

(IMPLICATIVE) PSEUDO-VALUATIONS ON R_0 -ALGEBRASJianming Zhan¹, Young Bae Jun²

The concepts of (implicative) pseudo-valuations on R_0 -algebras are introduced and some related characterizations are investigated. The relationship between a pseudo-valuation and an implicative pseudo-valuation is provided. In particular, we show that a pseudo-valuation on R_0 -algebras is Boolean if and only if it is implicative. Finally, we prove that the binary operation in R_0 -algebras is uniformly continuous based on the notion of pseudo-valuations.

Keywords: (implicative) pseudo-valuation; pseudo-metric space; uniformly continuous; R_0 -algebra.

MSC2010: 03G10; 03B05; 04A72.

1. Introduction

The concept of R_0 -algebras was first introduced by Wang in [7] by providing an algebraic proof of the completeness theorem of a formal deductive system. Further, Pei [6] proved NM -algebras are categorically isomorphic to R_0 -algebras. From [6, 7], we can find some concrete applications of R_0 -algebras. In 2008, Iorgulescu published a book *Algebras of logic as BCK-algebras*. In this book, she introduced some logical algebras and obtained some important results.

Busneag [2] defined a pseudo-valuation on a Hilbert algebra, and proved that every pseudo-valuation induces a pseudo metric on a Hilbert algebra. Also, Busneag [3] provided several theorems on extensions of pseudo-valuations. Busneag [1] introduced the notions of pseudo-valuations (valuations) on residuated lattices, and proved some theorems of extension for these (using the model of Hilbert algebras[3]).

In this paper, we introduce the concepts of (implicative) pseudo-valuations on R_0 -algebras and investigate some related characterizations. The relationship between a pseudo-valuation and an implicative pseudo-valuation is provided. In particular, we show that a pseudo-valuation on R_0 -algebras is Boolean if and only if it is implicative. Finally, we prove that the binary operation in R_0 -algebras is uniformly continuous based on the notion of pseudo-valuations.

This paper is an application of the concept of (implicative) pseudo-valuations on R_0 -algebras, that is, we discuss a theoretical approach of the algebraic system in

¹ Department of Mathematics, Hubei University for Nationalities, Enshi, Hubei Province, 445000, P. R. China, E-mail: zhanjianming@hotmail.com

² Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea, E-mail: skywine@gmail.com

R_0 -algebras by using the notion of (implicative) pseudo-valuations. Many interesting applications in information and engineering one can find (for example) in [4, 7].

2. Preliminaries

By an R_0 -algebra [7], we mean a bounded lattice $L = (L, \leq, \wedge, \vee, ', \rightarrow, 0, 1)$ which $'$ is an order-reversing involution and with a binary operation \rightarrow such that the following conditions hold:

- (R1) $x \rightarrow y = y' \rightarrow x'$;
- (R2) $1 \rightarrow x = x$;
- (R3) $(y \rightarrow z) \wedge ((x \rightarrow y) \rightarrow (x \rightarrow z)) = y \rightarrow z$;
- (R4) $x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z)$;
- (R5) $x \rightarrow (y \vee z) = (x \rightarrow y) \vee (x \rightarrow z)$;
- (R6) $(x \rightarrow y) \vee ((x \rightarrow y) \rightarrow (x' \vee y)) = 1$.

In any R_0 -algebra L , the following statements are true (see [6, 7]):

- (a1) $x \leq y \Leftrightarrow x \rightarrow y = 1$,
- (a2) $x \leq y \rightarrow x$,
- (a3) $x' = x \rightarrow 0$,
- (a4) $(x \rightarrow y) \vee (y \rightarrow x) = 1$,
- (a5) $x \rightarrow y \Rightarrow x \rightarrow z \geq y \rightarrow z$,
- (a6) $x \rightarrow y \Rightarrow z \rightarrow x \geq z \rightarrow y$,
- (a7) $((x \rightarrow y) \rightarrow y) \rightarrow y = x \rightarrow y$,
- (a8) $x \vee y = ((x \rightarrow y) \rightarrow y) \wedge ((y \rightarrow x) \rightarrow x) \rightarrow x$,
- (a9) $x \odot x' = 0, x \oplus x' = 1$,
- (a10) $x \odot y \leq x \wedge y, x \odot (x \rightarrow y) \leq x \wedge y$,
- (a11) $x \odot y \rightarrow z = x \rightarrow (y \rightarrow z)$,
- (a12) $x \leq y \rightarrow (x \odot y)$,
- (a13) $x \odot y \leq z$ if and only if $x \leq y \rightarrow z$,
- (a14) $x \rightarrow y \leq x \odot z \leq y \rightarrow z$,
- (a15) $x \rightarrow y \leq (y \rightarrow z) \leq (x \rightarrow z)$,
- (a16) $(x \rightarrow y) \odot (y \rightarrow z) \leq x \rightarrow z$.

