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VÉRIFICATION DE SYSTÈMES GALS EN COMBINANT 
LANGAGES SYNCHRONES ET ALGÈBRES DE PROCESSUS 

Damien THIVOLLE1 

Un sistem GALS (Globally Asynchronous Locally Synchronous) este 
constituit dintr-o colecție de componente secvențiale și deterministe care se execută 
în mod concurent și care comunică utilizând canale lente sau defectuoase. Acest 
articol propune o metodologie generală pentru modelizarea și verificarea sistemelor 
GALS utilizând o combinație de limbaje sincrone (pentru componentele secvențiale) 
și calcule de procese (pentru canalele de comunicație și concurență asincronă). 
Această metodologie este ilustrată cu ajutorul unui studiu de caz industrial furnizat 
de Airbus: un protocol de comunicație TFTP/UDP între un avion și baza terestră, 
modelizat cu atelierul Eclipse/TOPCASED pentru ingineria dirijată de modele, și 
apoi analizat formal cu package-ul CADP pentru verificare și evaluarea 
performanțelor.    

A Gals (Globally Asynchronous Locally Synchronous) system typically 
consists of a collection of sequential, deterministic components that execute 
concurrently and communicate using slow or unreliable channels. This paper 
proposes a general approach for modelling and verifying Gals systems using a 
combination of synchronous languages (for the sequential components) and process 
calculi (for communication channels and asynchronous concurrency). This 
approach is illustrated with an industrial case-study provided by Airbus: a Tftp/Udp 
communication protocol between a plane and the ground, which is modelled using 
the Eclipse/Topcased workbench for model-driven engineering and then analysed 
formally using the Cadp verification and performance evaluation toolbox.  

Un système GALS (Globalement Asynchrone Localement Synchrone) est 
normalement constitué d’une collection de composants séquentiels et déterministes 
qui s’exécutent de façon concurrente et communiquent au moyen de canaux lents et 
non sûrs. Cet article propose une approche générale pour la modélisation et la 
vérification des systèmes GALS en utilisant une combinaison de langages 
synchrones (pour les composants séquentiels) et d’algèbres de processus (pour les 
canaux de communication et le parallélisme asynchrone). Cette approche est 
illustrée par une étude de cas industrielle fournie par Airbus : une variante du 
protocole TFTP pour les communications entre un avion et le sol, qui est modélisée 
à l’aide de la plateforme Eclipse/TOPCASED puis analysée formellement au moyen 
de la boîte à outils de vérification et d’évaluation de performances CADP.  
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1. Introduction  

Dans le domaine de l’électronique, la conception de circuits synchrones 
(i.e., circuits dont la logique est gouvernée par une horloge centrale) est depuis 
longtemps l’approche de choix. Dans le domaine du logiciel, les langages 
synchrones sont définis sur des concepts similaires. Quelque soit leur syntaxe 
concrète (flux de données ou formalisme d’automates), ces langages partagent un 
paradigme commun : un programme synchrone est formé de composants qui 
évoluent par des étapes discrètes et une horloge centrale garantit que tous les 
composants évoluent simultanément. Chaque composant est normalement 
déterministe, tout comme la composition de tous les composants. Cette hypothèse 
simplifie grandement la simulation, le test et la vérification des systèmes 
synchrones.  

Ces vingt dernières années, les langages synchrones sont devenus la norme 
pour la programmation de systèmes critiques embarqués comme les contrôleurs 
que l’on peut trouver dans les avions, les voitures, les trains ou encore les 
centrales nucléaires. Ces langages ont aussi trouvé une place dans la conception 
des circuits électroniques. Comme exemples de langages synchrones, nous 
pouvons citer ESTEREL [1], LUSTRE/SCADE [2], SIGNAL/SILDEX [3]  et 
ARGOS [4] . Nous invitons le lecteur à se référer à [5] pour une liste de succès 
récents dans l’application des techniques de vérification formelle à des systèmes 
avioniques complexes.  

De plus en plus, les systèmes embarqués ne satisfont plus les propriétés 
des systèmes synchrones. Les approches récentes (modular avionics, X-by-wire...) 
introduisent un degré croissant d’asynchronisme et de non déterminisme. Cette 
situation est connue depuis longtemps dans l’industrie des circuits électroniques 
où le terme GALS (Globalement Asynchrone Localement Synchrone) est 
employé pour désigner les circuits qui consistent en un ensemble de composants 
synchrones (gouvernés par leur propre horloge) qui communiquent de façon 
asynchrone. Ces évolutions remettent en cause la position bien établie des 
langages synchrones dans l’industrie. En effet, l’introduction d’asynchronisme 
invalide les propriétés de non déterminisme et d’instantanéité des systèmes 
réactifs et rend donc caduques les techniques de vérification efficaces qui existent 
pour ces systèmes. Il devient alors nécessaire d’adapter les techniques de 
vérification existantes au cas des systèmes GALS.  

