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VEHICLE DEPTH ESTIMATION FOR AUTONOMOUS 

DRIVING 

David-Traian IANCU1, Mihai NAN2, Alexandra Ștefania GHIȚĂ3,                   

Adina-Magda FLOREA4 

In the latest years, it has been done a lot of research regarding the depth 

estimation of the objects in an image. In autonomous driving, one of the most 

important tasks is to estimate the distance to the surrounding cars. This paper 

analyzes the state of the art regarding the depth estimation from single and stereo 

sources and the datasets that were made for these tasks and proposes a new depth 

dataset, recorded with an Intel RealSense depth camera.  This dataset is used 

together with another dataset made previously in our university in order to compare 

one of the most used neural networks for depth prediction from a single camera, for 

both full image depth estimation and vehicle-only depth estimation. The results are 

computed regarding the Root Mean Square Error (RMSE) and take in account the 

time of the day (day, dusk or night), the inference time and the dimension of the 

cars.  

Keywords: depth estimation, autonomous driving, neural networks, RGB-D 

dataset 

1. Introduction  

Autonomous driving is one of the most challenging tasks in the latest 

years, for both practical and theoretical reasons. There are a lot of components 

regarding an autonomous car – scene understanding, motion control, path 

following, decision making, etc. In our research center at Politehnica University 

of Bucharest we aim to make an autonomous car. We begin with the scene 

understanding and in our previous studies [1,2] we discussed the object detection 

and the semantic segmentation. In each study, we analyzed the most important 

works available now and we tested some of the best networks against our datasets, 

discussing the results by considering the light (day, dusk or night). This study is 

the final one from our scene understanding series and analyzes the depth 

estimation task. We made a new depth dataset recorded with an Intel RealSense 

depth camera and we tested some of the best networks against it, again regarding 
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the time of the day. The biggest challenge is to estimate and compare the depth 

maps without having a ground truth. To tackle this task, we tested the networks on 

our dataset used for segmentation, varying the ground truth as being the results 

obtained by some of the networks tested, knowing from the previous experiments 

what are the best networks. For both datasets, we tested the depth for all the pixels 

in the image and the depth considering only the surrounding vehicles. In Section 

2, we analyze the most important works, we discuss the datasets in Section 3, we 

present the experiments in Section 4 and the results in Section 5. The conclusion 

is presented in Section 6. 

2. Related work 

This section will overview the reviews that were made regarding this task, 

considering the analysis of the algorithms from the perspective of autonomous 

driving and how we compare with them. Also, we describe here the most 

important depth estimation architectures. We divided them into two big categories 

– depth estimation networks that work with images obtained from stereo cameras 

and depth estimation networks that work with images obtained from monocular 

cameras. Our experiments only use the second ones, considering that the task of 

monocular depth estimation is more complicated and better to resolve regarding 

autonomous driving, where you want to minimize the hardware involved in the 

processing of the images. 
 

2.1. Depth estimation reviews 

Unlike the previous tasks of object detection and segmentation, the depth 

estimation has not been reviewed in many papers, because the importance of 

object detection and segmentation is bigger. However, there are some articles that 

make a survey on the existing architectures. For example, in [3], there is a small 

survey on five existing architectures for monocular depth estimation, only briefly 

discussing the stereo depth estimation. They present the architectures of the 

selected networks, some of their results and some classical dataset, without further 

analyzing other factors such as the light or introducing a new dataset. They 

compare for supervised network and one unsupervised network. We can see a 

new, interesting article at [4]. They divide the depth methods into geometric based 

methods, such as Structure from Motion [5], sensor-based methods, such as the 

LIDAR, and deep learning methods. They present some of the most important 

datasets used in depth, some metrics (including the RMSE which we used in this 

paper), and some of the networks that we used. They further divide the monocular 

networks into unsupervised, semi-supervised in supervised methods and analyze 

some of the most important networks. They consider that the semi-supervised 

networks are those that learn from stereo images, but without knowing the ground 

truth of the depths, and the unsupervised networks are those that learn from 
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monocular sequences, without any information regarding the depth. They evaluate 

some of the unsupervised and weakly supervised networks on KITTY and slightly 

discuss the time and some application, but no other tests or discussions are made.  