In what follows, L is an R_0 -algebra unless otherwise specified.

A non-empty subset A of L is called a filter of L if it satisfies the following conditions: (A1) $1 \in A$; (A2) $\forall x \in A, y \in L, x \rightarrow y \in A \Rightarrow y \in A$.

Now, we call a non-empty subset A of L an implicative filter if it satisfies (A1) and (A3) $x \rightarrow (y \rightarrow z) \in A, x \rightarrow y \in A \Rightarrow x \rightarrow z \in A$. Equivalently, a non-empty subset A of L is an implicative filter of L if and only if it satisfies (A1) and (A4) $x \rightarrow ((y \rightarrow z) \rightarrow y) \in A, x \in A \Rightarrow y \in A$, for all $x, y, z \in L$.

3. Pseudo-valuations

In this section, we introduce the notion of pseudo-valuations on an R_0 -algebra.

Definition 3.1. A real-valued function $\varphi : L \rightarrow \mathbb{R}$, where \mathbb{R} is the set of all real numbers, is called an pseudo-valuation on L if for all $x, y \in L$,

(pv1) $\varphi(1) = 0$,
 (pv2) $\varphi(y) \leq \varphi(x \rightarrow y) + \varphi(x)$.

A pseudo-valuation φ on L satisfies the following:

(pv3) $\forall x \in L, x \neq 1 \rightarrow \varphi(x) \neq 0$ is called a valuation on L .

Example 3.1. Let $L = \{0, a, b, c, 1\}$, where $0 < a < b < c < 1$. Define $'$ and \rightarrow as follows:

x	x'	\rightarrow	0	a	b	c	1
0	1	0	1	1	1	1	1
a	c	a	c	1	1	1	1
b	b	b	b	b	1	1	1
c	a	c	a	a	b	1	1
1	0	1	0	a	b	c	1

Then $(L, \wedge, \vee, ', \rightarrow)$ is an R_0 -algebra. Define two real-valued functions φ_1 and φ_2 on L by

$$\varphi_1 = \begin{pmatrix} 0 & a & b & c & 1 \\ 2 & 0 & 0 & 0 & 0 \end{pmatrix}$$

and $\varphi_2 = \begin{pmatrix} 0 & a & b & c & 1 \\ 1 & 1 & 1 & 0 & 0 \end{pmatrix}$.

Then φ_1 and φ_2 are two pseudo-valuations on L .

Proposition 3.1. For any pseudo-valuation φ on L , then

(1) φ is order reversing.
 (2) $\forall x \in L, \varphi(x) \geq 0$.
 (3) $\forall x, y \in L, \varphi(x \rightarrow y) \leq \varphi(y)$.

Proof. (1) Let $x, y \in L$ be such that $x \leq y$, then $x \rightarrow y = 1$, and so

$$\varphi(y) \leq \varphi(x \rightarrow y) + \varphi(x) = \varphi(1) + \varphi(x) = 0 + \varphi(x) = \varphi(x).$$

(2) Putting $y = 1$ in (pv2), we have

$$0 = \varphi(1) \leq \varphi(x \rightarrow 1) + \varphi(x) = \varphi(x).$$

(3) By (a2), $y \leq x \rightarrow y$. Thus, from (1), we have $\varphi(x \rightarrow y) \leq \varphi(y)$. \square

Theorem 3.1. If φ is a pseudo-valuation on L , then for all $x, y, z \in L$, we have

(pv4) $x \rightarrow (y \rightarrow z) = 1 \Rightarrow \varphi(z) \leq \varphi(x) + \varphi(y)$.

Proof. Let φ be a pseudo-valuation on L , then by (pv2), we have

$$\varphi(z) \leq \varphi(y) + \varphi(y \rightarrow z)$$

and

$$\varphi(y \rightarrow z) \leq \varphi(x \rightarrow (y \rightarrow z)) + \varphi(x).$$

If $x \rightarrow (y \rightarrow z) = 1$, then

$$\varphi(y \rightarrow z) \leq \varphi(1) + \varphi(x) = \varphi(x).$$

Hence, $\varphi(z) \leq \varphi(y) + \varphi(y \rightarrow z) \leq \varphi(y) + \varphi(x)$. \square

Theorem 3.2. *Let φ be a real-valued function. Then φ is pseudo-valuation on L if and only if it satisfies the conditions (pv1) and (pv4).*

Proof. Since $(x \rightarrow y) \rightarrow (x \rightarrow y) = 1$, then by (pv4), we have $\varphi(y) \leq \varphi(x \rightarrow y) + \varphi(x)$. This proves that (pv2) holds. Hence φ is a pseudo-valuation on L .

