U.P.B. Sci. Bull., Series A, Vol. 75, Iss. 4, 2013 ISSN 1223-7027

(IMPLICATIVE) PSEUDO-VALUATIONS ON Ry-ALGEBRAS

Jianming Zhan', Young Bae Jun?

The concepts of (implicative) pseudo-valuations on Ro-algebras are in-
troduced and some related characterizations are investigated. The relationship
between a pseudo-valuation and an tmplicative pseudo-valuation is provided. In
particular, we show that a pseudo-valuation on Ro-algebras is Boolean if and only
if it is implicative. Finally, we prove that the binary operation in Ro-algebras is
uniformly continuous based on the notion of pseudo-valuations.
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1. Introduction

The concept of Rp-algebras was first introduced by Wang in [7] by providing an
algebraic proof of the completeness theorem of a formal deductive system. Further,
Pei [6] proved N M-algebras are categorically isomorphic to Ry-algebras. From [6, 7],
we can find some concrete applications of Ry-algebras. In 2008, Iorgulescu published
a book Algebras of logic as BCK-algebras. In this book, she introduced some logical
algebras and obtained some important results.

Busneag [2] defined a pseudo-valuation on a Hilbert algebra, and proved that
every pseudo-valuation induces a pseudo metric on a Hilbert algebra. Also, Bus-
neag [3] provided several theorems on extensions of pseudo-valuations. Busneag [1]
introduced the notions of pseudo-valuations (valuations) on residuated lattices, and
proved some theorems of extension for these (using the model of Hilbert algebras[3]).

In this paper, we introduce the concepts of (implicative) pseudo-valuations
on Rp-algebras and investigate some related characterizations. The relationship
between a pseudo-valuation and an implicative pseudo-valuation is provided. In
particular, we show that a pseudo-valuation on Ry-algebras is Boolean if and only
if it is implicative. Finally, we prove that the binary operation in Ry-algebras is
uniformly continuous based on the notion of pseudo-valuations.

This paper is an application of the concept of (implicative) pseudo-valuations
on Rp-algebras, that is, we discuss a theoretical approach of the algebraic system in
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Ry-algebras by using the notion of (implicative) pseudo-valuations. Many interesting
applications in information and engineering one can find (for example) in [4, 7].

2. Preliminaries

By an Rp-algebra [7], we mean a bounded lattice L = (L,<,A,V,,—,0,1)
which ’ is an order-reversing involution and with a binary operation — such that
the following conditions hold:

Rl) z —y=y — a;

)1 =z =ux
R3) (y—=2)A((z—=y) = (x—2) =y — z;
Rz — (y—=2)=y— (z— 2);
Jx—= (yVz)=(x—y)V(zr—2);
R6) (z = y)V((z —y) = (2’ Vy)) =1
n any Rp-algebra L, the following statements are true (see [6, 7]):
al)z<yszrz—y=1,
a2) x <y —u,
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In what follows, L is an Rgp-algebra unless otherwise specified.

A non-empty subset A of L is called a filter of L if it satisfies the following
conditions: (Al) 1€ A; (A2)Vee A,ye Lz vy A=yec A

Now, we call a non-empty subset A of L an implicative filter if it satisfies (A1)
and (A3) x —» (y > 2) € A, -y € A=z — z € A. Equivalently, a non-empty
subset A of L is an implicative filter of L if and only if it satisfies (A1) and (A4)

- ((y—=2) oy el reA=yec A forall x,y,z € L.

3. Pseudo-valuations
In this section, we introduce the notion of pseudo-valuations on an Ry-algebra.

Definition 3.1. A real-valued function ¢ : L — R, where R is the set of all real
numbers, is called an pseudo-valuation on L if for all x,y € L,
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(pvl) ¢(1) =0,

(pv2) @(y) < oz = y) + o(x).

A pseudo-valuation ¢ on L satisfies the following:

(pv3) Vo € L,z # 1 — ¢(x) # 0 is called a valuation on L.

Example 3.1. Let L = {0,a,b,c,1}, where 0 < a < b < ¢ < 1. Define’ and — as
follows:

x|z —10 a b ¢ 1
0] 1 0l1 1 1 1 1
al| c alc 1 1 1 1
blb b|b b 1 1 1
cl|l a cla a b 1 1
1|0 110 a b ¢ 1

Then (L,A,V," ,—) is an Rg-algebra. Define two real-valued functions ¢1 and
w2 on L by
0 a b c 1
L ( 2.0 00 0)
andcp2:<0 a b c 1>.
11100
Then @1 and @2 are two pseudo-valuations on L.

