l’étude de cas en LOTOS NT. La section 5 détaille les techniques que
nous avons employées pour générer les espaces d’états de nos spécifications et
expose nos résultats de vérification. Enfin, la section 6 donne des remarques
conclusives et nos perspectives concernant ces travaux.

2. Approche proposée

Dans cette section, nous détaillons notre approche pour la modélisation
des systèmes GALS à l’aide des langages synchrones et des algèbres de
processus. Nous présentons ensuite l’application de cette méthode aux langages
SAM et LOTOS NT.

2 http://www.topcased.org

80 Damien Thivolle

2.1. Les programmes synchrones vus comme des fonctions de Mealy.
Un programme synchrone est la composition synchrone d’un ou plusieurs
composants synchrones. Un composant synchrone effectue une séquence
d’itérations discrètes et maintient un état interne s. A chaque itération, il reçoit un
ensemble de m valeurs d’entrée i1...im de son environnement, calcule
instantanément une réaction, renvoie un ensemble de n valeurs o1...on à son
environnement et se positionne sur son nouvel état s0. Autrement dit, il peut être
représenté par une machine de Mealy [26] qui est un quintuplet (S, s0, I, O, f) où :

• S est un ensemble fini d’états,
• s0 est l’état initial,
• I est un alphabet fini d’entrée,
• O est un alphabet fini de sortie,
• f � S × I → S × O est une fonction de transition (aussi appelée une

fonction de Mealy) qui associe à l’état courant et un symbole de l’alphabet
d’entrée, l’état pour la réaction suivante ainsi qu’un symbole de l’alphabet
de sortie : f(s, i1...im) = (s0, o1...on).
Lorsqu’un programme synchrone a plusieurs composants, ces composants

peuvent communiquer les uns avec les autres grâce à des connexions entre les
sorties de certains composants et les entrées d’autres composants. Par définition
du parallélisme synchrone, à chaque itération, tous les composants réagissent
simultanément. Par conséquent, la composition de plusieurs composants peut
aussi être représentée par une machine de Mealy. Pour les langages synchrones
ESTEREL et LUSTRE, un format intermédiare commun OC (Object Code) a été
proposé pour représenter ces machines de Mealy.

2.2. Le langage SAM. Pour illustrer notre approche, nous considérons le

cas du langage SAM, défini par Airbus et dont une description formelle est
donnée dans [22]. Un composant synchrone en SAM est un automate qui a un
ensemble de ports d’entrée et un ensemble de ports de sortie. Chaque port
correspond à une variable booléenne. Un composant SAM est très proche d’une
machine de Mealy. La seule différence réside dans le fait que les transitions
sortant d’un même état ont des indices de priorité qui leur sont associés. Cela est
nécessaire car en SAM, plusieurs transitions peuvent être activées par une même
série de valeurs d’entrée.

Vérification de systèmes GALS en combinant langages synchrones et algèbres de processus 81

Fig. 1. Exemple d’automate SAM

La Figure 1 illustre l’exemple d’un composant SAM. Un point

d’interrogation précède la condition F de chaque transition tandis qu’un point
d’exclamation précède la liste G de variables de sortie auxquelles la valeur vrai
doit être affectée. Les indices de priorité sont situés à la source des transitions.

La composition de composants SAM suit la sémantique classique de la
composition des programmes synchrones. Les communications entre les différents
programmes sont exprimées par la connexion graphique de ports de sortie et de
ports d’entrée, en respectant les règles suivantes:

• Les ports d’entrée d’une composition peuvent être connectés aux ports de
sortie de la composition ou bien aux ports d’entrée des sous-programmes
(i.e., les programmes qui participent à la composition).

• Les ports de sortie d’un sous-programme peuvent être connectés aux ports
d’entrée d’autres sous-programmes ou bien aux ports de sortie de la
composition.

• Les dépendances cycliques sont interdites : il est interdit de connecter le
port de sortie d’un sous-programme au port d’entrée du même sous-
programme, que ce soit directement ou par transitivité, au moyen d’un ou
plusieurs sous-programmes intermédiaires.