Nous avons trouvé dans la littérature diverses tentatives visant à repousser 
les limites des langages synchrones pour les appliquer à l’étude des systèmes 
GALS. Suivant les résultats de Milner [6] qui ont montré que l’asynchronisme 
peut être encodé dans le modèle de calcul synchrone, nombre d’auteurs [7] [8] [9] 
[10] se sont efforcés de décrire les systèmes GALS à l’aide de langages 
synchrones ; par exemple, le non déterminisme est exprimé par l’ajout d’entrées 
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auxiliaires (oracles) dont la valeur est indéfinie. Le désavantage principal de ces 
approches est que l’asynchronisme et le non déterminisme ne sont pas reconnus 
comme des concepts de première classe donc les outils de vérification des 
langages synchrones n’ont pas d’optimisations spécifiques au parallélisme 
asynchrone (ordres partiels, minimisation compositionnelle...). D’autres 
approches étendent les langages synchrones pour permettre un certain degré 
d’asynchronisme, comme dans CRP [11], CRSM [12] ou encore multiclock 
ESTEREL [13], mais, à notre connaissance, de telles extensions ne sont pas 
(encore) utilisées dans l’industrie. Enfin, nous pouvons mentionner les approches 
[14] [15] dans lesquelles les langages synchrones sont compilés et distribués 
automatiquement sur un ensemble de processeurs s’exécutant en parallèle. Bien 
que ces approches permettent de générer directement des implémentations de 
systèmes GALS, elles ne traitent pas de la modélisation et de la vérification de ces 
systèmes.  

Une approche totalement différente serait d’ignorer les langages 
synchrones et d’adopter des langages spécifiquement conçus pour modéliser le 
parallélisme asynchrone et le non déterminisme, et équipés de puissants outils de 
vérification formelle comme les algèbres de processus : CSP [16] , LOTOS [17] 
ou PROMELA [18]. Un tel changement de paradigme est aujourd’hui impensable 
pour des entreprises qui ont investi massivement dans les langages synchrones et 
dont les produits à cycles de vie extrêmement longs demandent une certaine 
stabilité en termes de langages de programmation et d’environnements de 
développement.  

Dans cet article, nous proposons une approche intermédiaire qui combine 
les langages synchrones et les algèbres de processus pour modéliser, vérifier et 
simuler les systèmes GALS. Notre approche essaie de retenir le meilleur des deux 
paradigmes :   

• Nous continuons à utiliser les langages synchrones et leurs outils pour 
spécifier et vérifier les composants synchrones d’un système GALS.  

• Nous introduisons les algèbres de processus pour : (1) encapsuler ces 
composants synchrones ; (2) modéliser des composants additionnels dont 
le comportement est non déterministe, comme par exemple des canaux de 
communications non sûrs qui peuvent perdre, dupliquer et/ou permuter des 
messages ; (3) interconnecter tous ces composants d’un même système 
GALS grâce au parallélisme asynchrone. La spécification qui résulte est 
asynchrone et peut être analysée par les outils accompagnant l’algèbre de 
processus considérée.  
Nous avons trouvé dans la littérature deux approches qui suivent une 

direction similaire. Dans [19], des spécifications CRSM [12] sont 
automatiquement traduites en PROMELA pour vérifier grâce au model checker 
SPIN des propriétés exprimées comme un ensemble d’observateurs. Notre 
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approche est différente car nous réutilisons les langages synchrones tels qu’ils 
sont, sans qu’il soit nécessaire d’introduire un nouveau langage 
synchrone/asynchrone comme CRSM.  

