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(IMPLICATIVE) PSEUDO-VALUATIONS ON R0-ALGEBRAS
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The concepts of (implicative) pseudo-valuations on R0-algebras are in-

troduced and some related characterizations are investigated. The relationship

between a pseudo-valuation and an implicative pseudo-valuation is provided. In

particular, we show that a pseudo-valuation on R0-algebras is Boolean if and only

if it is implicative. Finally, we prove that the binary operation in R0-algebras is

uniformly continuous based on the notion of pseudo-valuations.
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1. Introduction

The concept of R0-algebras was first introduced by Wang in [7] by providing an

algebraic proof of the completeness theorem of a formal deductive system. Further,

Pei [6] proved NM -algebras are categorically isomorphic to R0-algebras. From [6, 7],

we can find some concrete applications of R0-algebras. In 2008, Iorgulescu published

a book Algebras of logic as BCK-algebras. In this book, she introduced some logical

algebras and obtained some important results.

Busneag [2] defined a pseudo-valuation on a Hilbert algebra, and proved that

every pseudo-valuation induces a pseudo metric on a Hilbert algebra. Also, Bus-

neag [3] provided several theorems on extensions of pseudo-valuations. Busneag [1]

introduced the notions of pseudo-valuations (valuations) on residuated lattices, and

proved some theorems of extension for these (using the model of Hilbert algebras[3]).

In this paper, we introduce the concepts of (implicative) pseudo-valuations

on R0-algebras and investigate some related characterizations. The relationship

between a pseudo-valuation and an implicative pseudo-valuation is provided. In

particular, we show that a pseudo-valuation on R0-algebras is Boolean if and only

if it is implicative. Finally, we prove that the binary operation in R0-algebras is

uniformly continuous based on the notion of pseudo-valuations.

This paper is an application of the concept of (implicative) pseudo-valuations

on R0-algebras, that is, we discuss a theoretical approach of the algebraic system in
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R0-algebras by using the notion of (implicative) pseudo-valuations. Many interesting

applications in information and engineering one can find (for example) in [4, 7].

2. Preliminaries

By an R0-algebra [7], we mean a bounded lattice L = (L,≤,∧,∨,′ ,→, 0, 1)

which ′ is an order-reversing involution and with a binary operation → such that

the following conditions hold:

(R1) x → y = y′ → x′;

(R2) 1 → x = x;

(R3) (y → z) ∧ ((x → y) → (x → z)) = y → z;

(R4) x → (y → z) = y → (x → z);

(R5) x → (y ∨ z) = (x → y) ∨ (x → z);

(R6) (x → y) ∨ ((x → y) → (x′ ∨ y)) = 1.

In any R0-algebra L, the following statements are true (see [6, 7]):

(a1) x ≤ y ⇔ x → y = 1,

(a2) x ≤ y → x,

(a3) x′ = x → 0,

(a4) (x → y) ∨ (y → x) = 1,

(a5) x → y ⇒ x → z ≥ y → z,

(a6) x → y ⇒ z → x ≥ z → y,

(a7) ((x → y) → y) → y = x → y,

(a8) x ∨ y = ((x → y) → y) ∧ ((y → x) → x) → x),

(a9) x⊙ x′ = 0, x⊕ x′ = 1,

(a10) x⊙ y ≤ x ∧ y, x⊙ (x → y) ≤ x ∧ y,

(a11) x⊙ y → z = x → (y → z),

(a12) x ≤ y → (x⊙ y),

(a13) x⊙ y ≤ z if and only if x ≤ y → z,

(a14) x → y ≤ x⊙ z ≤ y → z,

(a15) x → y ≤ (y → z) ≤ (x → z),

(a16) (x → y)⊙ (y → z) ≤ x → z.

In what follows, L is an R0-algebra unless otherwise specified.

A non-empty subset A of L is called a filter of L if it satisfies the following

conditions: (A1) 1 ∈ A; (A2) ∀x ∈ A, y ∈ L, x → y ∈ A ⇒ y ∈ A.

Now, we call a non-empty subset A of L an implicative filter if it satisfies (A1)

and (A3) x → (y → z) ∈ A, x → y ∈ A ⇒ x → z ∈ A. Equivalently, a non-empty

subset A of L is an implicative filter of L if and only if it satisfies (A1) and (A4)

x → ((y → z) → y) ∈ A, x ∈ A ⇒ y ∈ A, for all x, y, z ∈ L.