2.3. Traduction de SAM en LOTOS NT. Dans cette section, nous

illustrons la façon dont un automate SAM peut être représenté par sa fonction de
Mealy encodée en LOTOS NT. Par exemple, l’automate de la figure 1 peut être
encodé comme suit en LOTOS NT :

type State is

S0, S1, S2 -- c’est un type enumere
end type

82 Damien Thivolle

function Transition (in CurrentState:State, in A:Bool, in B:Bool

out NextState:State, out C:Bool, out D:Bool)
is

NextState := CurrentState; C := false ; D := false ;
case CurrentState in
S0 ->

if A then
NextState := S1; D := true

end if
|S1 ->
 if A and B then

NextState := S0; C := true; D := true
 elsif B then

NextState := S2; C := true
 endif
|S2 ->
 if A and not (B) then

NextState := S0; C := true
 elsif B then

NextState := S0; D := true
 end if
end case

end function

Fig. 2. Processus asynchrone encapsulateur (wrapper) général

Un système SAM comprenant plusieurs automates SAM se traduit

aisément en LOTOS NT. Comme les dépendances cycliques sont interdites, il est
possible d’effectuer un tri topologique des composants en fonction de leurs
dépendances les uns aux autres. A partir de l’ordre obtenu par ce tri, le système
SAM peut être encodé en LOTOS NT comme la composition séquentielle des
fonctions de Mealy de ses composants, c’est-à-dire en appelant les fonctions de
Mealy des composants dans l’ordre induit par le tri, de telle sorte que lors de

Vérification de systèmes GALS en combinant langages synchrones et algèbres de processus 83

l’appel de la fonction de Mealy d’un composant donné, les valeurs de toutes ses
variables d’entrée sont connues.

Une approche alternative à la traduction d’un langage synchrone L vers
LOTOS NT serait, si il existe un générateur de code de L vers le langage C,
d’invoquer directement la fonction de Mealy (générée en C) depuis un programme
LOTOS NT, comme une fonction externe (une fonctionnalité supportée par
CADP). De cette façon, notre approche pourrait même permettre le mélange de
composants écrits dans différents langages synchrones.

2.4. Encapsulation de fonctions de Mealy dans des processus LOTOS

NT. A la différence des programmes synchrones, les composants de programmes
asynchrones évoluent en parallèle, à leur propre rythme et se synchronisent
ponctuellement à l’aide de canaux de communication. Notre approche pour la
modélisation des systèmes GALS dans des langages asynchrones consiste à
encoder un programme synchrone comme un ensemble de types et fonctions
natifs dans l’algèbre de processus considérée. Mais, la fonction de Mealy d’un
programme synchrone, seule, ne peut interagir avec un environnement
asynchrone. Elle doit être encapsulée dans un wrapper, c’est-à-dire un processus
asynchrone qui fait l’interface entre l’environnement asynchrone et la fonction de
Mealy. Ce wrapper transforme la fonction deMealy en STE (Système de
Transitions Etiquetées). Dans notre cas, la fonction deMealy est une fonction
LOTOS NT tandis que le wrapper est un processus LOTOS NT.

La quantité de traitement qu’un wrapper peut faire dépend du système
GALS à modéliser. La Figure 2 montre le fonctionnement de général d’un
wrapper : réception des entrées, envoi des sorties et sauvegarde de certaines
valeurs pour les réutiliser à l’itération suivante. Dans certains cas, le wrapper peut
aussi implémenter des comportements additionnels, non spécifiés par la fonction
de Mealy.

Une fois que la fonction de Mealy est encapsulée dans un wrapper, elle
peut se synchroniser et communiquer avec les autres processus asynchrones grâce
à l’opérateur de composition parallèle de LOTOS NT.