Conversely, if φ is a pseudo-valuation on L , then from Definition 3.1 and Theorem 3.1, we know (pv1) and (pv4) hold. \square

Since $(x \odot y) \rightarrow z = x \rightarrow (y \rightarrow z)$, the following are consequences of Theorems 3.1 and 3.1.

Theorem 3.3. *Let φ be a real-valued function on L , then φ is pseudo-valuation on L if and only if it satisfies the conditions (pv1) and*

$$(pv5) \quad \forall x, y, z \in L, x \odot y \leq z \Rightarrow \varphi(z) \leq \varphi(x) + \varphi(y).$$

Corollary 3.1. *If φ is a pseudo-valuation on L , then for all $x, y \in L$, we have*

$$(pv6) \quad \varphi(x \odot y) \leq \varphi(x) + \varphi(y).$$

$$(pv7) \quad \varphi(x \wedge y) \leq \varphi(x) + \varphi(y).$$

Theorem 3.4. *Every pseudo-valuation on L satisfies:*

$$(pv8) \quad \forall x, y, z \in L, \varphi(x \rightarrow (y \rightarrow z)) \leq \varphi((x \rightarrow y) \rightarrow z).$$

$$(pv9) \quad \forall x, y, z \in L, \varphi(x \rightarrow z) \leq \varphi((x \rightarrow y) + \varphi(y \rightarrow z)).$$

Proof. For any $x, y, z \in L$, then by (a2) and (a15),

$$1 = y \rightarrow (x \rightarrow y) \leq ((x \rightarrow y) \rightarrow z) \rightarrow (y \rightarrow z),$$

and so

$$(x \rightarrow y) \rightarrow z \leq y \rightarrow z.$$

Thus

$$\varphi(y \rightarrow z) \leq \varphi((x \rightarrow y) \rightarrow z).$$

Since $y \rightarrow z \leq x \rightarrow (y \rightarrow z)$, we have

$$\varphi(x \rightarrow (y \rightarrow z)) \leq \varphi(y \rightarrow z) \leq \varphi((y \rightarrow z) \rightarrow z).$$

Thus, (pv8) holds.

Since $(x \rightarrow y) \odot (y \rightarrow z) \leq x \rightarrow z$ by (a16), it follows from (pv6) that

$$\varphi(x \rightarrow z) \leq \varphi((x \rightarrow y) \odot ((y \rightarrow z))) \leq \varphi(x \rightarrow y) + \varphi(y \rightarrow z).$$

Thus (pv9) holds. \square

Theorem 3.5. *If φ is a pseudo-valuation on L , then the set $F = \{x \in L | \varphi(x) = 0\}$ is a filter of L .*

Proof. Since $\varphi(1) = 0$, we have $1 \in F$. Let $x, y \in L$ be such that $x \rightarrow y \in L$ and $x \in L$, then $\varphi(x \rightarrow y) = 0$ and $\varphi(x) = 0$. Then $\varphi(y) \leq \varphi(x \rightarrow y) + \varphi(x) = 0$, and so $\varphi(y) = 0$, that is, $y \in F$. Hence, F is a filter of L . \square

The following example shows that the converse of Theorem 3.5 may not be true.

Example 3.2. Consider an R_0 -algebra L as in Example 3.1. Define a real-valued function φ on L by

$$\varphi = \begin{pmatrix} 0 & a & b & c & 1 \\ 2 & 1 & 1 & 0 & 0 \end{pmatrix}.$$

Then $F = \{x \in L \mid \varphi(x) = 0\} = \{1, c\}$ is a filter of L , but φ is not a pseudo-valuation on L since $\varphi(0) = 2 \not\leq \varphi(a \rightarrow 0) + \varphi(a) = \varphi(c) + \varphi(a) = 1$.

4. Implicative pseudo-valuations

Definition 4.1. A real-valued function φ on L is called an implicative pseudo-valuation on L if it satisfies (pv1) and

$$(\text{pv10}) \quad \forall x, y, z \in L, \varphi(x \rightarrow z) \leq \varphi(x \rightarrow (y \rightarrow z)) + \varphi(x \rightarrow y).$$

Example 4.1. Let $L = \{0, a, b, c, d, 1\}$, where $0 < a < b < c < d < 1$. Define ' and \rightarrow as follows:

x	x'	\rightarrow	0	a	b	c	d	1
0	1	0	1	1	1	1	1	1
a	d	a	d	1	1	1	1	1
b	c	b	c	c	1	1	1	1
c	b	c	b	b	b	1	1	1
d	a	d	a	a	b	c	1	1
1	0	1	0	a	b	c	d	1

Define a real-valued function φ on L by

$$\varphi = \begin{pmatrix} 0 & a & b & c & d & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \end{pmatrix}.$$

Then φ is a pseudo-valuation on L .

