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In the latest years, it has been done a lot of research regarding the depth
estimation of the objects in an image. In autonomous driving, one of the most
important tasks is to estimate the distance to the surrounding cars. This paper
analyzes the state of the art regarding the depth estimation from single and stereo
sources and the datasets that were made for these tasks and proposes a new depth
dataset, recorded with an Intel RealSense depth camera. This dataset is used
together with another dataset made previously in our university in order to compare
one of the most used neural networks for depth prediction from a single camera, for
both full image depth estimation and vehicle-only depth estimation. The results are
computed regarding the Root Mean Square Error (RMSE) and take in account the
time of the day (day, dusk or night), the inference time and the dimension of the
cars.

Keywords: depth estimation, autonomous driving, neural networks, RGB-D
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1. Introduction

Autonomous driving is one of the most challenging tasks in the latest
years, for both practical and theoretical reasons. There are a lot of components
regarding an autonomous car — scene understanding, motion control, path
following, decision making, etc. In our research center at Politehnica University
of Bucharest we aim to make an autonomous car. We begin with the scene
understanding and in our previous studies [1,2] we discussed the object detection
and the semantic segmentation. In each study, we analyzed the most important
works available now and we tested some of the best networks against our datasets,
discussing the results by considering the light (day, dusk or night). This study is
the final one from our scene understanding series and analyzes the depth
estimation task. We made a new depth dataset recorded with an Intel RealSense
depth camera and we tested some of the best networks against it, again regarding
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the time of the day. The biggest challenge is to estimate and compare the depth
maps without having a ground truth. To tackle this task, we tested the networks on
our dataset used for segmentation, varying the ground truth as being the results
obtained by some of the networks tested, knowing from the previous experiments
what are the best networks. For both datasets, we tested the depth for all the pixels
in the image and the depth considering only the surrounding vehicles. In Section
2, we analyze the most important works, we discuss the datasets in Section 3, we
present the experiments in Section 4 and the results in Section 5. The conclusion
is presented in Section 6.

2. Related work

This section will overview the reviews that were made regarding this task,
considering the analysis of the algorithms from the perspective of autonomous
driving and how we compare with them. Also, we describe here the most
important depth estimation architectures. We divided them into two big categories
— depth estimation networks that work with images obtained from stereo cameras
and depth estimation networks that work with images obtained from monocular
cameras. Our experiments only use the second ones, considering that the task of
monocular depth estimation is more complicated and better to resolve regarding
autonomous driving, where you want to minimize the hardware involved in the
processing of the images.

2.1. Depth estimation reviews

Unlike the previous tasks of object detection and segmentation, the depth
estimation has not been reviewed in many papers, because the importance of
object detection and segmentation is bigger. However, there are some articles that
make a survey on the existing architectures. For example, in [3], there is a small
survey on five existing architectures for monocular depth estimation, only briefly
discussing the stereo depth estimation. They present the architectures of the
selected networks, some of their results and some classical dataset, without further
analyzing other factors such as the light or introducing a new dataset. They
compare for supervised network and one unsupervised network. We can see a
new, interesting article at [4]. They divide the depth methods into geometric based
methods, such as Structure from Motion [5], sensor-based methods, such as the
LIDAR, and deep learning methods. They present some of the most important
datasets used in depth, some metrics (including the RMSE which we used in this
paper), and some of the networks that we used. They further divide the monocular
networks into unsupervised, semi-supervised in supervised methods and analyze
some of the most important networks. They consider that the semi-supervised
networks are those that learn from stereo images, but without knowing the ground
truth of the depths, and the unsupervised networks are those that learn from
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monocular sequences, without any information regarding the depth. They evaluate
some of the unsupervised and weakly supervised networks on KITTY and slightly
discuss the time and some application, but no other tests or discussions are made.
In [6] we can see a survey regarding stereo models. They also make a difference
between old methods, based on pixels matching, and deep learning algorithms.
The study offers o comprehensive view regarding depth datasets, they further
divide the stereo methods into 3 categories — depth estimation by stereo matching,
by end-to-end training and multi-view stereo methods. They also test some
inference times, but they don’t offer any results. We can sece another
comprehensive stereo review of older architectures in [7]. Although they present a
lot of networks and architectures, including implementations on dedicated
hardware, they discuss the inference time and results briefly, only presenting
some theoretical aspects regarding the architectures. Our review also offers a new
depth dataset, perform a comparative analysis of some state-of-the-art methods by
considering some of them as ground truth, discusses the datasets by taking the
light into account and offers information regarding the inference time.