In [6] we can see a survey regarding stereo models. They also make a difference 

between old methods, based on pixels matching, and deep learning algorithms. 

The study offers o comprehensive view regarding depth datasets, they further 

divide the stereo methods into 3 categories – depth estimation by stereo matching, 

by end-to-end training and multi-view stereo methods. They also test some 

inference times, but they don’t offer any results. We can see another 

comprehensive stereo review of older architectures in [7]. Although they present a 

lot of networks and architectures, including implementations on dedicated 

hardware, they discuss the inference time and results briefly, only presenting 

some theoretical aspects regarding the architectures. Our review also offers a new 

depth dataset, perform a comparative analysis of some state-of-the-art methods by 

considering some of them as ground truth, discusses the datasets by taking the 

light into account and offers information regarding the inference time. 
 

2.2. Depth estimation from stereo camera 

In this subsection, we analyze the most important works that tackle the 

problem of depth estimation given stereo images for the training set with their 

corresponding ground truth. We must make the distinction that there are not just 

the stereo images, the ground truth is included, that approach will be considered 

unsupervised learning and analyzed in the following subsection. Following the 

work from [6], we will further present works that try to do stereo matching, end-

to-end training and multi-view stereo estimation.  

The older methods did not use deep learning. Although there are not used 

anymore, there are worth mentioning because some of the techniques are used in 

the deep networks. In [8] the depth is computed from stereo images and 

monocular cues also from the images, with a Markov Random Field algorithm. In 

[9] we can see a very old approach that tries to make similar values in a disparity 

map regarding the same object, which is predicted with a segmentation algorithm. 

In [10] they compute the stereo matching in a robot environment, with particle 

filtering. In [11] and [12] we can see some implementation of depth estimation in 

hardware, with FPGAs.  

The most popular approaches in stereo depth estimation are to try to learn 

the matching between the two images and to create the disparity map, which is 

very similar with the human eye depth perception or to learn the matching in a 

pure neural end-to-end approach. In the latest years, the second approach has 

increased its popularity due to simplicity. In [13], the authors claim that 

monocular depth estimation is not good enough for autonomous driving and they 

propose a stereo architecture, which has different layers to compute the left-right 
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matching and the right-left matching and uses a semi-supervised loss function, 

taking in account both LIDAR ground truth and unsupervised components. Older 

approaches using CNNs for matching can be found at [14] and [15], which are 

very similar architectures, the first one uses pooling layers and the second one 

does not. A more recent network can be seen at [16], which proposes a complex 

architecture for stereo matching with multilevel skip connections, another deep 

neural network for predicting the confidence of a disparity map and a final 

refinement step. Another stereo matching algorithm is [17], which different 

approaches for the refinement step and the matching cost, which is computed with 

two independent networks with multi-layer pooling modules.  

As we said earlier, in the latest years the usage of end-to-end networks 

increased. In [18] we can see stereo training using optical flow. They also made a 

synthetic dataset for the task.  In [19] we can see a CNN for end-to-end training, 

with the loss function based on the warping errors. In [20] there is an end-to-end 

model based on a CNN architecture combined with conditional random fields 

(CRFs). [21] proposes a recurrent model which tries to minimize the left-right 

consistency and improve the disparity maps. [22] claims to make stereo end-to-

end training with less memory usage and a wider range of image sizes, by 

modifying the hourglass network with a bottleneck matching module. [23] 

proposes a new attention mechanism which improves the stereo depth estimation 

task. In [24] we can see an anytime model, which produces an initial disparity 

map, then refines it, made for mobile devices. In [25] the training process is also 

refined with some sparse, cheap, LIDAR sensors. [26] tries a new approach, by 

learning a cost volume from the data, then regressing the disparities from it. One 

of the newest architectures for this task, MADNet [27], uses a mechanism which 

trains independently only portions of the network, combined with a self-adaptive 

unsupervised network, which can adapt to any environment.  