The following proposition is obvious and we omit the proof.

Proposition 4.1. Every implicative pseudo-valuation on L is a pseudo-valuation on L .

The converse of Proposition 4.1 may not be true. In fact, let φ_1 be a pseudo-valuation on L in Example 3.2. We know that φ_1 is a pseudo-valuation on L , but it is not an implicative pseudo-valuation on L since $2 = \varphi_1(1 \rightarrow 0) \not\leq \varphi_1(1 \rightarrow (a \rightarrow 0)) + \varphi_1(1 \rightarrow a) = 0$.

Now, we mainly investigate the characterizations of pseudo-valuations of R_0 -algebras.

Theorem 4.1. Let φ be a pseudo-valuation on L , then φ is an implicative pseudo-valuation on L if and only if for all $x, y, z \in L$, it satisfies:

$$(\text{pv11}) \quad \varphi(x \rightarrow z) \leq \varphi(x \rightarrow (z' \rightarrow y)) + \varphi(y \rightarrow z).$$

Proof. Assume that φ is an implicative pseudo-valuation on L . For any $x, y, z \in L$, we have

$$\begin{aligned} \varphi(x \rightarrow z) &= \varphi(z' \rightarrow x') && \text{(by R1)} \\ &\leq \varphi(z' \rightarrow (y' \rightarrow x')) + \varphi(z' \rightarrow y') && \text{(by pv10)} \\ &= \varphi(x \rightarrow (z' \rightarrow y)) + \varphi(y \rightarrow z) && \text{(by R4 and R1).} \end{aligned}$$

Thus, (pv11) holds.

Conversely, assume that φ is an implicative pseudo-valuation on L satisfies (pv11). Then

$$\begin{aligned} \varphi(x \rightarrow z) &= \varphi(z' \rightarrow x') \\ &\leq \varphi(z' \rightarrow (x'' \rightarrow y')) + \varphi(y' \rightarrow x') \\ &= \varphi(x \rightarrow (y \rightarrow z)) + \varphi(x \rightarrow y). \end{aligned}$$

Thus, (pv10) holds, and so φ is an implicative pseudo-valuation on L . \square

Theorem 4.2. *Let φ be a pseudo-valuation on L . Then the following are equivalent:*

- (1) φ is an implicative pseudo-valuation on L ;
- (2) $\forall x, z \in L, \varphi(x \rightarrow z) \leq \varphi(x \rightarrow (z' \rightarrow z))$;
- (3) $\forall x, y, z \in L, \varphi(x \rightarrow z) \leq \varphi(y \rightarrow (x \rightarrow (z' \rightarrow z))) + \varphi(y)$.

Proof. (1) \Rightarrow (2). Assume that φ is an implicative pseudo-valuation on L . Putting $y = z$ in (pv11), we have

$$\begin{aligned} \varphi(x \rightarrow z) &= \varphi(x \rightarrow (z' + z)) + \varphi(z \rightarrow z) \\ &= \varphi(x \rightarrow (z' \rightarrow z)) + \varphi(1) \\ &= \varphi(x \rightarrow (z' \rightarrow z)). \end{aligned}$$

(2) \Rightarrow (3). For any $x, y, z \in L$, we have

$$\varphi(x \rightarrow (z' \rightarrow z)) \leq \varphi(y \rightarrow (x \rightarrow (z' \rightarrow z))) + \varphi(y).$$

Using (2), we obtain

$$\begin{aligned} \varphi(x \rightarrow z) &= \varphi(x \rightarrow (z' \rightarrow z)) \\ &= \varphi(y \rightarrow (x \rightarrow (z' \rightarrow z))) + \varphi(y). \end{aligned}$$

(3) \Rightarrow (1). Let φ be a pseudo-valuation on L satisfies the condition (3). Then by Theorem 3.8 (pv9), we have

$$\varphi(x \odot z' \rightarrow z) \leq \varphi(x \odot z' \rightarrow y) + \varphi(y \rightarrow z).$$

By (a11), we have

$$\varphi(x \rightarrow (z' \rightarrow z)) \leq \varphi(x \odot z' \rightarrow y) + \varphi(y \rightarrow z).$$