Dans [20], plus similaire à notre approche, le compilateur SIGNAL est 
utilisé pour générer du code C à partir de programmes synchrones écrits en 
SIGNAL. Ce code est ensuite encapsulé dans des processus PROMELA qui 
communiquent par une abstraction d’un bus matériel. Enfin, le model checker 
SPIN est utilisé pour vérifier des formules de logique temporelle sur la 
spécification obtenue. L’approche que nous proposons suit le même principe mais 
présente des différences clés avec [20] dans la façon d’intégrer les programmes 
synchrones dans un environnement asynchrone:  

• Le protocole de communication qui relie les deux programmes synchrones 
présentés dans [20] est implémenté dans [21] en LUSTRE et SIGNAL. Ce 
protocole présente un degré faible d’asynchronisme et aucun non 
déterminisme. Il est d’ailleurs prouvé que ce protocole équivaut à un canal 
FIFO sans perte à un élément. Notre approche est plus générale car la 
communication entre le programme synchrone et son environnement peut 
se faire soit directement à l’aide d’un canal de communication, soit par 
l’intermédiaire d’un processus asynchrone auxiliaire qui implémente un 
protocole donné. 

• Le degré d’asynchronisme est encore limité par l’utilisation de la directive 
“atomic” de PROMELA qui assure le non entrelacement de la séquence 
d’actions qu’elle englobe avec les actions de l’environnement. Dans leur 
approche, cette directive englobe la totalité des actions de chacun des deux 
processus asynchrones qui encapsulent les deux programmes synchrones. 
De cette façon, la réception des entrées dans l’un des processus 
asynchrones, l’appel de la fonction C encodant le programme synchrone et 
l’envoi des sorties à l’environnement sont une séquence atomique 
d’actions. Les deux programmes synchrones ne peuvent donc pas 
s’exécuter de façon concurrente ce qui, pour nous, ne constitue pas un vrai 
exemple de système GALS. Au contraire, notre approche est 
complètement asynchrone et les exécutions des processus asynchrones qui 
encapsulent les programmes synchrones peuvent s’entrelacer. Notre 
approche est donc plus générale car : (1) elle permet une modélisation plus 
réaliste de la sémantique des systèmes GALS (elle ne requiert pas l’arrêt 
du système tout entier durant le calcul de la réaction de l’un des 
programmes synchrones) et (2) elle est applicable à un large panel 
d’algèbres de processus dont la plupart (contrairement à PROMELA) ne 
possède pas de directive “atomic” ; les seules contraintes pour ces algèbres 
de processus sont de permettre à l’utilisateur de définir des types et des 
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fonctions ainsi que d’avoir les primitives classiques pour exprimer le 
parallélisme asynchrone. 

• Dans leur approche, les processus asynchrones qui encapsulent les 
programmes synchrones sont vides et ne font que transmettre les valeurs 
reçues par l’environnement au programme synchrone. Dans la réalité, ce 
schéma de systèmes GALS est trop restrictif car il arrive que des 
programmes synchrones ne spécifient que la partie “contrôle” d’une 
application et que ce soit les programmes asynchrones qui définissent le 
flux de données. Dans notre approche, nous prenons cela en compte et le 
degré de complexité du processus asynchrone encapsulateur peut varier 
selon le système GALS à modéliser. 
Nous illustrons notre approche par une étude de cas industrielle fournie 

par Airbus dans le contexte du projet TOPCASED2 : un protocole de 
communication entre un avion et le sol qui consiste en deux entités TFTP (Trivial 
File Transfer Protocol) qui s’exécutent en parallèle et qui communiquent par un 
canal UDP (User Datagram Protocol). Comme langage synchrone, nous 
considérons SAM [22], (similaire à ARGOS [4]) qui a été conçu par Airbus et qui 
est utilisé au sein de cette entreprise. Une suite logicielle pour SAM est distribuée 
avec la plateforme open-source TOPCASED basée sur Eclipse. Comme algèbre 
de processus, nous considérons LOTOS NT [23], une version simplifiée de la 
norme internationale E-LOTOS [24]. Un traducteur automatique qui transforme 
des spécifications LOTOS NT en spécifications LOTOS est développé au sein de 
la boîte à outils CADP [25]. Ces spécifications LOTOS générées peuvent alors 
être vérifiées et leurs performances évaluées.  

Ce document est organisé comme suit. La section 2 explique les principes 
de notre approche et illustre son application aux langages SAM et LOTOS NT. La 
section 3 détaille l’étude de cas industrielle. La section 4 traite de la modélisation 
formelle de l’étude de cas en LOTOS NT. La section 5 détaille les techniques que 
nous avons employées pour générer les espaces d’états de nos spécifications et 
expose nos résultats de vérification. Enfin, la section 6 donne des remarques 
conclusives et nos perspectives concernant ces travaux.  

2. Approche proposée  

Dans cette section, nous détaillons notre approche pour la modélisation 
des systèmes GALS à l’aide des langages synchrones et des algèbres de 
processus. Nous présentons ensuite l’application de cette méthode aux langages 
SAM et LOTOS NT.  