3. Pseudo-valuations

In this section, we introduce the notion of pseudo-valuations on an R0-algebra.

Definition 3.1. A real-valued function φ : L → R, where R is the set of all real

numbers, is called an pseudo-valuation on L if for all x, y ∈ L,
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(pv1) φ(1) = 0,

(pv2) φ(y) ≤ φ(x → y) + φ(x).

A pseudo-valuation φ on L satisfies the following:

(pv3) ∀x ∈ L, x ̸= 1 → φ(x) ̸= 0 is called a valuation on L.

Example 3.1. Let L = {0, a, b, c, 1}, where 0 < a < b < c < 1. Define ′ and → as

follows:

x x′

0 1

a c

b b

c a

1 0

→ 0 a b c 1

0 1 1 1 1 1

a c 1 1 1 1

b b b 1 1 1

c a a b 1 1

1 0 a b c 1

Then (L,∧,∨,′ ,→) is an R0-algebra. Define two real-valued functions φ1 and

φ2 on L by

φ1 =

(
0 a b c 1

2 0 0 0 0

)
and φ2 =

(
0 a b c 1

1 1 1 0 0

)
.

Then φ1 and φ2 are two pseudo-valuations on L.

Proposition 3.1. For any pseudo-valuation φ on L, then

(1) φ is order reversing.

(2) ∀x ∈ L,φ(x) ≥ 0.

(3) ∀x, y ∈ L,φ(x → y) ≤ φ(y).

Proof. (1) Let x, y ∈ L be such that x ≤ y, then x → y = 1, and so

φ(y) ≤ φ(x → y) + φ(x) = φ(1) + φ(x) = 0 + φ(x) = φ(x).

(2) Putting y = 1 in (pv2), we have

0 = φ(1) ≤ φ(x → 1) + φ(x) = φ(x).

(3) By (a2), y ≤ x → y. Thus, from (1), we have φ(x → y) ≤ φ(y). �

Theorem 3.1. If φ is a pseudo-valuation on L, then for all x, y, z ∈ L, we have

(pv4) x → (y → z) = 1 ⇒ φ(z) ≤ φ(x) + φ(y).

Proof. Let φ be a pseudo-valuation on L, then by (pv2), we have

φ(z) ≤ φ(y) + φ(y → z)

and

φ(y → z) ≤ φ(x → (y → z)) + φ(x).

If x → (y → z) = 1, then

φ(y → z) ≤ φ(1) + φ(x) = φ(x).

Hence, φ(z) ≤ φ(y) + φ(y → z) ≤ φ(y) + φ(x). �
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Theorem 3.2. Let φ be a real-valued function. Then φ is pseudo-valuation on L if

and only if it satisfies the conditions (pv1) and (pv4).

Proof. Since (x → y) → (x → y) = 1, then by (pv4), we have φ(y) ≤ φ(x →
y) + φ(x). This proves that (pv2) holds. Hence φ is a pseudo-valuation on L.

Conversely, if φ is a pseudo-valuation on L, then from Definition 3.1 and

Theorem 3.1, we know (pv1) and (pv4) hold. �

Since (x⊙y) → z = x → (y → z), the following are consequences of Theorems

3.1 and 3.1.

Theorem 3.3. Let φ be a real-valued function on L, then φ is pseudo-valuation on

L if and only if it satisfies the conditions (pv1) and

(pv5) ∀x, y, z ∈ L, x⊙ y ≤ z ⇒ φ(z) ≤ φ(x) + φ(y).

Corollary 3.1. If φ is a pseudo-valuation on L, then for all x, y ∈ L, we have

(pv6) φ(x⊙ y) ≤ φ(x) + φ(y).

(pv7) φ(x ∧ y) ≤ φ(x) + φ(y).

Theorem 3.4. Every pseudo-valuation on L satisfies:

(pv8) ∀x, y, z ∈ L,φ(x → (y → z)) ≤ φ((x → y) → z).

(pv9) ∀x, y, z ∈ L,φ(x → z) ≤ φ((x → y) + φ(y → z).