3. Description de l’étude de cas

Cette étude de cas a été distribuée par Airbus aux participants du projet
TOPCASED pour illustrer un système embarqué avionique typique. Dans cette
section, nous commençons par présenter les principes du protocole TFTP avant de
décrire les changements effectués sur ce protocole par Airbus pour permettre la
communication entre un avion et le sol.

84 Damien Thivolle

3.1. Protocole TFTP. TFTP [27] est l’acronyme de Trivial File Transfer
Protocol. Il s’agit d’un protocole client/serveur grâce auquel plusieurs clients
peuvent écrire (resp. lire) un fichier sur (resp. depuis) un serveur. Pour des raisons
de vitesse de transmission, TFTP utilise UDP (User Datagram Protocol) de
transport et doit donc implémenter un mécanisme de contrôle du flux des
messages afin de pallier les éventuelles erreurs se produisant dans la couche de
transport UDP. Pour permettre au serveur de différencier les clients qu’il sert,
chaque transfert de fichier s’effectue sur un port UDP différent.

Le protocole TFTP définit 5 types de message :

• RRQ (Read ReQuest) pour demander à lire un fichier depuis le
serveur,

• WRQ (Write ReQuest) pour demander à écrire un fichier sur le
serveur,

• DATA qui contient un fragment de fichier numéroté de 512 octets ;
Le dernier fragment est celui dont la taille est différente de 512,

• ACK qui contient le numéro du fragment acquitté,
• ERROR pour indiquer qu’une erreur s’est produite.

Le protocole est robuste : un message perdu (RRQ, WRQ, DATA ou ACK)

peut être retransmis après un timeout. Les acquittements dupliqués (renvoyés à
cause d’un timeout par exemple) doivent être ignorés afin d’éviter le bogue de
l’apprenti sorcier [28].

En cas d’erreur (épuisement de la mémoire disponible, erreur du
système...), un message ERROR est envoyé pour annuler le transfert.

3.2. Variante AIRBUS du protocole TFTP. Lorsqu’un avion atteint sa

position finale dans l’aéroport, il est connecté au réseau informatique de cet
aéroport. A l’heure actuelle, les communications qui se déroulent entre l’avion et
les serveurs de l’aéroport sont régies par un protocole de communication très
simple et certifié correct. Airbus nous a demandé d’étudier un protocole plus
complexe, une variante du protocole TFTP qui pourrait être d’intérêt pour de
nouvelles générations d’avions. Les principales différences entre ce protocole et le
protocole TFTP classique sont :

• Dans la pile de protocoles considérée par Airbus, la variante du protocole
TFTP repose toujours sur le protocole UDP pour la transmission des
messages. Cependant, ce ne sont plus des fichiers qui sont transportés mais
les trames d’un protocole de communication de plus haut niveau dédié à
l’avionique (comme ARINC 615a).

Vérification de systèmes GALS en combinant langages synchrones et algèbres de processus 85

• Chaque entité communicante de cette variante du protocole TFTP a la
faculté d’être à la fois client ou serveur, selon ce que requiert le protocole
de communication de plus haut niveau.

• Chaque entité ne communique qu’avec une seule autre entité. En effet,
pour chaque avion qui se connecte, il y a dans les serveurs de l’aéroport
une entité TFTP qui lui est réservée. Cela nous permet de ne pas modéliser
le fait qu’une entité peut transférer plusieurs fichiers simultanément sur
des ports UDP différents. Dans le reste de ce document, l’abréviation
TFTP désigne (sauf mention contraire) la variante du protocole TFTP
définie par Airbus.
Les entités TFTP ont été spécifiées par Airbus au moyen d’un automate

SAM de 7 états, 39 transitions, 15 ports d’entrée et 11 ports de sortie.

Fig. 3. Connexion asynchrone de deux processus TFTP via deux média UDP

Dans la suite de ce document, nous désignons cet automate par

l’appellation “automate TFTP SAM”. Airbus était intéressé par l’étude du
comportement de deux entités TFTP (dont le comportement est régi par
l’automate TFTP SAM) communiquant par un médium non sûr comme UDP
(c’est-à-dire avec des pertes, des duplications et des permutations de messages).