 

                                                            
2 http://www.topcased.org 
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2.1. Les programmes synchrones vus comme des fonctions de Mealy. 
Un programme synchrone est la composition synchrone d’un ou plusieurs 
composants synchrones. Un composant synchrone effectue une séquence 
d’itérations discrètes et maintient un état interne s. A chaque itération, il reçoit un 
ensemble de m valeurs d’entrée i1...im de son environnement, calcule 
instantanément une réaction, renvoie un ensemble de n valeurs o1...on à son 
environnement et se positionne sur son nouvel état s0. Autrement dit, il peut être 
représenté par une machine de Mealy [26] qui est un quintuplet (S, s0, I, O, f) où :  

• S est un ensemble fini d’états,  
• s0 est l’état initial,  
• I est un alphabet fini d’entrée,  
• O est un alphabet fini de sortie,  
• f � S × I → S × O est une fonction de transition (aussi appelée une 

fonction de Mealy) qui associe à l’état courant et un symbole de l’alphabet 
d’entrée, l’état pour la réaction suivante ainsi qu’un symbole de l’alphabet 
de sortie : f(s, i1...im) = (s0, o1...on). 
Lorsqu’un programme synchrone a plusieurs composants, ces composants 

peuvent communiquer les uns avec les autres grâce à des connexions entre les 
sorties de certains composants et les entrées d’autres composants. Par définition 
du parallélisme synchrone, à chaque itération, tous les composants réagissent 
simultanément. Par conséquent, la composition de plusieurs composants peut 
aussi être représentée par une machine de Mealy. Pour les langages synchrones 
ESTEREL et LUSTRE, un format intermédiare commun OC (Object Code) a été 
proposé pour représenter ces machines de Mealy.  

 
2.2. Le langage SAM. Pour illustrer notre approche, nous considérons le 

cas du langage SAM, défini par Airbus et dont une description formelle est 
donnée dans [22]. Un composant synchrone en SAM est un automate qui a un 
ensemble de ports d’entrée et un ensemble de ports de sortie. Chaque port 
correspond à une variable booléenne. Un composant SAM est très proche d’une 
machine de Mealy. La seule différence réside dans le fait que les transitions 
sortant d’un même état ont des indices de priorité qui leur sont associés. Cela est 
nécessaire car en SAM, plusieurs transitions peuvent être activées par une même 
série de valeurs d’entrée. 
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Fig. 1. Exemple d’automate SAM 

 
La Figure 1 illustre l’exemple d’un composant SAM. Un point 

d’interrogation précède la condition F de chaque transition tandis qu’un point 
d’exclamation précède la liste G de variables de sortie auxquelles la valeur vrai 
doit être affectée. Les indices de priorité sont situés à la source des transitions.  

La composition de composants SAM suit la sémantique classique de la 
composition des programmes synchrones. Les communications entre les différents 
programmes sont exprimées par la connexion graphique de ports de sortie et de 
ports d’entrée, en respectant les règles suivantes: 

• Les ports d’entrée d’une composition peuvent être connectés aux ports de 
sortie de la composition ou bien aux ports d’entrée des sous-programmes 
(i.e., les programmes qui participent à la composition).  

• Les ports de sortie d’un sous-programme peuvent être connectés aux ports 
d’entrée d’autres sous-programmes ou bien aux ports de sortie de la 
composition. 

• Les dépendances cycliques sont interdites : il est interdit de connecter le 
port de sortie d’un sous-programme au port d’entrée du même sous-
programme, que ce soit directement ou par transitivité, au moyen d’un ou 
plusieurs sous-programmes intermédiaires. 
 
2.3. Traduction de SAM en LOTOS NT. Dans cette section, nous 

illustrons la façon dont un automate SAM peut être représenté par sa fonction de 
Mealy encodée en LOTOS NT. Par exemple, l’automate de la figure 1 peut être 
encodé comme suit en LOTOS NT : 

 
type State is 

S0, S1, S2 -- c’est un type enumere 
end type 
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function Transition (in CurrentState:State, in A:Bool, in B:Bool 

out NextState:State, out C:Bool, out D:Bool) 
is 

NextState := CurrentState; C := false ; D := false ; 
case CurrentState in 
S0 -> 