Putting $y = 1$ in (3), we have

$$\begin{aligned}\varphi(x \rightarrow z) &\leq \varphi(1 \rightarrow (x \rightarrow (z' \rightarrow z))) + \varphi(1) \\ &= \varphi(x \rightarrow (z' \rightarrow z)) \\ &\leq \varphi(x \rightarrow (z' \rightarrow y)) + \varphi(y \rightarrow z).\end{aligned}$$

Thus, (pv11) holds. It follows from Theorem 4.1 that φ is an implicative pseudo-valuation on L . \square

Theorem 4.3. *Let φ be a pseudo-valuation on L . Then the following are equivalent:*

- (1) φ is an implicative pseudo-valuation on L ;
- (2) $\forall x \in L, \varphi(x) \leq \varphi(x' \rightarrow x)$;
- (3) $\forall x, y, z \in L, \varphi(x) \leq \varphi((x \rightarrow y) \rightarrow x)$;
- (4) $\forall x, y, z \in L, \varphi(x) \leq \varphi(z \rightarrow ((x \rightarrow y) \rightarrow x)) + \varphi(z)$.

Proof. (1) \Rightarrow (2). From Theorem 4.2(2), we have

$$\varphi(x) = \varphi(1 \rightarrow x) \leq \varphi(1 \rightarrow (x' \rightarrow x)) = \varphi(x' \rightarrow x).$$

(2) \Rightarrow (3). Since $x' \leq x \rightarrow y$ by (a6), we have

$$(x \rightarrow y) \rightarrow x \leq x' \rightarrow x$$

from (a5). Since φ is a pseudo-valuation on L , we have

$$\varphi(x' \rightarrow x) \leq \varphi((x \rightarrow y) \rightarrow x)$$

by Proposition 3.1(1). Thus, from (2), we deduce that

$$\varphi(x) \leq \varphi(x' \rightarrow x) \leq \varphi((x \rightarrow y) \rightarrow x).$$

Hence (3) holds.

(3) \Rightarrow (4). Since φ is a pseudo-valuation on L , we have

$$\varphi((x \rightarrow y) \rightarrow x) \leq \varphi(z \rightarrow ((x \rightarrow y) \rightarrow x)) + \varphi(z).$$

Thus (4) holds.

(4) \Rightarrow (1). Since $z \leq x \rightarrow z$ by (a2), we have $(x \rightarrow z)' \leq z'$ and $z' \rightarrow (x \rightarrow z) \leq (x \rightarrow z)' \rightarrow (x \rightarrow z)$. Thus, $\varphi((x \rightarrow z)' \rightarrow (x \rightarrow z)) \leq \varphi(z' \rightarrow (x \rightarrow z))$.

It follows from (4) that

$$\begin{aligned}\varphi(x \rightarrow z) &\leq \varphi(1 \rightarrow (((x \rightarrow z) \rightarrow 0) \rightarrow (x \rightarrow z))) + \varphi(1) \\ &= \varphi((x \rightarrow z)' \rightarrow (x \rightarrow z)) \\ &\leq \varphi(z' \rightarrow (x \rightarrow z)).\end{aligned}$$

Thus, from Theorem 4.2(2), φ is an implicative pseudo-valuation on L . \square

Definition 4.2. *A pseudo-valuation φ on L is called Boolean if it satisfies:*

- (pv12) $\forall x \in L, \varphi(x \vee x') = 0$.

Theorem 4.4. *A pseudo-valuation φ on L is Boolean if and only if it implicative.*

Proof. Assume that φ is an implicative pseudo-valuation on L . Since

$$x' \rightarrow (((x' \rightarrow x) \rightarrow x) \rightarrow (x' \rightarrow x)') = ((x' \rightarrow x) \rightarrow x) \rightarrow ((x \rightarrow x) \rightarrow x) = 1$$

and

$$x' \rightarrow ((x' \rightarrow x) \rightarrow x) = 1,$$

we have

$$\begin{aligned} \varphi((x' \rightarrow x) \rightarrow x) &= \varphi(x' \rightarrow (x' \rightarrow x)') \\ &\leq \varphi(x' \rightarrow (((x' \rightarrow x) \rightarrow x) \rightarrow (x' \rightarrow x)')) + \varphi(x' \rightarrow ((x' \rightarrow x) \rightarrow x)) \\ &= \varphi(1) + \varphi(1) = 0, \end{aligned}$$

that is, $\varphi((x' \rightarrow x) \rightarrow x) = 0$ by Proposition 3.3(2).

Similarly, we can obtain $\varphi((x \rightarrow x') \rightarrow x') = 0$. Thus, by (a8) and (pv7), we have

$$\begin{aligned} \varphi(x \vee x') &= \varphi(((x' \rightarrow x) \rightarrow x) \wedge ((x \rightarrow x') \rightarrow x')) \\ &\leq \varphi((x' \rightarrow x) \rightarrow x) + \varphi((x \rightarrow x') \rightarrow x') \\ &= 0, \end{aligned}$$

and so $\varphi(x \vee x') = 0$. Thus, φ is a Boolean pseudo-valuation on L .