4. Modélisation en LOTOS NT

Nous avons modélisé une spécification qui comporte deux entités TFTP
connectées par deux média UDP. Comme illustré en figure 3, les entités TFTP
sont deux instances du même processus LOTOS NT qui lui-même encapsule la
fonction de Mealy de l’automate TFTP SAM. Cet automate a été traduit
manuellement en 215 lignes de code LOTOS NT (ce nombre inclut la fonction de
Mealy et le type énuméré qui encode les états). Les média sont deux instances du
même processus LOTOS NT qui reproduit les propriétés (perte, duplication et
permutation de messages) du protocole de transport UDP.

86 Damien Thivolle

4.2. Modélisation d’entités TFTP. Le processus TFTP reçoit et envoie
des messages TFTP tels que définis dans la norme. Sa définition en LOTOS NT
est longue de 670 lignes de code.

Afin de modéliser fidèlement les messages du protocole TFTP, nous
devons modéliser les fichiers et leurs fragments. Pour ce faire, nous considérons
qu’à chaque entité TFTP est associé un répertoire de fichiers et que chaque entité
TFTP est instanciée avec les paramètres suivants :

• une liste de fichiers, parmi ceux du répertoire, à écrire sur l’autre entité ;
nous désignons cette liste de fichiers par “liste de fichiers à écrire”,

• une liste de fichiers, parmi ceux du répertoire de l’autre entité, à lire depuis
l’autre entité ; nous désignons cette liste de fichiers par “liste de fichiers à
lire”.

Lorsqu’il n’y a pas de transfert en cours, l’une des entités peut choisir, de

façon non déterministe, un fichier parmi sa liste de fichiers à lire ou à écrire et
commencer le transfert de ce fichier.

Le type de données que nous utilisons pour représenter les fichiers est une
liste de fragments (dans notre modèle, le fichier est donc déjà fragmenté). Les
noms des fichiers sont représentés par un entier naturel unique associé au fichier
dans le répertoire qui le contient. Chaque fragment de fichier est représenté par un
caractère différent.

En plus de l’état courant de l’automate TFTP SAM, d’autres valeurs

doivent être sauvegardées entre deux stimulations comme par exemple le nom du
fichier en cours de transfert, l’indice du dernier fragment (ou acquittement) reçu
ou envoyé, le nombre de renvois du dernier message...

Les listes de fichiers et le contenu de chaque fichier sont des paramètres
modifiables auxquels s’ajoute la possibilité de spécifier le nombre maximal de
renvois des messages. Ces paramètres nous permettent d’explorer différents
scénarios dans la section 5. En jouant sur les valeurs de ces paramètres, nous
pouvons aussi contrôler, dans une certaine mesure, la taille de l’espace d’états de
notre spécification.

4.3. Modélisation des liens de communication. Les deux processus

LOTOS NT décrivant les média UDP n’ont pas été dérivés d’une spécification
SAM mais écrits directement, par nos soins, en LOTOS NT.

Ces processus reproduisent de façon précise la couche de transport UDP
mise en œuvre dans le réseau informatique reliant le sol et l’avion. UDP est un
protocole dit non connecté, c’est-à-dire que chaque message est envoyé sans que
les mécanismes du protocole ne permettent de déterminer qu’il a bien été reçu. Ce
protocole ne détecte pas, ni ne répare les erreurs survenant dans les

Vérification de systèmes GALS en combinant langages synchrones et algèbres de processus 87

communications. Ces erreurs, lorsqu’elles se produisent, doivent donc être gérées
par les applications qui utilisent le protocole UDP pour communiquer (les entités
TFTP dans notre cas). Ces erreurs peuvent être des pertes, des permutations ou
des duplications de messages.