if A then 
NextState := S1; D := true 

end if 
|S1 -> 
 if A and B then 

NextState := S0; C := true; D := true 
 elsif B then 

NextState := S2; C := true 
  endif 
|S2 -> 
  if A and not (B) then 

NextState := S0; C := true 
  elsif B then 

NextState := S0; D := true 
  end if 
end case 

end function 

 
Fig. 2. Processus asynchrone encapsulateur (wrapper) général 

 
Un système SAM comprenant plusieurs automates SAM se traduit 

aisément en LOTOS NT. Comme les dépendances cycliques sont interdites, il est 
possible d’effectuer un tri topologique des composants en fonction de leurs 
dépendances les uns aux autres. A partir de l’ordre obtenu par ce tri, le système 
SAM peut être encodé en LOTOS NT comme la composition séquentielle des 
fonctions de Mealy de ses composants, c’est-à-dire en appelant les fonctions de 
Mealy des composants dans l’ordre induit par le tri, de telle sorte que lors de 
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l’appel de la fonction de Mealy d’un composant donné, les valeurs de toutes ses 
variables d’entrée sont connues.  

Une approche alternative à la traduction d’un langage synchrone L vers 
LOTOS NT serait, si il existe un générateur de code de L vers le langage C, 
d’invoquer directement la fonction de Mealy (générée en C) depuis un programme 
LOTOS NT, comme une fonction externe (une fonctionnalité supportée par 
CADP). De cette façon, notre approche pourrait même permettre le mélange de 
composants écrits dans différents langages synchrones.  

 
2.4. Encapsulation de fonctions de Mealy dans des processus LOTOS 

NT. A la différence des programmes synchrones, les composants de programmes 
asynchrones évoluent en parallèle, à leur propre rythme et se synchronisent 
ponctuellement à l’aide de canaux de communication. Notre approche pour la 
modélisation des systèmes GALS dans des langages asynchrones consiste à 
encoder un programme synchrone comme un ensemble de types et fonctions 
natifs dans l’algèbre de processus considérée. Mais, la fonction de Mealy d’un 
programme synchrone, seule, ne peut interagir avec un environnement 
asynchrone. Elle doit être encapsulée dans un wrapper, c’est-à-dire un processus 
asynchrone qui fait l’interface entre l’environnement asynchrone et la fonction de 
Mealy. Ce wrapper transforme la fonction deMealy en STE (Système de 
Transitions Etiquetées). Dans notre cas, la fonction deMealy est une fonction 
LOTOS NT tandis que le wrapper est un processus LOTOS NT.  

La quantité de traitement qu’un wrapper peut faire dépend du système 
GALS à modéliser. La Figure 2 montre le fonctionnement de général d’un 
wrapper : réception des entrées, envoi des sorties et sauvegarde de certaines 
valeurs pour les réutiliser à l’itération suivante. Dans certains cas, le wrapper peut 
aussi implémenter des comportements additionnels, non spécifiés par la fonction 
de Mealy.  

Une fois que la fonction de Mealy est encapsulée dans un wrapper, elle 
peut se synchroniser et communiquer avec les autres processus asynchrones grâce 
à l’opérateur de composition parallèle de LOTOS NT.  

3. Description de l’étude de cas 

Cette étude de cas a été distribuée par Airbus aux participants du projet 
TOPCASED pour illustrer un système embarqué avionique typique. Dans cette 
section, nous commençons par présenter les principes du protocole TFTP avant de 
décrire les changements effectués sur ce protocole par Airbus pour permettre la 
communication entre un avion et le sol.  
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3.1. Protocole TFTP. TFTP [27] est l’acronyme de Trivial File Transfer 
Protocol. Il s’agit d’un protocole client/serveur grâce auquel plusieurs clients 
peuvent écrire (resp. lire) un fichier sur (resp. depuis) un serveur. Pour des raisons 
de vitesse de transmission, TFTP utilise UDP (User Datagram Protocol) de 
transport et doit donc implémenter un mécanisme de contrôle du flux des 
messages afin de pallier les éventuelles erreurs se produisant dans la couche de 
transport UDP. Pour permettre au serveur de différencier les clients qu’il sert, 
chaque transfert de fichier s’effectue sur un port UDP différent.  

 
Le protocole TFTP définit 5 types de message : 

• RRQ (Read ReQuest) pour demander à lire un fichier depuis le 
serveur, 

• WRQ (Write ReQuest) pour demander à écrire un fichier sur le 
serveur, 

• DATA qui contient un fragment de fichier numéroté de 512 octets ; 
Le dernier fragment est celui dont la taille est différente de 512, 

• ACK qui contient le numéro du fragment acquitté, 
• ERROR pour indiquer qu’une erreur s’est produite. 