Conversely, let φ be a Boolean pseudo-valuation on L . Then

$$\begin{aligned} \varphi(x \rightarrow y) &\leq \varphi((y \vee y') \rightarrow (x \rightarrow y)) + \varphi(y \vee y') \\ &= \varphi((y \vee y') \rightarrow (x \rightarrow y)) \\ &= \varphi((y \rightarrow (x \rightarrow y)) \wedge (y' \rightarrow (x \rightarrow y))) \\ &\leq \varphi(y \rightarrow (x \rightarrow y)) + \varphi(y' \rightarrow (x \rightarrow y)) \\ &= \varphi(1) + \varphi(y' \rightarrow (x \rightarrow y)) \\ &= \varphi(y' \rightarrow (x \rightarrow y)). \end{aligned}$$

Thus, from Theorem 4.2(2), φ is an implicative pseudo-valuation on L . \square

Similar to Theorem 3.5, we can obtain:

Theorem 4.5. If φ is an implicative pseudo-valuation on L , then the set $F = \{x \in L \mid \varphi(x) = 0\}$ is an implicative filter of L .

The following example shows that the converse of Theorem 4.5 may not be true.

Example 4.2. Consider an R_0 -algebra L as in Example 4.1. Define a real-valued function φ on L by

$$\varphi = \begin{pmatrix} 0 & a & b & c & d & 1 \\ 2 & 1 & 1 & 0 & 0 & 0 \end{pmatrix}.$$

Then $F = \{x \in L \mid \varphi(x) = 0\} = \{1, c, d\}$ is an implicative filter of L , but φ is not an implicative pseudo-valuation on L since $2 = \varphi(1 \rightarrow 0) \not\leq 1 = \varphi(1 \rightarrow (a \rightarrow 0)) + \varphi(1 \rightarrow a)$.

5. Pseudo-metric spaces

By a pseudo-metric space we mean an ordered pair (M, d) , where M is a non-empty set and $d : M \times M \rightarrow \mathbb{R}$ is a positive function such that the following hold:

- (1) $d(x, x) = 0$,
- (2) $d(x, y) = d(y, x)$,
- (3) $d(x, z) \leq d(x, y) + d(y, z)$

for all $x, y, z \in M$.

If in (M, d) , $d(x, y) = 0 \Rightarrow x = y$, then (M, d) is called a metric space.

For a real-valued function φ on L , define a mapping $d_\varphi : L \times L \rightarrow \mathbb{R}$ by

$$d_\varphi(x, y) = \varphi(x \rightarrow y) + \varphi(y \rightarrow x)$$

for all $(x, y) \in L \times L$.

We say d_φ is the pseudo-metric introduced by pseudo-valuation φ .

Theorem 5.1. *If a real-valued function φ on L is a pseudo-valuation on L , then d_φ is a pseudo-metric on L , and so (L, d_φ) is a pseudo-metric space.*

Proof. For any $x \in L$, $d_\varphi(x, x) = \varphi(x \rightarrow x) + \varphi(x \rightarrow x) = 0$. It is clear that $d_\varphi(x, y) = d_\varphi(y, x)$. Let $x, y, z \in L$. By Theorem 3.8 (pv9), we have

$$\begin{aligned} d_\varphi(x, y) + d_\varphi(y, z) &= (\varphi(x \rightarrow y) + \varphi(y \rightarrow x)) + (\varphi(y \rightarrow z) + \varphi(z \rightarrow y)) \\ &= (\varphi(x \rightarrow y) + \varphi(y \rightarrow z)) + (\varphi(z \rightarrow y) + \varphi(y \rightarrow x)) \\ &\geq \varphi(x \rightarrow z) + \varphi(z \rightarrow x) \\ &= d_\varphi(x, z). \end{aligned}$$

Thus, (L, d_φ) is a pseudo-metric space. □

Theorem 5.2. *If $\varphi : L \rightarrow \mathbb{R}$ is a valuation on L , then (L, d_φ) is a metric space.*

Proof. By Theorem 5.1, (L, d_φ) is a pseudo-metric space. Let $x, y \in L$ be such that $d_\varphi(x, y) = 0$. Then $0 = d_\varphi(x, y) = \varphi(x \rightarrow y) + \varphi(y \rightarrow x)$, and so $\varphi(x \rightarrow y) = \varphi(y \rightarrow x) = 0$. Since φ is a valuation on L , then $x \rightarrow y = y \rightarrow x = 1$. By (a1), we have $x = y$. Hence (L, d_φ) is a metric space. □