The last category of stereo networks consists of multi-view stereo training, 

which has multiple views of the same objects, to better estimate the 3D model. 

We can see this approach in [28], using Conditional Random Fields, which is 

based on [29], which makes an initial depth estimation based on features from all 

the images, then refines it with the reference image. Also, [30] could be 

considered an old multi-view stereo training, because it tries to regress the depth 

model based on a small motion clip. 
 

2.3. Depth estimation from monocular camera 

In this subsection, we analyze the most recent works regarding the depth 

estimation from a monocular camera. We divide the architectures as in [4], given 

the training data, in three categories – unsupervised learning, semi-supervised 

learning and supervised learning. In our experiments, we used supervised 
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learning, having pretrained networks and the ground truth from the RGB-D 

camera.  

The first models that tried to learn the disparity maps used some 

techniques that currently apply to the neural networks, but without using deep 

learning, for example, optical flow with local cues [31], stereo and defocus cues 

[32], albedo and shading [33].  

One of the most used networks is Monodepth [34], which uses a 

convolutional network which tries to have left-right depth consistency in the 

training process. It also has an improvement which we used in our tests, 

Monodepth 2 [35]. Another model used for our tests, Megadepth [36], learns the 

depth from photos downloaded from the internet, combined with multi-view 

stereo methods, and proposes a new dataset, too. The loss function used is 

composed from a scale-invariant data loss, a gradient-matching loss and an 

ordinal depth loss: 

  (1) 

SfMLearner [37] uses view synthesis for the network supervision, without 

needing stereo images even for the training. Dense Depth [38] uses an encoder-

decoder architecture for monocular depth estimation. Their loss function is also 

composed from three different terms – a loss for the depth values, a loss for the 

gradient of the depth image and a structural similarity loss: 

   (2) 

DORN [39] tackles the depth estimation task as a regression problem and 

tries to minimize the mean square error also uses a strategy to discretize the depth. 

They use an ordinal loss, which is the average of pixelwise ordinal loss over the 

image:  

   (3) 

LKVOLearner [40] is based on another method, the direct visual odometry 

[41]. A newer method [42] combines depth estimation with ego-motion learning 

by taking some existing architectures, like [18], and adding a new loss function. 

AdaBins [43] uses an encoder-decoder model to estimate the depth ranges, which 

are divided into some bins. [44] is a recent network which offers another encoder-

decoder CNN architecture with an improved decoder. [45] learns the depth values 

by using the dual pixel autofocus hardware which exists on current cameras. [46] 

is an encoder-decoder model used for monocular prediction on embedded 

systems. [47] estimates the depths using an image but also some sparse 

estimations from low depth sensors. The use of CRFs can also be found in some 

recent networks for estimating the depth using monocular cameras [48,49]. An 

older interesting approach can be found at [50], which uses two networks – one 

for an initial prediction and the other one for refinement.  
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Even if most of the networks are using CNNs, there are also models that 

use Recurrent Neural Networks (RNNs) [51], a Variational Autoencoder (VAE) 

combined with a CNN [52] or Generative Adversarial Networks (GANs) [53, 54], 

with the mention that [53] is trained unsupervised.  Another interesting model can 

be found at [55], which solves three problems at once – semantic segmentation, 

instance segmentation and depth estimation, based on a modified version of a 

semantic segmentation architecture, ENet. [56]  

The next networks mentioned are trained in a semi-supervised fashion. A 

semi-supervised model based on Monodepth, with LIDAR point clouds and stereo 

images, using a loss function that enforces left-right consistency, can be seen at 

[57]. A model for self-supervised learning that is based on stereo images and 

semantic segmentation can be found at [58].  Other semi-supervised models that 

use both LIDAR and stereo images can be found at [59,60]. In [61] the semi-

supervised training is done with sparse 3D data taken from a laser sensor. There 

are also some unsupervised networks for this task. The approach proposed in [62] 

is an unsupervised framework based on multiple neural networks that collaborate 

between them to recreate depth, motion segmentation and optical flow. Another 

interesting model, based on a stack of GANs, can be found at [63]. [64] trains a 

CNN using stereo images for unsupervised depth estimation. [65] is based on 

SfMLearner [37] but trains the data in an unsupervised fashion, changing the loss 

function in order to incorporate the generated 3D scene. A similar approach, based 

on the geometry of the image, but with an additional refinement step which 

improves the prediction, is found at [66]. Finally, at [67] we can see another 

unsupervised model that learns the depth, egomotion and camera intrinsics based 

on stereo images. The architecture is based on Unet [68]. 