Proof. For any x, y, z ∈ L, then by (a2) and (a15),

1 = y → (x → y) ≤ ((x → y) → z) → (y → z),

and so

(x → y) → z ≤ y → z.

Thus

φ(y → z) ≤ φ((x → y) → z).

Since y → z ≤ x → (y → z), we have

φ(x → (y → z)) ≤ φ(y → z) ≤ φ((y → z) → z).

Thus, (pv8) holds.

Since (x → y)⊙ (y → z) ≤ x → z by (a16), it follows from (pv6) that

φ(x → z) ≤ φ((x → y)⊙ ((y → z)) ≤ φ(x → y) + φ(y → z).

Thus (pv9) holds. �

Theorem 3.5. If φ is a pseudo-valuation on L, then the set F = {x ∈ L|φ(x) = 0}
is a filter of L.

Proof. Since φ(1) = 0, we have 1 ∈ F. Let x, y ∈ L be such that x → y ∈ L and

x ∈ L, then φ(x → y) = 0 and φ(x) = 0. Then φ(y) ≤ φ(x → y) + φ(x) = 0, and so

φ(y) = 0, that is, y ∈ F. Hence, F is a filter of L. �

The following example shows that the converse of Theorem 3.5 may not be

true.
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Example 3.2. Consider an R0-algebra L as in Example 3.1. Define a real-valued

function φ on L by

φ =

(
0 a b c 1

2 1 1 0 0

)
.

Then F = {x ∈ L|φ(x) = 0} = {1, c} is a filter of L, but φ is not a pseudo-valuation

on L since φ(0) = 2 
 φ(a → 0) + φ(a) = φ(c) + φ(a) = 1.

4. Implicative pseudo-valuations

Definition 4.1. A real-valued function φ on L is called an implicative pseudo-

valuation on L if it satisfies (pv1) and

(pv10) ∀x, y, z ∈ L,φ(x → z) ≤ φ(x → (y → z)) + φ(x → y).

Example 4.1. Let L = {0, a, b, c, d, 1}, where 0 < a < b < c < d < 1. Define ′ and

→ as follows:

x x′

0 1

a d

b c

c b

d a

1 0

→ 0 a b c d 1

0 1 1 1 1 1 1

a d 1 1 1 1 1

b c c 1 1 1 1

c b b b 1 1 1

d a a b c 1 1

1 0 a b c d 1

Define a real-valued function φ on L by

φ =

(
0 a b c d 1

1 1 1 0 0 0

)
.

Then φ is a pseudo-valuation on L.

The following proposition is obvious and we omit the proof.

Proposition 4.1. Every implicative pseudo-valuation on L is a pseudo-valuation

on L.

The converse of Proposition 4.1 may not be true. In fact, let φ1 be a pseudo-

valuation on L in Example 3.2. We know that φ1 is a pseudo-valuation on L, but

it is not an implicative pseudo-valuation on L since 2 = φ1(1 → 0) � φ1(1 → (a →
0)) + φ1(1 → a) = 0.

Now, we mainly investigate the characterizations of pseudo-valuations of R0-

algebras.

Theorem 4.1. Let φ be a pseudo-valuation on L, then φ is an implicative pseudo-

valuation on L if and only if for all x, y, z ∈ L, it satisfies:

(pv11) φ(x → z) ≤ φ(x → (z′ → y)) + φ(y → z).
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Proof. Assume that φ is an implicative pseudo-valuation on L. For any x, y, z ∈ L,

we have

(φ(x → z) = φ(z′ → x′) (by R1)

≤ φ(z′ → (y′ → x′)) + φ(z′ → y′) (by pv10)

= φ(x → (z′ → y)) + φ(y → z) (by R4 and R1).

Thus, (pv11) holds.

Conversely, assume that φ is an implicative pseudo-valuation on L satisfies

(pv11). Then

φ(x → z) = φ(z′ → x′)

≤ φ(z′ → (x′′ → y′)) + φ(y′ → x′)

= φ(x → (y → z)) + φ(x → y).

Thus, (pv10) holds, and so φ is an implicative pseudo-valuation on L. �

Theorem 4.2. Let φ be a pseudo-valuation on L. Then the following are equivalent:

(1) φ is an implicative pseudo-valuation on L;

(2) ∀x, z ∈ L,φ(x → z) ≤ φ(x → (z′ → z));

(3) ∀x, y, z ∈ L,φ(x → z) ≤ φ(y → (x → (z′ → z))) + φ(y).