 Nous avons choisi de modéliser le médium UDP de deux façons
différentes, au moyen de deux processus LOTOS NT différents afin de nous
assurer que les entités TFTP se comportent correctement, indépendamment du
médium choisi. Ces deux processus LOTOS NT peuvent perdre les messages et
ont une mémoire tampon dans laquelle les messages reçus non perdus sont
enregistrés dans l’attente de leur acheminement. Nous ne modélisons pas
explicitement les duplications de messages causées par le médium UDP car
chaque entité TFTP peut déjà renvoyer un même message un nombre borné de
fois (borne qui peut d’ailleurs être différente pour chaque entité TFTP).

Le premier processus modélise le cas où les permutations de messages ne
se produisent pas. Il utilise une FIFO comme mémoire tampon : les messages
sont acheminés dans le même ordre que celui dans lequel ils arrivent. Le second
processus modélise le cas ou les permutations de messages se produisent. Il utilise
un bag comme mémoire tampon. Dans la suite du document, nous notons
FIFO(n) (resp. BAG(n)) un médium “FIFO” (resp. “bag”) dont la mémoire
tampon a une taille de n. FIFO(1) et BAG(1) sont identiques.

4.4. Composition parallèle des liens de communication et des entités

TFTP. Afin de composer, de façon asynchrone, les entités TFTP et les média
UDP comme illustré par la figure 3, nous utilisons l’opérateur parallèle de
LOTOS NT :

par RECEIVE_A, SEND_A -> TFTP_WRAPPER [RECEIVE_A, SEND_A]
 || RECEIVE_B, SEND_B -> TFTP_WRAPPER [RECEIVE_B, SEND_B]
 || SEND_A, RECEIVE_B -> UDP_MEDIUM [SEND_A, RECEIVE_B
 || SEND_B, RECEIVE_A -> UDP_MEDIUM [SEND_B, RECEIVE_A]
end par

Comme nous deux média différents, nous obtenons deux spécifications

différentes à vérifier, selon que le médium utilisé est “FIFO” ou “BAG”.

5. Vérification fonctionnelle des modèles

Dans cette section, nous discutons des difficultés liées à la génération des
espaces d’états des spécifications pour l’étude de cas TFTP et nous présentons les
résultats de vérification obtenus à l’aide de CADP.

Les spécifications LOTOS NT sont automatiquement traduites en
spécifications LOTOS (par le traducteur “LOTOS NT to LOTOS” [23]) qui sont,

88 Damien Thivolle

à leur tour, compilées en STE en utilisant les compilateurs CÆSAR.ADT et
CÆSAR de CADP.

Un problème récurrent en model checking est le phénomène de l’explosion
de l’espace d’états. Dans notre cas, ce phénomène peut survenir soit durant la
génération de l’espace d’états (quand le STE devient trop large pour être généré
dans sa totalité) soit durant la vérification des formules de logique temporelle
(quand le model checker épuise la mémoire disponible durant l’évaluation d’une
formule sur un STE).

Pour lutter contre ce phénomène, nous restreignons la taille de la mémoire
tampon des média UDP à de petites valeurs (i.e., n = 1, 2, 3...). Nous limitons
aussi la taille de chaque fichier à deux fragments puisque nous avons observé que
c’était suffisant pour exercer toutes les transitions de l’automate TFTP SAM. De
plus, nous avons remarqué que l’utilisation de plus de deux fragments par fichier
n’entraîne pas l’invocation de la fonction de Mealy de l’automate TFTP SAM
avec un ensemble de valeurs d’entrée qui n’existait pas déjà lors de l’utilisation de
seulement deux fragments. Nous contraignons aussi le nombre de fichiers
échangés par les deux entités TFTP en bornant la taille des listes de fichiers à lire
et à écrire. Pour couvrir toutes les possibilités d’échanges, nous considérons les
cinq scénarios suivants :

• Scénario A: l’entité TFTP A écrit un fichier ;
• Scénario B: l’entité TFTP A lit un fichier ;
• Scénario C: les deux entités TFTP A et B écrivent un fichier ;
• Scénario D: l’entité TFTP A écrit un fichier et l’entité TFTP B écrit un

fichier ;
• Scénario E: les deux entités TFTP A et B lisent un fichier.