Proposition 3.1. For any pseudo-valuation ¢ on L, then
(1) ¢ is order reversing.
(2)Vx € L,p(x) > 0.
(3) Yo,y € L,p(z = y) < o(y).

Proof. (1) Let z,y € L be such that x < y, then z — y = 1, and so
e(y) < p(z = y) + (@) = o(1) + o(z) = 0+ @) = ¢(z).
(2) Putting y = 1 in (pv2), we have
0=¢(1) <p(z—=1)+p) = @)
(3) By (a2), y < x — y. Thus, from (1), we have p(z — y) < ¢(y). O
Theorem 3.1. If ¢ is a pseudo-valuation on L, then for oll x,y,z € L, we have
(pvd) == (y = 2) = 1= ¢(2) < p(z) + ¢(y).
Proof. Let ¢ be a pseudo-valuation on L, then by (pv2), we have
o(z) < @(y) + oy = 2)
and
ply = 2) <plz = (y = 2)) + @(x).
If x —» (y — 2z) =1, then
ey = 2) < (1) + p(z) = ().
Hence, ¢(z) < o(y) + 0(y — 2) < ¢(y) + ¢(). O
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Theorem 3.2. Let ¢ be a real-valued function. Then ¢ is pseudo-valuation on L if
and only if it satisfies the conditions (pvl) and (pv4).

Proof. Since (z — y) — (v — y) = 1, then by (pv4), we have p(y) < oz —

y) + ¢(x). This proves that (pv2) holds. Hence ¢ is a pseudo-valuation on L.
Conversely, if ¢ is a pseudo-valuation on L, then from Definition 3.1 and

Theorem 3.1, we know (pvl) and (pv4) hold. O

Since (x®y) — z =z — (y — 2), the following are consequences of Theorems
3.1 and 3.1.

Theorem 3.3. Let ¢ be a real-valued function on L, then ¢ is pseudo-valuation on
L if and only if it satisfies the conditions (pvl) and
(pv5) Va,y,z € Lz Oy <z = ¢(2) < o(x) + ¢ (y).

Corollary 3.1. If ¢ is a pseudo-valuation on L, then for all x,y € L, we have
(pv6) (z©y) < p(z) +o(y).
(pv7) ez Ay) <o) + o(y).

Theorem 3.4. Every pseudo-valuation on L satisfies:
(pv8) Vz,y,z € Lyp(x — (y = 2)) < p((xz = y) — 2).
(pv9) Va,y,z € Lo(z = 2) <oz = y) + ¢(y — 2).

Proof. For any x,y,z € L, then by (a2) and (al5),

l=y—=@—=y <(z—=y =2 =@y —2),
and so

(r—=y) —-2<y—z
Thus
Py = 2) <oz = y) = 2).

Since y - z <z — (y — z), we have

plz = (y—=2) <ply—=2) <oy = 2) = 2).
Thus, (pv8) holds.

Since (x — y) ® (y = 2) <z — z by (al6), it follows from (pv6) that
plz = 2) <p((z=y) 0 ((y = 2) <plr = y) +ely = 2)

Thus (pv9) holds. O

Theorem 3.5. If ¢ is a pseudo-valuation on L, then the set F' = {x € L|p(x) = 0}
1s a filter of L.

Proof. Since ¢(1) = 0, we have 1 € F. Let z,y € L be such that + — y € L and
x € L, then p(x — y) = 0 and ¢(x) = 0. Then ¢(y) < p(xr — y) + ¢(z) =0, and so
©(y) = 0, that is, y € F. Hence, F is a filter of L. O

The following example shows that the converse of Theorem 3.5 may not be
true.
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Example 3.2. Consider an Rg-algebra L as in Example 3.1. Define a real-valued
function ¢ on L by
(0 a b c 1
=\ 21 100)

Then F = {x € L|p(x) = 0} = {1, ¢} is a filter of L, but ¢ is not a pseudo-valuation
on L since p(0) =2 £ p(a — 0) + p(a) = p(c) + pla) = 1.

4. Implicative pseudo-valuations

Definition 4.1. A real-valued function ¢ on L is called an implicative pseudo-
valuation on L if it satisfies (pvl) and
(pv10) Va,y,z € L, o(z — 2) < p(z = (y = 2)) + ¢z — y).