 

3. Datasets 

 

One of the most challenging tasks regarding the depth estimation is the 

recording of a dataset, because acquiring depth maps require expensive hardware. 

This is the reason for the existence of a lot of unsupervised or semi/self-

supervised networks. The depth data is expensive, there are not enough images 

and probably the biggest problem is that not all the depth maps are reliable, 

especially if taken with cheap sensors. In this section, we review the most used 

depth estimation datasets, and we also present our dataset for this task, which 

made possible the results studied in this article. 

3.1. Depth datasets 

Even if there are not so many datasets as for image recognition, object 

detection and semantic segmentation, we can find some data in order to train the 

depth networks. The most used dataset for depth is KITTY – their latest dataset 

[69] contains over 94 thousand RGB images annotated with depth. Another 
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popular dataset is NYUv2 [70], which contains around 1500 annotated images 

taken from 3 cities. Make3D [71] have 400 depth images for training and 134 for 

testing. Sun RGB-D [72] is another used dataset for training and testing, with over 

10.000 images annotated with depth. 

Beside these datasets, there are also some datasets less used but with large 

amounts of data, for example. Megadepth [36], which contains about 130 

thousand images. Another new and big dataset is DrivingStereo [73], with over 

180 thousand images. Sceneflow [18] offers almost 35k images, of which over 

4000 are driving scenes. Middlebury [74] offers 33 dense annotated images with 

depth. There are also some datasets used for multi-view stereo. The most used are 

DTU, with 124 scenes [75], and Tanks and Temples [76], which contains 

thousands of images. 
 

3.2. POLI Depth dataset 

Our dataset was taken with an Intel RealSense RGB-D camera. Following 

the idea from our previous articles, we divided the data into 3 sets – images 

recorded during the day, images recorded during the dusk or dawn and images 

recorded during the night. We recorded some video sequences in the Politehnica 

University campus during different times of the day. The dataset contains 516 

images for the day, 1039 for the dusk/ dawn and 637 for the night, totaling 2192 

annotated images. All the images have corresponding depth maps attached. The 

dataset was obtained by driving a personal car around our university campus 

during different times of the day.  There were some challenges regarding the Intel 

camera – the depth frames did not have the same size as the image frames (some 

of the depth frames were lost), which required multiple recordings and an 

adjustment between the image frames and the depth frames. Also, the camera had 

lower quality maps during the night.  

The RealSense D435 camera recorded photos of high definition resolution 

(1280x720 pixels), however the masks were recorded at 848x480 pixels, which 

required a preprocessing step which resized the images to the same size. The 

resolution of the frames had also been resized regarding the model used (the 

smaller resolution had to be chosen). The camera was mounted on the windscreen 

of the car when the frames were recorded. 

 

4. Implementation and experiments 

 

We made multiple experiments in order to evaluate some of the most used 

monocular depth estimation networks. For the experiments, we used two datasets 

– our depth dataset described in the previous section and a dataset without a 

corresponding ground truth, taken from our semantic segmentation article. The 

dataset contains 735 images recorded in the day, 133 images recorded in dusk and 
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165 images recorded in the night. Even if there is no ground truth, one of the 

purposes of our experiments was to evaluate the networks related to each other, 

i.e. considering as ground truth one of the networks itself. We tested with the 

recorded ground truth in order to see how the networks are performing, then we 

checked the relative performance by considering the ground truth as being the 

result from a specific network. For ground truth, we considered the results of 

Megadepth, Monodepth and Dense Depth, beside the result of the Intel camera. 