Nous avons écrit 29 formules de logiques temporelles que nous avons
vérifiées pour chacun des cinq scénarios en faisant varier la taille des média. Pour
donner un ordre d’idée, sur une machine équipée de deux processeurs Intel Xeon
2 Ghz et de 7 Go de RAM, il a fallu 182 secondes pour générer la spécification
correspondant au scénario D avec un médium BAG(2) (16 687 096 états et 83 289
158 transitions) et 17 707 secondes pour vérifier sur cette spécification les 29
propriétés.
 La vérification des propriétés nous a permis de découvrir 19 erreurs dans la
variante TFTP d’Airbus. Ces erreurs ont été confirmées par Airbus comme étant
de réelles erreurs. Nous avons suggéré, pour chacune, un correctif à appliquer sur
l’automate SAM TFTP.

6. Conclusion

Dans cet article, nous avons proposé une approche simple et élégante pour
la modélisation et l’analyse des systèmes comprenant des composants synchrones

Vérification de systèmes GALS en combinant langages synchrones et algèbres de processus 89

interagissant de façon asynchrone et que l’on appelle couramment GALS
(Globalement Asynchrone Localement Synchrone).

Contrairement aux autres approches qui étendent le paradigme synchrone
pour modéliser l’asynchronisme, notre approche préserve la sémantique origi-
nale des langages synchrones ainsi que la sémantique asynchrone des algèbres de
processus. Notre approche nous permet de réutiliser, sans la moindre modi-
fication les compilateurs des langages synchrones avec les outils de vérification et
les compilateurs des algèbres de processus.

Nous avons démontré la faisabilité de notre approche sur une étude de cas
industrielle, une variante du protocole TFTP/UDP dont nous avons vérifié le bon
comportement et évalué les performances au moyen de la plateforme TOPCASED
et des outils de CADP. Bien que nous ayons illustré notre approche par le langage
synchrone SAM et les algèbres de processus LOTOS et LOTOS NT, nous
pensons qu’elle est généralisable à d’autres langages synchrones dont le
compilateur est capable de traduire des programmes synchrones en machines de
Mealy (ce qui est normalement toujours le cas) et à toute algèbre de processus qui
permet le parallélisme asynchrone et la définition de types et fonctions.

En ce qui concerne les perspectives de recherche sur ce travail, nous avons
reçu un fort soutien d’Airbus. Nous travaillons à l’heure actuelle sur la
vérification d’autres systèmes embarqués avioniques. Nous aimerions aussi
appliquer notre approche à d’autres langages synchrones que SAM.

R É F É R E N C E S

[1]. G. Gonthier, G. Berry. The Esterel Synchronous Programming Language. 19, 1992, Science
of Computer Programming, Vol. 2, pp. 87–152

[2]. N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud, The Synchronous Dataflow Programming
Language LUSTRE, September 1991, Proceedings of the IEEE, Vol. 79, pp. 1305–1320

[3]. A. Benveniste, P. Le Guernic, C. Jacquemot, Synchronous Programming with Events and
Relations: The SIGNAL Language and Its Semantics. 2, 1991, Science of Computer
Programming, Vol. 16, pp. 103–149

[4]. F. Maraninchi, Y. Rémond, Argos: an Automaton-Based Synchronous Language. 1-3, October
2001, Computer Languages, Vol. 27, pp. 61–92

[5]. S.P. Miller, M.W. Whalen, D.D. Cofer, Software model checking takes off. 2, 2010,
Communications of the ACM, Vol. 53, pp. 58–64

[6]. R. Milner, Calculi for Synchrony and Asynchrony. 1983, Theoretical Computer Science, Vol.
26, pp. 267–310

[7]. N.H. Baghdadi, S. Baghdadi, Synchronous Modelling of Asynchronous Systems. London,
UK : Springer-Verlag, 2002. EMSOFT ’02. pp. 240–251

[8]. P. Le Guernic, J.-P. Talpin, J.-C. Le Lann, Polychrony for System Design. World Scientific,
2003, Journal of Circuits, Systems and Computers, Vol. 12