Proposition 5.1. *Every pseudo-metric d_φ induced by pseudo-valuation φ on L satisfies:*

- (1) $d_\varphi(x, y) \geq d_\varphi(x \rightarrow a, y \rightarrow a)$,
- (2) $d_\varphi(x, y) \geq d_\varphi(a \rightarrow x, a \rightarrow y)$,
- (3) $d_\varphi(x \rightarrow y, a \rightarrow b) \leq d_\varphi(x \rightarrow y, a \rightarrow y) + d_\varphi(a \rightarrow y, a \rightarrow b)$
for all $x, y, a, b \in L$.

Proof. (1) Let $x, y, a \in L$. By (a15), $(x \rightarrow y) \rightarrow ((y \rightarrow a) \rightarrow (x \rightarrow a)) = 1$ and $(y \rightarrow x) \rightarrow ((x \rightarrow a) \rightarrow (y \rightarrow a)) = 1$. Hence, by Proposition 3.1(1), we have

$\varphi(x \rightarrow y) \geq \varphi((y \rightarrow a) \rightarrow (x \rightarrow a))$ and $\varphi(y \rightarrow x) \geq \varphi((x \rightarrow a) \rightarrow (y \rightarrow a))$. Thus,

$$\begin{aligned} d_\varphi(x, y) &= \varphi(x \rightarrow y) + \varphi(y \rightarrow x) \\ &\geq \varphi((y \rightarrow a) \rightarrow (x \rightarrow a)) + \varphi((x \rightarrow a) \rightarrow (y \rightarrow a)) \\ &= d_\varphi(x \rightarrow a, y \rightarrow a). \end{aligned}$$

(2) is similar to (1).

(3) By Theorem 3.4(pv9), we have

$$\varphi((x \rightarrow y) \rightarrow (a \rightarrow b)) \leq \varphi((x \rightarrow y) \rightarrow (a \rightarrow y)) + \varphi((a \rightarrow y) \rightarrow (a \rightarrow b))$$

$$\text{and } \varphi((a \rightarrow b) \rightarrow (x \rightarrow y)) \leq \varphi((a \rightarrow b) \rightarrow (a \rightarrow y)) + \varphi((a \rightarrow y) \rightarrow (x \rightarrow y)).$$

Thus, we have

$$\begin{aligned} d_\varphi(x \rightarrow y, a \rightarrow b) &= \varphi((x \rightarrow y) \rightarrow (a \rightarrow b)) + \varphi((a \rightarrow b) \rightarrow (x \rightarrow y)) \\ &\leq (\varphi((x \rightarrow y) \rightarrow (a \rightarrow y)) + \varphi((a \rightarrow y) \rightarrow (a \rightarrow b))) \\ &\quad + (\varphi((a \rightarrow b) \rightarrow (a \rightarrow y)) + \varphi((a \rightarrow y) \rightarrow (x \rightarrow y))) \\ &= (\varphi((x \rightarrow y) \rightarrow (a \rightarrow y)) + \varphi((a \rightarrow y) \rightarrow (x \rightarrow y))) \\ &\quad + (\varphi((a \rightarrow y) \rightarrow (a \rightarrow b)) + \varphi((a \rightarrow b) \rightarrow (a \rightarrow y))) \\ &= d_\varphi(x \rightarrow y, a \rightarrow y) + d_\varphi(a \rightarrow y, a \rightarrow b). \end{aligned}$$

□

Theorem 5.3. For a real-valued function φ on L , if d_φ is a pseudo-metric on L , then $(L \times L, d_\varphi^*)$ is a pseudo-metric space, where $d_\varphi^*((x, y), (a, b)) = \max\{d_\varphi(x, a), d_\varphi(y, b)\}$ for all $(x, y), (a, b) \in L \times L$.

Proof. Let d_φ be a pseudo-metric on L . For any $(x, y), (a, b) \in L \times L$, we have

$$(1) \quad d_\varphi^*((x, y), (x, y)) = \max\{d_\varphi(x, x), d_\varphi(y, y)\} = 0.$$

$$(2) \quad d_\varphi^*((x, y), (a, b)) = \max\{d_\varphi(x, a), d_\varphi(y, b)\} = \max\{d_\varphi(a, x), d_\varphi(b, y)\} = d_\varphi^*((a, b), (x, y)).$$

$$(3) \quad \text{Let } (x, y), (a, b), (u, v) \in L \times L.$$

Then we have

$$\begin{aligned} d_\varphi^*((x, y), (u, v)) + d_\varphi^*((u, v), (a, b)) &= \max\{d_\varphi(x, u), d_\varphi(y, v)\} + \max\{d_\varphi(u, a), d_\varphi(v, b)\} \\ &\geq \max\{d_\varphi(x, u) + d_\varphi(u, a), d_\varphi(y, v) + d_\varphi(v, b)\} \\ &\geq \max\{d_\varphi(x, a), d_\varphi(y, b)\} \\ &= d_\varphi^*((x, y), (a, b)). \end{aligned}$$