Example 4.1. Let L = {0,a,b,¢,d, 1}, where 0 < a < b < ¢ < d < 1. Define ' and
— as follows:

x| x —10 a b ¢c d 1
0] 1 011 1 11 1 1
ald al|d 1 1 1 1 1
bl c blc ¢ 1 1 1 1
cl| b c|lb b b 1 1 1
d| a d|la a b ¢ 1 1
110 110 a b ¢ d 1

Define a real-valued function ¢ on L by
(0 a b c d1l
“\111000)
Then ¢ s a pseudo-valuation on L.

The following proposition is obvious and we omit the proof.

Proposition 4.1. Every implicative pseudo-valuation on L is a pseudo-valuation
on L.

The converse of Proposition 4.1 may not be true. In fact, let 1 be a pseudo-
valuation on L in Example 3.2. We know that ¢ is a pseudo-valuation on L, but
it is not an implicative pseudo-valuation on L since 2 = ¢1(1 — 0) £ ¢1(1 = (a —
0)) + (,01(1 — a) =0.

Now, we mainly investigate the characterizations of pseudo-valuations of Rg-
algebras.

Theorem 4.1. Let ¢ be a pseudo-valuation on L, then v is an implicative pseudo-
valuation on L if and only if for all x,y,z € L, it satisfies:
(pv1l) oz = 2) <oz = (' =) + oy = 2).
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Proof. Assume that ¢ is an implicative pseudo-valuation on L. For any z,y,z € L,
we have

(p(z = 2) = (2 = ) (by R1)
<l = =)+l —y) (by pvl0)
=px— (Z—=y)+ely—=2) (by R4 and R1).
Thus, (pvll) holds.
Conversely, assume that ¢ is an implicative pseudo-valuation on L satisfies
(pvll). Then
plz = 2) = (2 = 2')
<pz' = (@ = y) + ey — )
=y (y = 2)) ol —y).

Thus, (pv10) holds, and so ¢ is an implicative pseudo-valuation on L. ]

Theorem 4.2. Let ¢ be a pseudo-valuation on L. Then the following are equivalent:
(1) ¢ is an implicative pseudo-valuation on L;
(2) Ve,z€ Lyp(x — z) < p(x — (2 = 2));
(8) Vo,y,z € Lyp(x = 2) < p(y = (x = (2 = 2))) + o(y).

Proof. (1) = (2). Assume that ¢ is an implicative pseudo-valuation on L. Putting
y =z in (pvll), we have

or —2)=px— (' +2) +o(z = 2)
= ¢( (2 = 2)) + (1)
=y

( (' — 2)).

(2) = (3). For any z,y, z € L, we have

T —r
T —r

plz = (7' = 2)) Sy = (z = (2 = 2)) + ey).
Using (2), we obtain

olr = 2)=px— (2 = 2)
=y = (= (¢ = 2))) + o(y).

(3) = (1). Let ¢ be a pseudo-valuation on L satisfies the condition (3). Then by
Theorem 3.8 (pv9), we have

P02 =2) <2 =y)+ ey — 2).
By (all), we have

oz = (2 = 2) <o =y)+oly—2).
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Putting y = 1 in (3), we have
p(x—2) <ol = (z— (2 = 2) + (1)
=p(x — (' = 2))
<ol = (2 = y) +oly = 2).

Thus, (pvll) holds. It follows from Theorem 4.1 that ¢ is an implicative pseudo-
valuation on L. g

Theorem 4.3. Let p be a pseudo-valuation on L. Then the following are equivalent:
(1) ¢ is an implicative pseudo-valuation on L;
(2) Yz € L,p(x) < p(a’ — x);
(3) Vx,y,z € L,p(x) < o((x = y) = x);
(4) Vo,y,z € Lp(x) < o(z = ((z = y) = 7)) + ¢(2).

Proof. (1) = (2). From Theorem 4.2(2), we have
p(z) = (1 = 2) Sp(l = (&' = x)) = p(2’ = ).
(2) = (3). Since 2’ <z — y by (a6), we have
(x—y) <2 —x
from (a5). Since ¢ is a pseudo-valuation on L, we have
p(a’ = a) <p((x—=y) =)
by Proposition 3.1(1). Thus, from (2), we deduce that
p(z) <p(a’ = ) < p((x —y) = 2).
Hence (3) holds.
(3) = (4). Since ¢ is a pseudo-valuation on L, we have
p((z = y) = 2) <plz = (&= y) = 2) +¢(2).
Thus (4) holds.
(4) = (1). Since z < x — z by (a2), we have (z — z)’ < 2/ and 2/ — (x —
2) < (z—=2) = (x— 2). Thus, p((z = 2) = (. = 2)) < 2/ = (z = 2)).
It follows from (4) that
plr —2) <l = (((z = 2) =2 0) = (= 2)) + (1)
=o((z—=2) = (z = 2))
<oz = (z = 2)).
Thus, from Theorem 4.2(2), ¢ is an implicative pseudo-valuation on L. U

Definition 4.2. A pseudo-valuation ¢ on L is called Boolean if it satisfies:
(pvl2) Vz € L,p(z VvV 2') = 0.