For both datasets we computed the Round Mean Squared Error (RMSE) 

considering the pixel values of the black and white images: 
 

                                                (4) 

 

The RMSE was computed for the day, dusk, night and for the whole 

dataset. In order to see the network performances for autonomous driving, we 

made two different experiments. The first experiment considered all the pixels of 

the images and the second one was more driving-related because we considered 

only the depth estimation of the cars that were found in the images. All the cars 

were manually annotated in both datasets. In the first set, we have 1733 cars in the 

day, 3582 in the dusk and 1375 in the night. In the second set, we have 1491 cars 

in the day, 256 in the dusk and 342 in the night. We also computed the inference 

time regarding different image sizes, as it can be seen in the next section, and we 

divided the car sizes into 13 categories, in order to see if the depth estimation is 

influenced by the size of the images.  

The testing stream works in the following way: first, the Intel RealSense 

camera captures the depth maps and the RGB frames. The RGB frames are further 

going to a preprocessing step, in order to fit the requirements from the depth 

architectures. The frames are processed by the depth estimation architectures, 

which outputs a depth estimation map, which is further compared to the recorded 

depth by a validation module. The testing stream can be seen in Fig. 1. 

 
Fig. 1. Testing stream 
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5. Results 
 

In this section, we discuss the results for our experiments. The first 

experiments were made using the whole images and computing the RMSE 

regarding the whole image. In Set 1, we tested the results of the networks against 

the ground truth taken with the RealSense camera, but we also tested the networks 

against each other. In Set 2 there is no ground truth data, but we tested the 

networks against each other in order to see if the qualitative results are conserved. 

The second experiments used the same networks and datasets, but were 

considered only the cars, so the results are better from obvious reasons – less 

pixels that can increase the RMSE. 

In Table 1 we can see the results for Set 1. For the ground truth, we have 

the real ground truth, recorded with the RealSense camera, and we also considered 

the ground truth as being the results from Megadepth, Dense Depth and 

Monodepth. The reason for this choice is that we manually looked at the results 

and we have chosen the networks that behaved the best. Dense Depth and DORN 

have the best results regarding the ground truth, but because the RealSense 

camera is not very precise the results of Megadepth and Monodepth were not that 

good. We can also see that generally, the worst results are in the dusk, considering 

the ground truth the RealSense camera. For Dense Depth ground truth, we can see 

that the closest network is LKVOLearner, with Megadepth being the ground truth 

the closest ones are SfMLearner and LKVOLearner, and with Monodepth again 

SfMLearner and LKVOLearner were the closest ones. We can see that for Dense 

Depth as ground truth the best results were in the night, but for the rest of the 

networks, the best results were in the day and the worst in the night.  

In Table 2 we can see the depth results for the second set, with no 

annotated ground truth, like an unsupervised network. For Dense Depth, the best 

network was LKVOLearner, the best results were in the night. For Megadepth, the 

best networks were LKVOLearner and SfMLearner, with Monodepth being a 

close call, and for Monodepth, the same applied – LKVOLearner and SfMLearner 

were the best, with Megadepth being a close call. Generally, the best results were 

in the day, the worst in the night, excepting the ground truth being considered 

Dense Depth, where the best results were generally achieved in the night, 

excepting form Megadepth, where the best results were in the day. The results 

vary a lot because the networks are different and the ground truth is not precise, 

even with the RealSense camera, which made us compare the networks against 

each other, in an unsupervised fashion, in order to see how the networks behave 

comparing to multiple depth estimations. Also, in Table 1 and Table 2 we can see 

the same experiments but taking in account only the cars when computing the 

RMSE. This benchmark is especially important when speaking about autonomous 

cars – in an autonomous car, the depth estimation is important because the 
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software should know about the estimated distance from the car to other cars (and 

people, too, but in a perfect environment people would cross the street only at 

crosswalks), in order to know when to brake. Regarding the depth camera from 

the first set, the results are close, with SfMLearner and LKVOLearner being, 

again, the best. Also, the best results are not clearly in the day or in the night, but 

the worst results are in the dusk.  For Dense Depth, the best results were from 

Megadepth and LKVOLearner and again the worst were obtained in the dusk. 