  
Le protocole est robuste : un message perdu (RRQ, WRQ, DATA ou ACK) 

peut être retransmis après un timeout. Les acquittements dupliqués (renvoyés à 
cause d’un timeout par exemple) doivent être ignorés afin d’éviter le bogue de 
l’apprenti sorcier [28].  

En cas d’erreur (épuisement de la mémoire disponible, erreur du 
système...), un message ERROR est envoyé pour annuler le transfert.  

 
3.2. Variante AIRBUS du protocole TFTP. Lorsqu’un avion atteint sa 

position finale dans l’aéroport, il est connecté au réseau informatique de cet 
aéroport. A l’heure actuelle, les communications qui se déroulent entre l’avion et 
les serveurs de l’aéroport sont régies par un protocole de communication très 
simple et certifié correct. Airbus nous a demandé d’étudier un protocole plus 
complexe, une variante du protocole TFTP qui pourrait être d’intérêt pour de 
nouvelles générations d’avions. Les principales différences entre ce protocole et le 
protocole TFTP classique sont :  

• Dans la pile de protocoles considérée par Airbus, la variante du protocole 
TFTP repose toujours sur le protocole UDP pour la transmission des 
messages. Cependant, ce ne sont plus des fichiers qui sont transportés mais 
les trames d’un protocole de communication de plus haut niveau dédié à 
l’avionique (comme ARINC 615a).  
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• Chaque entité communicante de cette variante du protocole TFTP a la 
faculté d’être à la fois client ou serveur, selon ce que requiert le protocole 
de communication de plus haut niveau. 

• Chaque entité ne communique qu’avec une seule autre entité. En effet, 
pour chaque avion qui se connecte, il y a dans les serveurs de l’aéroport 
une entité TFTP qui lui est réservée. Cela nous permet de ne pas modéliser 
le fait qu’une entité peut transférer plusieurs fichiers simultanément sur 
des ports UDP différents. Dans le reste de ce document, l’abréviation 
TFTP désigne (sauf mention contraire) la variante du protocole TFTP 
définie par Airbus.  
Les entités TFTP ont été spécifiées par Airbus au moyen d’un automate 

SAM de 7 états, 39 transitions, 15 ports d’entrée et 11 ports de sortie.  
 

 
Fig. 3. Connexion asynchrone de deux processus TFTP via deux média UDP 

 
Dans la suite de ce document, nous désignons cet automate par 

l’appellation “automate TFTP SAM”. Airbus était intéressé par l’étude du 
comportement de deux entités TFTP (dont le comportement est régi par 
l’automate TFTP SAM) communiquant par un médium non sûr comme UDP 
(c’est-à-dire avec des pertes, des duplications et des permutations de messages).  

4. Modélisation en LOTOS NT  

Nous avons modélisé une spécification qui comporte deux entités TFTP 
connectées par deux média UDP. Comme illustré en figure 3, les entités TFTP 
sont deux instances du même processus LOTOS NT qui lui-même encapsule la 
fonction de Mealy de l’automate TFTP SAM. Cet automate a été traduit 
manuellement en 215 lignes de code LOTOS NT (ce nombre inclut la fonction de 
Mealy et le type énuméré qui encode les états). Les média sont deux instances du 
même processus LOTOS NT qui reproduit les propriétés (perte, duplication et 
permutation de messages) du protocole de transport UDP.  
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4.2. Modélisation d’entités TFTP. Le processus TFTP reçoit et envoie 
des messages TFTP tels que définis dans la norme. Sa définition en LOTOS NT 
est longue de 670 lignes de code.  

Afin de modéliser fidèlement les messages du protocole TFTP, nous 
devons modéliser les fichiers et leurs fragments. Pour ce faire, nous considérons 
qu’à chaque entité TFTP est associé un répertoire de fichiers et que chaque entité 
TFTP est instanciée avec les paramètres suivants : 

• une liste de fichiers, parmi ceux du répertoire, à écrire sur l’autre entité ; 
nous désignons cette liste de fichiers par “liste de fichiers à écrire”,  

• une liste de fichiers, parmi ceux du répertoire de l’autre entité, à lire depuis 
l’autre entité ; nous désignons cette liste de fichiers par “liste de fichiers à 
lire”.  
 
Lorsqu’il n’y a pas de transfert en cours, l’une des entités peut choisir, de 

façon non déterministe, un fichier parmi sa liste de fichiers à lire ou à écrire et 
commencer le transfert de ce fichier.  