2.2. Depth estimation from stereo camera

In this subsection, we analyze the most important works that tackle the
problem of depth estimation given stereo images for the training set with their
corresponding ground truth. We must make the distinction that there are not just
the stereo images, the ground truth is included, that approach will be considered
unsupervised learning and analyzed in the following subsection. Following the
work from [6], we will further present works that try to do stereo matching, end-
to-end training and multi-view stereo estimation.

The older methods did not use deep learning. Although there are not used
anymore, there are worth mentioning because some of the techniques are used in
the deep networks. In [8] the depth is computed from stereo images and
monocular cues also from the images, with a Markov Random Field algorithm. In
[9] we can see a very old approach that tries to make similar values in a disparity
map regarding the same object, which is predicted with a segmentation algorithm.
In [10] they compute the stereo matching in a robot environment, with particle
filtering. In [11] and [12] we can see some implementation of depth estimation in
hardware, with FPGAs.

The most popular approaches in stereo depth estimation are to try to learn
the matching between the two images and to create the disparity map, which is
very similar with the human eye depth perception or to learn the matching in a
pure neural end-to-end approach. In the latest years, the second approach has
increased its popularity due to simplicity. In [13], the authors claim that
monocular depth estimation is not good enough for autonomous driving and they
propose a stereo architecture, which has different layers to compute the left-right
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matching and the right-left matching and uses a semi-supervised loss function,
taking in account both LIDAR ground truth and unsupervised components. Older
approaches using CNNs for matching can be found at [14] and [15], which are
very similar architectures, the first one uses pooling layers and the second one
does not. A more recent network can be seen at [16], which proposes a complex
architecture for stereo matching with multilevel skip connections, another deep
neural network for predicting the confidence of a disparity map and a final
refinement step. Another stereo matching algorithm is [17], which different
approaches for the refinement step and the matching cost, which is computed with
two independent networks with multi-layer pooling modules.

As we said earlier, in the latest years the usage of end-to-end networks
increased. In [18] we can see stereo training using optical flow. They also made a
synthetic dataset for the task. In [19] we can see a CNN for end-to-end training,
with the loss function based on the warping errors. In [20] there is an end-to-end
model based on a CNN architecture combined with conditional random fields
(CRFs). [21] proposes a recurrent model which tries to minimize the left-right
consistency and improve the disparity maps. [22] claims to make stereo end-to-
end training with less memory usage and a wider range of image sizes, by
modifying the hourglass network with a bottleneck matching module. [23]
proposes a new attention mechanism which improves the stereo depth estimation
task. In [24] we can see an anytime model, which produces an initial disparity
map, then refines it, made for mobile devices. In [25] the training process is also
refined with some sparse, cheap, LIDAR sensors. [26] tries a new approach, by
learning a cost volume from the data, then regressing the disparities from it. One
of the newest architectures for this task, MADNet [27], uses a mechanism which
trains independently only portions of the network, combined with a self-adaptive
unsupervised network, which can adapt to any environment.

The last category of stereo networks consists of multi-view stereo training,
which has multiple views of the same objects, to better estimate the 3D model.
We can see this approach in [28], using Conditional Random Fields, which is
based on [29], which makes an initial depth estimation based on features from all
the images, then refines it with the reference image. Also, [30] could be
considered an old multi-view stereo training, because it tries to regress the depth
model based on a small motion clip.