Hence $(L \times L, d_\varphi^*)$ is a pseudo-metric space. □

Corollary 5.1. If $\varphi : L \rightarrow \mathbb{R}$ is a pseudo-valuation on L , then $(L \times L, d_\varphi^*)$ is a pseudo-metric space.

Theorem 5.4. If $\varphi : L \rightarrow \mathbb{R}$ is a valuation on L , then $(L \times L, d_\varphi^*)$ is a metric space.

Proof. By Corollary 5.1, $(L \times L, d_\varphi^*)$ is a pseudo-metric space. For any $(x, y), (a, b) \in L \times L$ such that $d_\varphi^*((x, y), (a, b)) = 0$. Then $0 = d_\varphi^*((x, y), (a, b)) = \max\{d_\varphi(x, a), d_\varphi(y, b)\}$, and so $d_\varphi(x, a) = d_\varphi(y, b) = 0$. Hence

$$0 = d_\varphi(x, a) = \varphi(x \rightarrow a) + \varphi(a \rightarrow x)$$

and

$$0 = d_\varphi(y, b) = \varphi(y \rightarrow b) + \varphi(b \rightarrow y).$$

Thus, $\varphi(x \rightarrow a) = \varphi(a \rightarrow x) = 0$ and $\varphi(y \rightarrow b) = \varphi(b \rightarrow y) = 0$. Thus, $x \rightarrow a = a \rightarrow x = 1$ and $y \rightarrow b = b \rightarrow y = 1$, that is, $x = a$ and $y = b$, and so $(x, y) = (a, b)$. Hence $(L \times L, d_\varphi^*)$ is a metric space. \square

Theorem 5.5. *If φ is a valuation on L , then the operation $*$ in L is uniformly continuous.*

Proof. For any $\varepsilon > 0$, if $d_\varphi^*((x, y), (a, b)) < \frac{\varepsilon}{2}$, then $d_\varphi^*(x, a) < \frac{\varepsilon}{2}$ and $d_\varphi^*(y, b) < \frac{\varepsilon}{2}$. By Proposition 5.1, we have

$$\begin{aligned} d_\varphi(x \rightarrow y, a \rightarrow b) &\leq d_\varphi(x \rightarrow y, a \rightarrow y) + d_\varphi(a \rightarrow y, a \rightarrow b) \\ &\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

Then $* : L \times L \rightarrow L$ is uniformly continuous. \square

6. Conclusions

In this paper, we introduce the concepts of (implicative) pseudo-valuations on R_0 -algebras and investigate some related characterizations. Finally, we prove that the binary operation in R_0 -algebras is uniformly continuous based on the notion of pseudo-valuations.

Based on these results, we will consider some its applications to knowledge-based information systems in the future.

Acknowledgements

The authors are extremely grateful to the referees for giving them many valuable comments and helpful suggestions which help to improve the presentation of this paper.

This research is partially supported by a grant of National Natural Science Foundation of China (61175055), a grant of Innovation Term of Higher Education of Hubei Province, China (T201109), and the Natural Science Foundation of Education Committee of Hubei Province, China (B20122904) and Innovation Term of Hubei University for Nationalities(MY2012T002).

REFERENCES

- [1] *C. Busneag*, Valuations on residuated lattices, *An. Univ. Craiova Ser. Mat. Inform.*, **34**(2007) 21-28.
- [2] *D. Busneag*, Hilbert algebras with valuations, *Math. Japon.*, **44**(1996) 285-289.
- [3] *D. Busneag*, On extension of pseudo-valuations on Hilbert algebras, *Discrete Math.*, **263**(2003) 11-24.
- [4] *P. Hájek*, Metamathematics of Fuzzy Logic, Kluwer Academic Press, Dordrecht, 1998.
- [5] *A. Iorgulescu*, Algebras of logic as BCK-algebras, Editura ASE, Bucharest 2008.
- [6] *D.W. Pei, G.J. Wang*, The completeness and applications of the formal system \mathcal{L}^* . *Sci. China Ser. E* **32**(2002) 56-64.
- [7] *G.J. Wang*, Non-classical Mathematical Logic and Approximate Reasoning, Science Press, Beijing, 2000.