Theorem 4.4. A pseudo-valuation @ on L is Boolean if and only if it implicative.
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Proof. Assume that ¢ is an implicative pseudo-valuation on L. Since
= (=)= 2)> @ —2))=(( -2)>2)=(r—2)—12)=1
and
= (@ —x)—>x)=1,
we have
(' > 3) = ) = 9@ = (@ = 2))
< pa’ > (@' = 7) > 2) = (@ — )) + (@’ > (2 = ) > 2))
=¢(1) +¢(1) =0,

that is, ¢((z’ = x) = x) = 0 by Proposition 3.3(2).

Similarly, we can obtain ¢((x — ') — 2/) = 0. Thus, by (a8) and (pv7), we

have
olavar)=p((z/ = z) = 2)A((x —=2) =)
<@ = x)=>2)+e((z—2)— 2
=0,

and so ¢(z V 2') = 0. Thus, ¢ is a Boolean pseudo-valuation on L.
Conversely, let ¢ be a Boolean pseudo-valuation on L. Then

o=y <e(lyVvy) = (@ —=y)+elyVy)
=o(lyvy) = (=)
=o(ly=>@=y) AW = (=)
<ely—(z—=y)+el = (@ —y)
=)+ oy = (x =)
= o = (=)
Thus, from Theorem 4.2(2), ¢ is an implicative pseudo-valuation on L. O

Similar to Theorem 3.5, we can obtain:

Theorem 4.5. If ¢ is an implicative pseudo-valuation on L, then the set F' = {x €
L|p(x) = 0} is an implicative filter of L.

The following example shows that the converse of Theorem 4.5 may not be
true.

Example 4.2. Consider an Rg-algebra L as in Example 4.1. Define a real-valued
function ¢ on L by
(0 a b c d 1
i ( 211000 ) '

Then F = {x € L|p(x) = 0} = {1,¢,d} is an implicative filter of L, but ¢ is not
an implicative pseudo-valuation on L since 2 = (1 — 0) £ 1 = ¢(1 = (a —
0)) + ¢(1 — a).
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5. Pseudo-metric spaces

By a pseudo-metric space we mean an ordered pair (M,d), where M is a
non-empty set and d : M x M — R is a positive function such that the following
hold:

(1) d(z, )
(2) d(z,y) =
(3) dle,2) <
for all z,y,z € M.

If in (M,d),d(z,y) = 0= x =y, then (M,d) is called a metric space.

For a real-valued function ¢ on L, define a mapping d, : L X L — R by

07
d(y,z),
d(z,y) +d(y, 2)

do(z,y) = p(x = y) + oy — 2)

for all (z,y) € L x L.
We say d, is the pseudo-metric introduced by pseudo-valuation ¢.

Theorem 5.1. If a real-valued function ¢ on L is a pseudo-valuation on L, then
dy is a pseudo-metric on L, and so (L,dy) is a pseudo-metric space.

Proof. For any = € L,dy,(x,z) = ¢(z = z) + ¢(x — z) = 0. It is clear that
dy(x,y) = dy(y,x). Let x,y,2 € L. By Theorem 3.8 (pv9), we have

cuaw+%@,) ox = y)+ ey — )+ (p(y = 2) +0(z = y))

olx = y)+ely —2) + ez = y) +ply — )

Thus, (L,d,) is a pseudo-metric space. ]
Theorem 5.2. If ¢ : L — R is a valuation on L, then (L,d,) is a metric space.

Proof. By Theorem 5.1, (L,d,) is a pseudo-metric space. Let ,y € L be such that
dy(x,y) = 0. Then 0 = dy(z,y) = (x = y) + ¢(y — =), and so p(z — y) = (y —
x) = 0. Since ¢ is a valuation on L, then x — y = y — = = 1. By (al), we have
x =y. Hence (L,d,) is a metric space. O

Proposition 5.1. Every pseudo-metric d, induced by pseudo-valuation ¢ on L
satisfies:
(1) dy(z,y) = dp(x — a,y — a),
(2) dp(z,y) = dp(a = x,a = y),
(3) dy(z = y,a—b) <dy(z—y,a—y)+ds(a—y,a—D)
for all x,y,a,b € L.