2.3. Depth estimation from monocular camera

In this subsection, we analyze the most recent works regarding the depth
estimation from a monocular camera. We divide the architectures as in [4], given
the training data, in three categories — unsupervised learning, semi-supervised
learning and supervised learning. In our experiments, we used supervised
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learning, having pretrained networks and the ground truth from the RGB-D
camera.

The first models that tried to learn the disparity maps used some
techniques that currently apply to the neural networks, but without using deep
learning, for example, optical flow with local cues [31], stereo and defocus cues
[32], albedo and shading [33].

One of the most used networks is Monodepth [34], which uses a
convolutional network which tries to have left-right depth consistency in the
training process. It also has an improvement which we used in our tests,
Monodepth 2 [35]. Another model used for our tests, Megadepth [36], learns the
depth from photos downloaded from the internet, combined with multi-view
stereo methods, and proposes a new dataset, too. The loss function used is
composed from a scale-invariant data loss, a gradient-matching loss and an
ordinal depth loss:

LMagria*prh = Lgrﬂd + aLgrﬂd + J@Lord (1)

SfMLearner [37] uses view synthesis for the network supervision, without
needing stereo images even for the training. Dense Depth [38] uses an encoder-
decoder architecture for monocular depth estimation. Their loss function is also
composed from three different terms — a loss for the depth values, a loss for the
gradient of the depth image and a structural similarity loss:

LDE?‘!SEIDEI?.:Ith = ALdaﬁrh + Lgrrzri + L.‘-‘.‘-‘IM (2)

DORN [39] tackles the depth estimation task as a regression problem and
tries to minimize the mean square error also uses a strategy to discretize the depth.
They use an ordinal loss, which is the average of pixelwise ordinal loss over the
image:

Lporn = _J.%-E&-r:_nl =0 Lora(w, ) ©)

LKVOLearner [40] is based on another method, the direct visual odometry
[41]. A newer method [42] combines depth estimation with ego-motion learning
by taking some existing architectures, like [18], and adding a new loss function.
AdaBins [43] uses an encoder-decoder model to estimate the depth ranges, which
are divided into some bins. [44] is a recent network which offers another encoder-
decoder CNN architecture with an improved decoder. [45] learns the depth values
by using the dual pixel autofocus hardware which exists on current cameras. [46]
is an encoder-decoder model used for monocular prediction on embedded
systems. [47] estimates the depths using an image but also some sparse
estimations from low depth sensors. The use of CRFs can also be found in some
recent networks for estimating the depth using monocular cameras [48,49]. An
older interesting approach can be found at [50], which uses two networks — one
for an initial prediction and the other one for refinement.
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Even if most of the networks are using CNNs, there are also models that
use Recurrent Neural Networks (RNNs) [51], a Variational Autoencoder (VAE)
combined with a CNN [52] or Generative Adversarial Networks (GANS) [53, 54],
with the mention that [53] is trained unsupervised. Another interesting model can
be found at [55], which solves three problems at once — semantic segmentation,
instance segmentation and depth estimation, based on a modified version of a
semantic segmentation architecture, ENet. [56]

The next networks mentioned are trained in a semi-supervised fashion. A
semi-supervised model based on Monodepth, with LIDAR point clouds and stereo
images, using a loss function that enforces left-right consistency, can be seen at
[57]. A model for self-supervised learning that is based on stereo images and
semantic segmentation can be found at [58]. Other semi-supervised models that
use both LIDAR and stereo images can be found at [59,60]. In [61] the semi-
supervised training is done with sparse 3D data taken from a laser sensor. There
are also some unsupervised networks for this task. The approach proposed in [62]
Is an unsupervised framework based on multiple neural networks that collaborate
between them to recreate depth, motion segmentation and optical flow. Another
interesting model, based on a stack of GANSs, can be found at [63]. [64] trains a
CNN using stereo images for unsupervised depth estimation. [65] is based on
SfMLearner [37] but trains the data in an unsupervised fashion, changing the loss
function in order to incorporate the generated 3D scene. A similar approach, based
on the geometry of the image, but with an additional refinement step which
improves the prediction, is found at [66]. Finally, at [67] we can see another
unsupervised model that learns the depth, egomotion and camera intrinsics based
on stereo images. The architecture is based on Unet [68].