Proof. (1) ⇒ (2). Assume that φ is an implicative pseudo-valuation on L. Putting

y = z in (pv11), we have

φ(x → z) = φ(x → (z′ + z)) + φ(z → z)

= φ(x → (z′ → z)) + φ(1)

= φ(x → (z′ → z)).

(2) ⇒ (3). For any x, y, z ∈ L, we have

φ(x → (z′ → z)) ≤ φ(y → (x → (z′ → z))) + φ(y).

Using (2), we obtain

φ(x → z) = φ(x → (z′ → z))

= φ(y → (x → (z′ → z))) + φ(y).

(3) ⇒ (1). Let φ be a pseudo-valuation on L satisfies the condition (3). Then by

Theorem 3.8 (pv9), we have

φ(x⊙ z′ → z) ≤ φ(x⊙ z′ → y) + φ(y → z).

By (a11), we have

φ(x → (z′ → z)) ≤ φ(x⊙ z′ → y) + φ(y → z).
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Putting y = 1 in (3), we have

φ(x → z) ≤ φ(1 → (x → (z′ → z))) + φ(1)

= φ(x → (z′ → z))

≤ φ(x → (z′ → y)) + φ(y → z).

Thus, (pv11) holds. It follows from Theorem 4.1 that φ is an implicative pseudo-

valuation on L. �

Theorem 4.3. Let φ be a pseudo-valuation on L. Then the following are equivalent:

(1) φ is an implicative pseudo-valuation on L;

(2) ∀x ∈ L,φ(x) ≤ φ(x′ → x);

(3) ∀x, y, z ∈ L,φ(x) ≤ φ((x → y) → x);

(4) ∀x, y, z ∈ L,φ(x) ≤ φ(z → ((x → y) → x)) + φ(z).

Proof. (1) ⇒ (2). From Theorem 4.2(2), we have

φ(x) = φ(1 → x) ≤ φ(1 → (x′ → x)) = φ(x′ → x).

(2) ⇒ (3). Since x′ ≤ x → y by (a6), we have

(x → y) → x ≤ x′ → x

from (a5). Since φ is a pseudo-valuation on L, we have

φ(x′ → x) ≤ φ((x → y) → x)

by Proposition 3.1(1). Thus, from (2), we deduce that

φ(x) ≤ φ(x′ → x) ≤ φ((x → y) → x).

Hence (3) holds.

(3) ⇒ (4). Since φ is a pseudo-valuation on L, we have

φ((x → y) → x) ≤ φ(z → ((x → y) → x)) + φ(z).

Thus (4) holds.

(4) ⇒ (1). Since z ≤ x → z by (a2), we have (x → z)′ ≤ z′ and z′ → (x →
z) ≤ (x → z)′ → (x → z). Thus, φ((x → z)′ → (x → z)) ≤ φ(z′ → (x → z)).

It follows from (4) that

φ(x → z) ≤ φ(1 → (((x → z) → 0) → (x → z))) + φ(1)

= φ((x → z)′ → (x → z))

≤ φ(z′ → (x → z)).

Thus, from Theorem 4.2(2), φ is an implicative pseudo-valuation on L. �

Definition 4.2. A pseudo-valuation φ on L is called Boolean if it satisfies:

(pv12) ∀x ∈ L,φ(x ∨ x′) = 0.

Theorem 4.4. A pseudo-valuation φ on L is Boolean if and only if it implicative.
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Proof. Assume that φ is an implicative pseudo-valuation on L. Since

x′ → (((x′ → x) → x) → (x′ → x)′) = ((x′ → x) → x) → ((x → x) → x) = 1

and

x′ → ((x′ → x) → x) = 1,

we have

φ((x′ → x) → x) = φ(x′ → (x′ → x)′)

≤ φ(x′ → (((x′ → x) → x) → (x′ − x)′)) + φ(x′ → ((x′ → x) → x))

= φ(1) + φ(1) = 0,

that is, φ((x′ → x) → x) = 0 by Proposition 3.3(2).