Proof. (1) Let x,y,a € L. By (al5), (x - y) - ((y » a) = (z — a)) = 1 and
(y - z) - ((x - a) - (y = a)) = 1. Hence, by Proposition 3.1(1), we have
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oz = y) > e((y —a) = (x —a)) and p(y = x) > ¢((r = a) = (y — a)). Thus,

do(z,y) = p(x = y) + p(y — )
> oy —a) = (x—a)) +e((x—a) = (y = a))
=dy(x = a,y — a).

(2) is similar to (1).

(3) By Theorem 3.4(pv9), we have

(= ) = (a > ) < pl(z = 1) > (0= ) + 9l = y) > (@ — b))
and @((a — b) > (= > ) < pl((a = b) = (a = 1)) +p((a = y) > (@ - y).
Thus, we have

dp(z = y,a =) =p((x = y) = (@ = b)) +¢((@a—=b) = (z—y))
<(p((z = y) = (@a—=y) +e(la—y) = (a—1)))
+ (p((@—=b) = (a—=y)) +e((a—=y) = (z—y)))
= (p((z = y) = (a—=y) +p(l@—y) = (z—y)))
+ (p((@a—=y) = (a—= b)) +((a—b) = (a—y)))

=dy(x = y,a = y) +dy(a—y,a—Db).
O

Theorem 5.3. For a real-valued function ¢ on L, if d, is a pseudo-metric on L, then
(LxL,d}) is a pseudo-metric space, where d,((z,y), (a,b)) = max{dy(z,a),dy(y,b)}
for all (x,y), (a,b) € L X L.

Proof. Let d, be a pseudo-metric on L. For any (z,y), (a,b) € L x L, we have
(1) di((z,y), (x,y)) = max{dy(z, z),dy(y,y)} = 0.
(2) di((z,9),(a,b)) = max{dy(z,a),dy(y,b)} = max{d,(a,z),dy(b,y)} =

dy((a,b), (z,y)).
(3) Let (z,y),(a,b),(u,v) € L x L.
Then we have

di((z,y), (u,v)) + d5((u,v), (a, b)) = max{d,(z,u), d,(y,v) } + max{dy(u,a),d,(v,b)}
> max{dy(z,u) + dy(u,a),d,(y,v),d,(v,b)}
> max{dy(z,a),d,(y,b)}
= d;((z,y), (a,0)).

Hence (L x L,d,) is a pseudo-metric space. O

Corollary 5.1. If p : L — R is a pseudo-valuation on L, then (L x L,d}) is a
pseudo-metric space.

Theorem 5.4. If ¢ : L — R is a valuation on L, then (L x L, d:';) 18 a metric space.
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Proof. By Corollary 5.1, (L x L, d,) is a pseudo-metric space. For any (z,y), (a,b) €
Lx L such that d3,((,y), (a,b)) = 0. Then 0 = di,((z, y), (a,b)) = max{d,(z,a),dy(y,b)},
and so dy(x,a) = dy(y,b) = 0. Hence

0=dy(z,a) =p(x = a)+¢(a = x)
and

0=dy(y,b) = w(y — b) + (b —y).

Thus, p(z = a) = p(a - ) =0 and p(y = b) = (b — y) = 0. Thus, z = a =
a—x=1landy >b=>b—y=1, that is, z = a and y = b, and so (x,y) = (a,b).
Hence (L x L,d,) is a metric space. O

Theorem 5.5. If ¢ is a valuation on L, then the operation * in L is uniformly
continuous.

Proof. For any € > 0, if d,(,y), (a,b)) < 5, then d,(x,a) < § and d,(y,b) < 5. By
Proposition 5.1, we have

do(z = y,a = b) < dy(z — y,a = y)+dy(a —y,a—D)
€
2

IN

+ - =c.

£
2

Then * : L x L — L is uniformly continuous. g

6. Conclusions

In this paper, we introduce the concepts of (implicative) pseudo-valuations on
Rp-algebras and investigate some related characterizations. Finally, we prove that
the binary operation in Rp-algebras is uniformly continuous based on the notion of
pseudo-valuations.

Based on these results, we will consider some its applications to knowledge-
based information systems in the future.
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