3. Datasets

One of the most challenging tasks regarding the depth estimation is the
recording of a dataset, because acquiring depth maps require expensive hardware.
This is the reason for the existence of a lot of unsupervised or semi/self-
supervised networks. The depth data is expensive, there are not enough images
and probably the biggest problem is that not all the depth maps are reliable,
especially if taken with cheap sensors. In this section, we review the most used
depth estimation datasets, and we also present our dataset for this task, which
made possible the results studied in this article.

3.1. Depth datasets

Even if there are not so many datasets as for image recognition, object
detection and semantic segmentation, we can find some data in order to train the
depth networks. The most used dataset for depth is KITTY — their latest dataset
[69] contains over 94 thousand RGB images annotated with depth. Another
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popular dataset is NYUv2 [70], which contains around 1500 annotated images
taken from 3 cities. Make3D [71] have 400 depth images for training and 134 for
testing. Sun RGB-D [72] is another used dataset for training and testing, with over
10.000 images annotated with depth.

Beside these datasets, there are also some datasets less used but with large
amounts of data, for example. Megadepth [36], which contains about 130
thousand images. Another new and big dataset is DrivingStereo [73], with over
180 thousand images. Sceneflow [18] offers almost 35k images, of which over
4000 are driving scenes. Middlebury [74] offers 33 dense annotated images with
depth. There are also some datasets used for multi-view stereo. The most used are
DTU, with 124 scenes [75], and Tanks and Temples [76], which contains
thousands of images.

3.2. POLI Depth dataset

Our dataset was taken with an Intel RealSense RGB-D camera. Following
the idea from our previous articles, we divided the data into 3 sets — images
recorded during the day, images recorded during the dusk or dawn and images
recorded during the night. We recorded some video sequences in the Politehnica
University campus during different times of the day. The dataset contains 516
images for the day, 1039 for the dusk/ dawn and 637 for the night, totaling 2192
annotated images. All the images have corresponding depth maps attached. The
dataset was obtained by driving a personal car around our university campus
during different times of the day. There were some challenges regarding the Intel
camera — the depth frames did not have the same size as the image frames (some
of the depth frames were lost), which required multiple recordings and an
adjustment between the image frames and the depth frames. Also, the camera had
lower quality maps during the night.

The RealSense D435 camera recorded photos of high definition resolution
(1280x720 pixels), however the masks were recorded at 848x480 pixels, which
required a preprocessing step which resized the images to the same size. The
resolution of the frames had also been resized regarding the model used (the
smaller resolution had to be chosen). The camera was mounted on the windscreen
of the car when the frames were recorded.

4. Implementation and experiments

We made multiple experiments in order to evaluate some of the most used
monocular depth estimation networks. For the experiments, we used two datasets
— our depth dataset described in the previous section and a dataset without a
corresponding ground truth, taken from our semantic segmentation article. The
dataset contains 735 images recorded in the day, 133 images recorded in dusk and
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165 images recorded in the night. Even if there is no ground truth, one of the
purposes of our experiments was to evaluate the networks related to each other,
i.e. considering as ground truth one of the networks itself. We tested with the
recorded ground truth in order to see how the networks are performing, then we
checked the relative performance by considering the ground truth as being the
result from a specific network. For ground truth, we considered the results of
Megadepth, Monodepth and Dense Depth, beside the result of the Intel camera.
For both datasets we computed the Round Mean Squared Error (RMSE)
considering the pixel values of the black and white images:

(4)

The RMSE was computed for the day, dusk, night and for the whole
dataset. In order to see the network performances for autonomous driving, we
made two different experiments. The first experiment considered all the pixels of
the images and the second one was more driving-related because we considered
only the depth estimation of the cars that were found in the images. All the cars
were manually annotated in both datasets. In the first set, we have 1733 cars in the
day, 3582 in the dusk and 1375 in the night. In the second set, we have 1491 cars
in the day, 256 in the dusk and 342 in the night. We also computed the inference
time regarding different image sizes, as it can be seen in the next section, and we
divided the car sizes into 13 categories, in order to see if the depth estimation is
influenced by the size of the images.