Similarly, we can obtain φ((x → x′) → x′) = 0. Thus, by (a8) and (pv7), we

have

φ(x ∨ x′) = φ(((x′ → x) → x) ∧ ((x → x′) → x′))

≤ φ((x′ → x) → x) + φ((x → x′) → x′)

= 0,

and so φ(x ∨ x′) = 0. Thus, φ is a Boolean pseudo-valuation on L.

Conversely, let φ be a Boolean pseudo-valuation on L. Then

φ(x → y) ≤ φ((y ∨ y′) → (x → y)) + φ(y ∨ y′)

= φ((y ∨ y′) → (x → y))

= φ((y → (x → y)) ∧ (y′ → (x → y)))

≤ φ(y → (x → y)) + φ(y′ → (x → y))

= φ(1) + φ(y′ → (x → y))

= φ(y′ → (x → y)).

Thus, from Theorem 4.2(2), φ is an implicative pseudo-valuation on L. �

Similar to Theorem 3.5, we can obtain:

Theorem 4.5. If φ is an implicative pseudo-valuation on L, then the set F = {x ∈
L|φ(x) = 0} is an implicative filter of L.

The following example shows that the converse of Theorem 4.5 may not be

true.

Example 4.2. Consider an R0-algebra L as in Example 4.1. Define a real-valued

function φ on L by

φ =

(
0 a b c d 1

2 1 1 0 0 0

)
.

Then F = {x ∈ L|φ(x) = 0} = {1, c, d} is an implicative filter of L, but φ is not

an implicative pseudo-valuation on L since 2 = φ(1 → 0) � 1 = φ(1 → (a →
0)) + φ(1 → a).
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5. Pseudo-metric spaces

By a pseudo-metric space we mean an ordered pair (M,d), where M is a

non-empty set and d : M × M → R is a positive function such that the following

hold:

(1) d(x, x) = 0,

(2) d(x, y) = d(y, x),

(3) d(x, z) ≤ d(x, y) + d(y, z)

for all x, y, z ∈ M.

If in (M,d), d(x, y) = 0 ⇒ x = y, then (M,d) is called a metric space.

For a real-valued function φ on L, define a mapping dφ : L× L → R by

dφ(x, y) = φ(x → y) + φ(y → x)

for all (x, y) ∈ L× L.

We say dφ is the pseudo-metric introduced by pseudo-valuation φ.

Theorem 5.1. If a real-valued function φ on L is a pseudo-valuation on L, then

dφ is a pseudo-metric on L, and so (L, dφ) is a pseudo-metric space.

Proof. For any x ∈ L, dφ(x, x) = φ(x → x) + φ(x → x) = 0. It is clear that

dφ(x, y) = dφ(y, x). Let x, y, z ∈ L. By Theorem 3.8 (pv9), we have

dφ(x, y) + dφ(y, z) = (φ(x → y) + φ(y → x)) + (φ(y → z) + φ(z → y))

= (φ(x → y) + φ(y → z)) + (φ(z → y) + φ(y → x))

≥ φ(x → z) + φ(z → x)

= dφ(x, z).

Thus, (L, dφ) is a pseudo-metric space. �

Theorem 5.2. If φ : L → R is a valuation on L, then (L, dφ) is a metric space.

Proof. By Theorem 5.1, (L, dφ) is a pseudo-metric space. Let x, y ∈ L be such that

dφ(x, y) = 0. Then 0 = dφ(x, y) = φ(x → y) + φ(y → x), and so φ(x → y) = φ(y →
x) = 0. Since φ is a valuation on L, then x → y = y → x = 1. By (a1), we have

x = y. Hence (L, dφ) is a metric space. �

Proposition 5.1. Every pseudo-metric dφ induced by pseudo-valuation φ on L

satisfies:

(1) dφ(x, y) ≥ dφ(x → a, y → a),

(2) dφ(x, y) ≥ dφ(a → x, a → y),

(3) dφ(x → y, a → b) ≤ dφ(x → y, a → y) + dφ(a → y, a → b)

for all x, y, a, b ∈ L.

Proof. (1) Let x, y, a ∈ L. By (a15), (x → y) → ((y → a) → (x → a)) = 1 and

(y → x) → ((x → a) → (y → a)) = 1. Hence, by Proposition 3.1(1), we have
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φ(x → y) ≥ φ((y → a) → (x → a)) and φ(y → x) ≥ φ((x → a) → (y → a)). Thus,

dφ(x, y) = φ(x → y) + φ(y → x)

≥ φ((y → a) → (x → a)) + φ((x → a) → (y → a))

= dφ(x → a, y → a).