Le type de données que nous utilisons pour représenter les fichiers est une 
liste de fragments (dans notre modèle, le fichier est donc déjà fragmenté). Les 
noms des fichiers sont représentés par un entier naturel unique associé au fichier 
dans le répertoire qui le contient. Chaque fragment de fichier est représenté par un 
caractère différent.  

 
En plus de l’état courant de l’automate TFTP SAM, d’autres valeurs 

doivent être sauvegardées entre deux stimulations comme par exemple le nom du 
fichier en cours de transfert, l’indice du dernier fragment (ou acquittement) reçu 
ou envoyé, le nombre de renvois du dernier message... 

Les listes de fichiers et le contenu de chaque fichier sont des paramètres 
modifiables auxquels s’ajoute la possibilité de spécifier le nombre maximal de 
renvois des messages. Ces paramètres nous permettent d’explorer différents 
scénarios dans la section 5. En jouant sur les valeurs de ces paramètres, nous 
pouvons aussi contrôler, dans une certaine mesure, la taille de l’espace d’états de 
notre spécification.  

 
4.3. Modélisation des liens de communication. Les deux processus 

LOTOS NT décrivant les média UDP n’ont pas été dérivés d’une spécification 
SAM mais écrits directement, par nos soins, en LOTOS NT.  

Ces processus reproduisent de façon précise la couche de transport UDP 
mise en œuvre dans le réseau informatique reliant le sol et l’avion. UDP est un 
protocole dit non connecté, c’est-à-dire que chaque message est envoyé sans que 
les mécanismes du protocole ne permettent de déterminer qu’il a bien été reçu. Ce 
protocole ne détecte pas, ni ne répare les erreurs survenant dans les 
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communications. Ces erreurs, lorsqu’elles se produisent, doivent donc être gérées 
par les applications qui utilisent le protocole UDP pour communiquer (les entités 
TFTP dans notre cas). Ces erreurs peuvent être des pertes, des permutations ou 
des duplications de messages. 

 Nous avons choisi de modéliser le médium UDP de deux façons 
différentes, au moyen de deux processus LOTOS NT différents afin de nous 
assurer que les entités TFTP se comportent correctement, indépendamment du 
médium choisi. Ces deux processus LOTOS NT peuvent perdre les messages et 
ont une mémoire tampon dans laquelle les messages reçus non perdus sont 
enregistrés dans l’attente de leur acheminement. Nous ne modélisons pas 
explicitement les duplications de messages causées par le médium UDP car 
chaque entité TFTP peut déjà renvoyer un même message un nombre borné de 
fois (borne qui peut d’ailleurs être différente pour chaque entité TFTP).  

Le premier processus modélise le cas où les permutations de messages ne 
se produisent pas. Il utilise une FIFO comme mémoire tampon : les messages 
sont acheminés dans le même ordre que celui dans lequel ils arrivent. Le second 
processus modélise le cas ou les permutations de messages se produisent. Il utilise 
un bag comme mémoire tampon. Dans la suite du document, nous notons 
FIFO(n) (resp. BAG(n)) un médium “FIFO” (resp. “bag”) dont la mémoire 
tampon a une taille de n. FIFO(1) et BAG(1) sont identiques.  

 
4.4. Composition parallèle des liens de communication et des entités 

TFTP. Afin de composer, de façon asynchrone, les entités TFTP et les média 
UDP comme illustré par la figure 3, nous utilisons l’opérateur parallèle de 
LOTOS NT : 

par RECEIVE_A, SEND_A -> TFTP_WRAPPER [RECEIVE_A, SEND_A]  
 || RECEIVE_B, SEND_B -> TFTP_WRAPPER [RECEIVE_B, SEND_B]  
 || SEND_A, RECEIVE_B -> UDP_MEDIUM [SEND_A, RECEIVE_B 
 || SEND_B, RECEIVE_A -> UDP_MEDIUM [SEND_B, RECEIVE_A]  
end par  
 
Comme nous deux média différents, nous obtenons deux spécifications 

différentes à vérifier, selon que le médium utilisé est “FIFO” ou “BAG”.  

5. Vérification fonctionnelle des modèles  

Dans cette section, nous discutons des difficultés liées à la génération des 
espaces d’états des spécifications pour l’étude de cas TFTP et nous présentons les 
résultats de vérification obtenus à l’aide de CADP.  