With Megadepth as ground truth, the results are different – the best are obtained 

in the dusk. However, SfMLearner and LKVOLearner have again the best 

performances. With Monodepth as ground truth, the best results were obtained by 

DORN, with SfMLearner very close, and the worst results are obtained in the 

night, in general. In Table 2, we can also see the metrics for the second set, taking 

only the cars in the account. With Dense Depth as ground truth, we can see that 

LKVOLearner and Megadepth have de best results, and the worst results are in 

the dusk. With Megadepth as the reference network, the best results are obtained 

by SfMLearner and DORN, the best results are generally during the day and the 

worst during the dusk. Finally, with Monodepth as the main network, the results 

are very good - the best network is SfMLearner, seconded by DORN, and the best 

results are in the day, the worst in the dusk or in the night. The last two 

experiments were regarding the size of the objects and the speed of the networks.  
     Table 1 

Depth results – set 1 (RMSE) 

Model Day Dusk Night Avg Day (car 

only) 

Dusk (car 

only) 

Night 

(car 

only) 

Avg 

Ground truth - depth camera 

Megadepth 128.12 140.99 139.38 137.59 47.51 71.74 68.75 65.66 

DORN 72.51 98.46 55.39 82.00 58.31 84.97 34.84 70.68 

LKVOLearner 98.36 109.63 97.29 103.56 47.68 69.96 48.25 60.73 

SfMLearner 113.91 126.74 109.32 118.92 51.33 73.68 41.18 62.75 

Monodepth 122.81 135.66 120.28 128.37 56.77 84.92 42.34 71.17 

Dense Depth 82.96 83.85 87.65 84.77 62.80 59.18 71.31 62.79 

Ground truth - Dense Depth 

Megadepth 105.37 109.40 90.15 103.19 52.76 60.23 29.84 53.35 

DORN 90.96 93.09 85.26 90.38 74.62 75.19 65.95 73.24 

LKVOLearner 80.78 79.69 64.99 75.98 54.25 56.34 40.38 52.89 

SfMLearner 96.37 100.18 84.74 95.03 60.48 61.40 50.82 59.13 

Monodepth 111.97 111.97 100.42 108.74 71.12 75.73 57.89 71.20 

Ground truth – Megadepth 

DORN 125.66 130.95 139.30 132.23 45.89 30.01 61.68 42.54 
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LKVOLearner 47.89 54.03 57.44 53.69 24.39 17.72 31.53 22.95 

SfMLearner 45.13 52.83 60.04 53.38 33.71 19.60 43.24 29.74 

Monodepth 55.49 64.44 70.30 64.26 38.05 27.08 48.93 35.49 

Dense Depth 105.37 109.40 90.15 103.19 52.76 60.23 29.84 53.35 

Ground truth – Monodepth 

Megadepth 55.49 64.44 70.30 64.26 38.05 27.08 48.93 35.49 

DORN 104.46 100.40 114.93 105.76 19.61 15.08 25.23 18.77 

LKVOLearner 44.49 46.07 51.81 47.46 22.75 22.41 24.00 22.83 

SfMLearner 42.98 42.74 47.87 44.35 20.27 18.65 21.29 19.64 

Dense Depth 111.97 111.97 100.42 108.74 71.12 75.73 57.89 71.20 

  

In Fig. 2 we can see the RMSE of the networks regarding the car size. The results 

shown are from the first set, the second set has similar properties. We can see that 

for very small car sizes the results vary a little, then the RMSE decreases as the 

car size increases – the depth estimation is better for bigger cars. The RMSE 

decreases for all the networks.  