(2) is similar to (1).

(3) By Theorem 3.4(pv9), we have

φ((x → y) → (a → b)) ≤ φ((x → y) → (a → y)) + φ((a → y) → (a → b))

and φ((a → b) → (x → y)) ≤ φ((a → b) → (a → y))+φ((a → y) → (x → y)).

Thus, we have

dφ(x → y, a → b) = φ((x → y) → (a → b)) + φ((a → b) → (x → y))

≤ (φ((x → y) → (a → y)) + φ((a → y) → (a → b)))

+ (φ((a → b) → (a → y)) + φ((a → y) → (x → y)))

= (φ((x → y) → (a → y)) + φ((a → y) → (x → y)))

+ (φ((a → y) → (a → b)) + φ((a → b) → (a → y)))

= dφ(x → y, a → y) + dφ(a → y, a → b).

�

Theorem 5.3. For a real-valued function φ on L, if dφ is a pseudo-metric on L, then

(L×L, d∗φ) is a pseudo-metric space, where d∗φ((x, y), (a, b)) = max{dφ(x, a), dφ(y, b)}
for all (x, y), (a, b) ∈ L× L.

Proof. Let dφ be a pseudo-metric on L. For any (x, y), (a, b) ∈ L× L, we have

(1) d∗φ((x, y), (x, y)) = max{dφ(x, x), dφ(y, y)} = 0.

(2) d∗φ((x, y), (a, b)) = max{dφ(x, a), dφ(y, b)} = max{dφ(a, x), dφ(b, y)} =

d∗φ((a, b), (x, y)).

(3) Let (x, y), (a, b), (u, v) ∈ L× L.

Then we have

d∗φ((x, y), (u, v)) + d∗φ((u, v), (a, b)) = max{dφ(x, u), dφ(y, v)}+max{dφ(u, a), dφ(v, b)}
≥ max{dφ(x, u) + dφ(u, a), dφ(y, v), dφ(v, b)}
≥ max{dφ(x, a), dφ(y, b)}
= d∗φ((x, y), (a, b)).

Hence (L× L, d∗φ) is a pseudo-metric space. �

Corollary 5.1. If φ : L → R is a pseudo-valuation on L, then (L × L, d∗φ) is a

pseudo-metric space.

Theorem 5.4. If φ : L → R is a valuation on L, then (L×L, d∗φ) is a metric space.
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Proof. By Corollary 5.1, (L×L, d∗φ) is a pseudo-metric space. For any (x, y), (a, b) ∈
L×L such that d∗φ((x, y), (a, b)) = 0. Then 0 = d∗φ((x, y), (a, b)) = max{dφ(x, a), dφ(y, b)},
and so dφ(x, a) = dφ(y, b) = 0. Hence

0 = dφ(x, a) = φ(x → a) + φ(a → x)

and

0 = dφ(y, b) = φ(y → b) + φ(b → y).

Thus, φ(x → a) = φ(a → x) = 0 and φ(y → b) = φ(b → y) = 0. Thus, x → a =

a → x = 1 and y → b = b → y = 1, that is, x = a and y = b, and so (x, y) = (a, b).

Hence (L× L, d∗φ) is a metric space. �

Theorem 5.5. If φ is a valuation on L, then the operation ∗ in L is uniformly

continuous.

Proof. For any ε > 0, if d∗φ(x, y), (a, b)) <
ε
2 , then d∗φ(x, a) <

ε
2 and d∗φ(y, b) <

ε
2 . By

Proposition 5.1, we have

dφ(x → y, a → b) ≤ dφ(x → y, a → y) + dφ(a → y, a → b)

≤ ε

2
+

ε

2
= ε.

Then ∗ : L× L → L is uniformly continuous. �

6. Conclusions

In this paper, we introduce the concepts of (implicative) pseudo-valuations on

R0-algebras and investigate some related characterizations. Finally, we prove that

the binary operation in R0-algebras is uniformly continuous based on the notion of

pseudo-valuations.

Based on these results, we will consider some its applications to knowledge-

based information systems in the future.
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