The testing stream works in the following way: first, the Intel RealSense
camera captures the depth maps and the RGB frames. The RGB frames are further
going to a preprocessing step, in order to fit the requirements from the depth
architectures. The frames are processed by the depth estimation architectures,
which outputs a depth estimation map, which is further compared to the recorded
depth by a validation module. The testing stream can be seen in Fig. 1.
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Fig. 1. Testing stream
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5. Results

In this section, we discuss the results for our experiments. The first
experiments were made using the whole images and computing the RMSE
regarding the whole image. In Set 1, we tested the results of the networks against
the ground truth taken with the RealSense camera, but we also tested the networks
against each other. In Set 2 there is no ground truth data, but we tested the
networks against each other in order to see if the qualitative results are conserved.
The second experiments used the same networks and datasets, but were
considered only the cars, so the results are better from obvious reasons — less
pixels that can increase the RMSE.

In Table 1 we can see the results for Set 1. For the ground truth, we have
the real ground truth, recorded with the RealSense camera, and we also considered
the ground truth as being the results from Megadepth, Dense Depth and
Monodepth. The reason for this choice is that we manually looked at the results
and we have chosen the networks that behaved the best. Dense Depth and DORN
have the best results regarding the ground truth, but because the RealSense
camera is not very precise the results of Megadepth and Monodepth were not that
good. We can also see that generally, the worst results are in the dusk, considering
the ground truth the RealSense camera. For Dense Depth ground truth, we can see
that the closest network is LKVVOLearner, with Megadepth being the ground truth
the closest ones are SfMLearner and LKVOLearner, and with Monodepth again
SfMLearner and LKVOLearner were the closest ones. We can see that for Dense
Depth as ground truth the best results were in the night, but for the rest of the
networks, the best results were in the day and the worst in the night.

In Table 2 we can see the depth results for the second set, with no
annotated ground truth, like an unsupervised network. For Dense Depth, the best
network was LKVOLearner, the best results were in the night. For Megadepth, the
best networks were LKVOLearner and SfMLearner, with Monodepth being a
close call, and for Monodepth, the same applied — LKVOLearner and SfMLearner
were the best, with Megadepth being a close call. Generally, the best results were
in the day, the worst in the night, excepting the ground truth being considered
Dense Depth, where the best results were generally achieved in the night,
excepting form Megadepth, where the best results were in the day. The results
vary a lot because the networks are different and the ground truth is not precise,
even with the RealSense camera, which made us compare the networks against
each other, in an unsupervised fashion, in order to see how the networks behave
comparing to multiple depth estimations. Also, in Table 1 and Table 2 we can see
the same experiments but taking in account only the cars when computing the
RMSE. This benchmark is especially important when speaking about autonomous
cars — in an autonomous car, the depth estimation is important because the
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software should know about the estimated distance from the car to other cars (and
people, too, but in a perfect environment people would cross the street only at
crosswalks), in order to know when to brake. Regarding the depth camera from
the first set, the results are close, with SfMLearner and LKVOLearner being,
again, the best. Also, the best results are not clearly in the day or in the night, but
the worst results are in the dusk. For Dense Depth, the best results were from
Megadepth and LKVOLearner and again the worst were obtained in the dusk.
With Megadepth as ground truth, the results are different — the best are obtained
in the dusk. However, SfMLearner and LKVOLearner have again the best
performances. With Monodepth as ground truth, the best results were obtained by
DORN, with SfMLearner very close, and the worst results are obtained in the
night, in general. In Table 2, we can also see the metrics for the second set, taking
only the cars in the account. With Dense Depth as ground truth, we can see that
LKVOLearner and Megadepth have de best results, and the worst results are in
the dusk. With Megadepth as the reference network, the best results are obtained
by SfMLearner and DORN, the best results are generally during the day and the
worst during the dusk. Finally, with Monodepth as the main network, the results
are very good - the best network is SfMLearner, seconded by DORN, and the best
results are in the day, the worst in the dusk or in the night. The last two
experiments were regarding the size of the objects and the speed of the networks.