 
Fig. 2. RMSE regarding car size 

 

In Fig. 3 we measured the time regarding the size of the images. We made several 

images with different dimensions, from 480x360 pixels to 4k. We can see from 

the plot that most of the networks have similar times regarding the image size, 

only a small increase for bigger sizes. However, Monodepth and Megadepth have 

a linear increase in time, with Megadepth performing the worst.  
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Table 2 

Depth results – set 2 (RMSE) 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Inference time regarding car size 

 

Model Day Dusk Night Avg Day (car 

only) 

Dusk 

(car 

only) 

Night (car 

only) 

Avg 

Ground truth - Dense Depth 

Megadepth 99.52 101.37 104.43 100.56 52.72 59.24 44.25 52.27 

DORN 91.49 92.99 86.44 90.90 60.60 67.36 62.29 61.75 

LKVOLearner 81.77 82.27 72.82 80.47 51.14 58.69 43.84 51.01 

SfMLearner 101.46 101.56 88.81 99.56 59.87 67.36 46.28 58.84 

Monodepth 114.31 115.04 105.41 113.03 64.97 74.54 56.72 64.95 

Ground truth – Megadepth 

DORN 114.81 120.19 126.21 117.40 20.12 21.49 25.10 52.27 

LKVOLearner 40.10 46.43 51.42 42.94 12.13 13.45 13.38 61.75 

SfMLearner 38.57 44.07 41.18 39.74 15.30 17.41 16.05 51.01 

Monodepth 45.79 52.42 59.19 49.04 19.95 22.34 20.21 58.84 

Dense Depth 99.52 101.37 104.43 100.56 52.72 59.24 44.25 64.95 

Ground truth – Monodepth 

Megadepth 45.79 52.42 59.19 49.04 19.95 22.34 20.21 20.30 

DORN 104.57 104.59 100.99 104.01 13.15 16.75 11.72 13.42 

LKVOLearner 39.32 40.10 45.96 40.55 15.10 16.81 16.35 15.53 

SfMLearner 27.72 28.66 44.76 31.18 7.53 9.08 15.33 9.45 

Dense Depth 114.31 115.04 105.41 113.03 64.97 74.54 56.72 64.95 
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All the experiments were made using a personal computer with an Nvidia 

GTX 2060 graphic card, in order to keep the proportion of the inference times. 

Some examples of the recorded frames in day, dusk and night, together with the 

corresponding depth mask recorded by the camera and an estimated depth (by 

Dense Depth) can be seen in Fig. 4. 

 

 
Fig. 4. Depth estimation examples 

6. Conclusion 

In this article, we made a comprehensive study regarding the depth 

estimation, focusing on the benefits regarding the autonomous driving. We 

analyzed the most influential works regarding both stereo and monocular depth 

estimation, further dividing the stereo estimation into stereo matching, an end-to-
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end learning and multi-view stereo estimation and the monocular estimation into 

supervised, semi-supervised and unsupervised monocular estimation. We tested 

some of the most used monocular depth estimation networks, because we believe 

that this category has the biggest advantages regarding autonomous driving, 

where there is not always a stereo camera system. Our contribution is that we 

made a new dataset for depth estimation and tested the networks against each 

other, in an unsupervised fashion, in order to see how they compare tested on 

multiple variants for the ground truth. Also, we tested the networks on a previous 

dataset made in our campus, without a ground truth, in order to estimate the 

results in an unsupervised fashion by varying the ground truth as the depth 

estimation of the best networks tested. We also considered the daylight in our 

experiments. We tested 6 networks – DORN, LKVOLearner, SfMLearner, 

Monodepth 2, Megadepth and Dense Depth. In our tests, LKVOLearner and 

SfMLearner have the best results, with Monodepth 2 being another close call. We 

found that the networks tend to have better results with bigger object sizes and 

that most of the networks behave well regarding bigger image sizes, though they 

can be used in real-life applications with full HD or even 4K cameras. Another 

conclusion is that the worst results are in the night and the best results are during 

the day. The tested networks are state of the art depth estimation architectures, 

having one of the best results regarding other depth estimation networks, as it can 

be seen from experiments in peer-reviewed published articles. Compared with 

traditional methods, which do not involve neural networks, the qualitative 

difference is huge regarding the more modern deep learning approaches. We 

believe that only deep architectures could be used in real life scenarios, regarding 

the inference time and the quality. In our future projects, we will use one of the 

best networks tested in order to estimate the depth. 
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