Les spécifications LOTOS NT sont automatiquement traduites en 
spécifications LOTOS (par le traducteur “LOTOS NT to LOTOS” [23]) qui sont, 
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à leur tour, compilées en STE en utilisant les compilateurs CÆSAR.ADT et 
CÆSAR de CADP.  

Un problème récurrent en model checking est le phénomène de l’explosion 
de l’espace d’états. Dans notre cas, ce phénomène peut survenir soit durant la 
génération de l’espace d’états (quand le STE devient trop large pour être généré 
dans sa totalité) soit durant la vérification des formules de logique temporelle 
(quand le model checker épuise la mémoire disponible durant l’évaluation d’une 
formule sur un STE).  

Pour lutter contre ce phénomène, nous restreignons la taille de la mémoire 
tampon des média UDP à de petites valeurs (i.e., n = 1, 2, 3...). Nous limitons 
aussi la taille de chaque fichier à deux fragments puisque nous avons observé que 
c’était suffisant pour exercer toutes les transitions de l’automate TFTP SAM. De 
plus, nous avons remarqué que l’utilisation de plus de deux fragments par fichier 
n’entraîne pas l’invocation de la fonction de Mealy de l’automate TFTP SAM 
avec un ensemble de valeurs d’entrée qui n’existait pas déjà lors de l’utilisation de 
seulement deux fragments. Nous contraignons aussi le nombre de fichiers 
échangés par les deux entités TFTP en bornant la taille des listes de fichiers à lire 
et à écrire. Pour couvrir toutes les possibilités d’échanges, nous considérons les 
cinq scénarios suivants :  

• Scénario A: l’entité TFTP A écrit un fichier ;  
• Scénario B: l’entité TFTP A lit un fichier ;  
• Scénario C: les deux entités TFTP A et B écrivent un fichier ;  
• Scénario D: l’entité TFTP A écrit un fichier et l’entité TFTP B écrit un 

fichier ; 
• Scénario E: les deux entités TFTP A et B lisent un fichier. 

Nous avons écrit 29 formules de logiques temporelles que nous avons 
vérifiées pour chacun des cinq scénarios en faisant varier la taille des média. Pour 
donner un ordre d’idée, sur une machine équipée de deux processeurs Intel Xeon 
2 Ghz et de 7 Go de RAM, il a fallu 182 secondes pour générer la spécification 
correspondant au scénario D avec un médium BAG(2) (16 687 096 états et 83 289 
158 transitions) et 17 707 secondes pour vérifier sur cette spécification les 29 
propriétés. 
 La vérification des propriétés nous a permis de découvrir 19 erreurs dans la 
variante TFTP d’Airbus. Ces erreurs ont été confirmées par Airbus comme étant 
de réelles erreurs. Nous avons suggéré, pour chacune, un correctif à appliquer sur 
l’automate SAM TFTP. 

6. Conclusion 

Dans cet article, nous avons proposé une approche simple et élégante pour 
la modélisation et l’analyse des systèmes comprenant des composants synchrones 
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interagissant de façon asynchrone et que l’on appelle couramment GALS 
(Globalement Asynchrone Localement Synchrone). 

Contrairement aux autres approches qui étendent le paradigme synchrone 
pour modéliser l’asynchronisme, notre approche préserve la sémantique origi- 
nale des langages synchrones ainsi que la sémantique asynchrone des algèbres de 
processus. Notre approche nous permet de réutiliser, sans la moindre modi- 
fication les compilateurs des langages synchrones avec les outils de vérification et 
les compilateurs des algèbres de processus. 

Nous avons démontré la faisabilité de notre approche sur une étude de cas 
industrielle, une variante du protocole TFTP/UDP dont nous avons vérifié le bon 
comportement et évalué les performances au moyen de la plateforme TOPCASED 
et des outils de CADP. Bien que nous ayons illustré notre approche par le langage 
synchrone SAM et les algèbres de processus LOTOS et LOTOS NT, nous 
pensons qu’elle est généralisable à d’autres langages synchrones dont le 
compilateur est capable de traduire des programmes synchrones en machines de 
Mealy (ce qui est normalement toujours le cas) et à toute algèbre de processus qui 
permet le parallélisme asynchrone et la définition de types et fonctions. 

En ce qui concerne les perspectives de recherche sur ce travail, nous avons 
reçu un fort soutien d’Airbus. Nous travaillons à l’heure actuelle sur la 
vérification d’autres systèmes embarqués avioniques. Nous aimerions aussi 
appliquer notre approche à d’autres langages synchrones que SAM. 
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