Table 1
Depth results — set 1 (RMSE)
Model Day Dusk [Night |Avg Day (car | Dusk (car | Night Avg
only) only) (car
only)

Ground truth - depth camera
Megadepth 128.12 (140.99 |139.38 |137.59 47.51 71.74 68.75 65.66
DORN 7251 |98.46 |[55.39 |82.00 58.31 84.97 34.84 70.68

LKVOLearner (98.36 |109.63 |97.29 |[103.56 |[47.68 69.96 48.25 60.73
SfMLearner 113.91 [126.74 |109.32 |118.92 |51.33 73.68 41.18 62.75
Monodepth 122.81 |135.66 |120.28 |128.37 |56.77 84.92 42.34 71.17
Dense Depth {8296 |(83.85 |87.65 |84.77 62.80 59.18 71.31 62.79

Ground truth - Dense Depth
Megadepth 105.37 [109.40 |90.15 |103.19 [52.76 60.23 29.84 53.35
DORN 90.96 [93.09 |85.26 |[90.38 74.62 75.19 65.95 73.24
LKVOLearner |80.78 |[79.69 |64.99 |75.98 54.25 56.34 40.38 52.89
SfMLearner 96.37 |100.18 |84.74 |95.03 60.48 61.40 50.82 59.13

Monodepth 111.97 |111.97 |100.42 |108.74 |71.12 75.73 57.89 71.20

Ground truth — Megadepth
DORN 12566 [130.95 [130.30 |13223 |4589 [s001  [ere8 [4254
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LKVOLearner |47.89 |54.03 |[57.44 |53.69 24.39 17.72 31.53 22.95
SfMLearner |45.13 [52.83 |60.04 |[53.38 33.71 19.60 43.24 29.74
Monodepth 5549 |64.44 |70.30 |64.26 38.05 27.08 48.93 35.49
Dense Depth | 105.37 {109.40 |90.15 |103.19 52.76 60.23 29.84 53.35
Ground truth — Monodepth
Megadepth 55.49 |64.44 |70.30 64.26 | 38.05 27.08 48.93 35.49
DORN 104.46 |100.40 |114.93 105.76 | 19.61 15.08 25.23 18.77
LKVOLearner |44.49 |46.07 |51.81 47.46|22.75 2241 24.00 22.83
SfMLearner | 42.98 [42.74 |47.87 44.35|20.27 18.65 21.29 19.64
Dense Depth | 111.97 |111.97 |100.42 108.74 | 71.12 75.73 57.89 71.20

In Fig. 2 we can see the RMSE of the networks regarding the car size. The results
shown are from the first set, the second set has similar properties. We can see that