[9]. M.R. Mousavi, P. Le Guernic, J.-P. Talpin, S.K. Shukla, T. Basten, Modeling and Validating
Globally Asynchronous Design in Synchronous Frameworks. Washington DC, USA : IEEE
Computer Society, 2004. DATE ’04

90 Damien Thivolle

[10]. N.H. Mandel, L. Mandel, Simulation and Verification of Asynchronous Systems by Means of
a Synchronous Model. Washington DC, USA : IEEE Computer Society, 2006. ACSD '06.
pp. 3-14

[11]. G. Berry, S. Ramesh, R.K. Shyamasundar, Communicating Reactive Processes. New York,
USA : ACM, 1993. POPL’93. pp. 85–98

[12]. S. Ramesh, Communicating Reactive State Machines: Design, Model and Implementation.
1998. IFAC Workshop on Distributed Computer Control Systems

[13]. G.B. Sentovich, E. Sentovich, Multiclock Esterel. London, UK : Springer-Verlag, 2001.
CHARME’01. pp. 110–125

[14]. A. Girault, C. Ménier, Automatic Production of Globally Asynchronous Locally
Synchronous Systems. London, UK : Springer-Verlag, 2002. EMSOFT ’02. pp. 266–281

[15]. D. Potop-Butucaru, B. Caillaud, Correct-by-Construction Asynchronous Implementation of
Modular Synchronous Specifications. 2007, Fundamenta Informaticae, Vol. 78

[16]. S.D. Brookes, C.A.R. Hoare, A.W. Roscoe, A Theory of Communicating Sequential
Processes. 3, July 1984, Journal of the ACM, Vol. 31, pp. 560–599

[17]. ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal Ordering of
Observational Behaviour. International Organization for Standardization — Information
Processing Systems —Open Systems Interconnection. Genève : 1989. International
Standard 8807

[18]. G.J. Holzmann, The Spin Model Checker - Primer and Reference Manual. Addison-Wesley,
2004

[19]. S. Ramesh, S. Sonalkar, V. D’Silva, N. Chandra, B. Vijayalakshmi, A Toolset for Modelling
and Verification of GALS Systems. Springer-Verlag, 2004. CAV '04 vol. 3114 of LNCS.
pp. 506–509

[20]. F. Doucet, M. Menarini, I.H. Krüger, R.K. Gupta, J.-P. Talpin, A Verification Approach for
GALS Integration of Synchronous Components. 2, 2006, ENTCS, Vol. 146, pp. 105–131

[21]. A. Benveniste, P. Caspi, P. Le Guernic, H. Marchand, J.-P. Talpin, A Protocol for Loosely
Time-Triggered Architectures. London, UK : Springer-Verlag, 2002. EM-SOFT ’02. pp.
252-262

[22]. X. Clerc, H. Garavel, D. Thivolle, Présentation du langage SAM d'Airbus. VASY, INRIA.
2008. Internal Report

[23]. D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, F. Lang, W. Serwe, G. Smeding,
Reference Manual of the LOTOS NT to LOTOS Translator (Version 5.0). INRIA/VASY.
2010

[24]. ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Organization for
Standardization - Information Technology. Genève : 2001. International Standard
15437:2001

[25]. H. Garavel, F. Lang, R. Mateescu, W. Serwe, CADP 2006: A Toolbox for the Construction
and Analysis of Distributed Processes.. Berlin, Germany : Springer-Verlag, 2007. CAV’07,
vol. 4590 of LNCS. pp. 158–163

[26]. H.G. Mealy, A Method for Synthesizing Sequential Circuits.. 5, 1955, Bell System Technical
Journal, Vol. 34, pp. 1045–1079

[27]. K. Sollins, The TFTP Protocol (Revision 2). IETF. 1992. RFC 1350
[28]. R. Braden, Requirements for Internet Hosts - Application and Support. IETF. 1989. RFC

1123.