for very small car sizes the results vary a little, then the RMSE decreases as the
car size increases — the depth estimation is better for bigger cars. The RMSE
decreases for all the networks.
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Fig. 2. RMSE regarding car size
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In Fig. 3 we measured the time regarding the size of the images. We made several
images with different dimensions, from 480x360 pixels to 4k. We can see from
the plot that most of the networks have similar times regarding the image size,
only a small increase for bigger sizes. However, Monodepth and Megadepth have
a linear increase in time, with Megadepth performing the worst.
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Depth results — set 2 (RMSE)
Model Day Dusk |Night |[Avg Day (car | Dusk Night (car | Avg
only) (car only)
only)
Ground truth - Dense Depth
Megadepth 99.52 |101.37 |104.43 |100.56 52.72 59.24 44.25 52.27
DORN 9149 |92.99 |86.44 |90.90 60.60 67.36 62.29 61.75
LKVOLearner |81.77 |82.27 |72.82 |80.47 51.14 58.69 43.84 51.01
SfMLearner |101.46 [101.56 [88.81 |99.56 59.87 67.36 46.28 58.84
Monodepth 114.31 |115.04 |105.41 |113.03 64.97 74.54 56.72 64.95
Ground truth — Megadepth
DORN 114.81 [120.19 |126.21 |117.40 20.12 21.49 25.10 52.27
LKVOLearner |40.10 (46.43 |51.42 |42.94 12.13 13.45 13.38 61.75
SfMLearner |38.57 [44.07 |41.18 |39.74 15.30 17.41 16.05 51.01
Monodepth 4579 |52.42 |59.19 |49.04 19.95 22.34 20.21 58.84
Dense Depth | 99.52 [101.37 [104.43 |100.56 52.72 59.24 44.25 64.95
Ground truth — Monodepth
Megadepth 4579 |52.42 |59.19 |49.04 19.95 22.34 20.21 20.30
DORN 104.57 |104.59 |100.99 |104.01 13.15 16.75 11.72 13.42
LKVOLearner |{39.32 |[40.10 [45.96 |40.55 15.10 16.81 16.35 15.53
SfMLearner [27.72 |28.66 |44.76 |31.18 7.53 9.08 15.33 9.45
Dense Depth | 114.31 [115.04 [105.41 |113.03 64.97 74.54 56.72 64.95
s —T———— ]
| Megadepth
DORN
3000 } LKVOLeamer
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Fig. 3. Inference time regarding car size

Table 2
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All the experiments were made using a personal computer with an Nvidia
GTX 2060 graphic card, in order to keep the proportion of the inference times.
Some examples of the recorded frames in day, dusk and night, together with the
corresponding depth mask recorded by the camera and an estimated depth (by
Dense Depth) can be seen in Fig. 4.

Fig. 4. Depth estimation examples

6. Conclusion

In this article, we made a comprehensive study regarding the depth
estimation, focusing on the benefits regarding the autonomous driving. We
analyzed the most influential works regarding both stereo and monocular depth
estimation, further dividing the stereo estimation into stereo matching, an end-to-
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end learning and multi-view stereo estimation and the monocular estimation into
supervised, semi-supervised and unsupervised monocular estimation. We tested
some of the most used monocular depth estimation networks, because we believe
that this category has the biggest advantages regarding autonomous driving,
where there is not always a stereo camera system. Our contribution is that we
made a new dataset for depth estimation and tested the networks against each
other, in an unsupervised fashion, in order to see how they compare tested on
multiple variants for the ground truth. Also, we tested the networks on a previous
dataset made in our campus, without a ground truth, in order to estimate the
results in an unsupervised fashion by varying the ground truth as the depth
estimation of the best networks tested. We also considered the daylight in our
experiments. We tested 6 networks — DORN, LKVOLearner, SfMLearner,
Monodepth 2, Megadepth and Dense Depth. In our tests, LKVOLearner and
SfMLearner have the best results, with Monodepth 2 being another close call. We
found that the networks tend to have better results with bigger object sizes and
that most of the networks behave well regarding bigger image sizes, though they
can be used in real-life applications with full HD or even 4K cameras. Another
conclusion is that the worst results are in the night and the best results are during
the day. The tested networks are state of the art depth estimation architectures,
having one of the best results regarding other depth estimation networks, as it can
be seen from experiments in peer-reviewed published articles. Compared with
traditional methods, which do not involve neural networks, the qualitative
difference is huge regarding the more modern deep learning approaches. We
believe that only deep architectures could be used in real life scenarios, regarding
the inference time and the quality. In our future projects, we will use one of the
best networks tested in order to estimate the depth.
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