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EXISTENCE, UNIQUENESS AND SUCCESSIVE APPROXIMATIONS
FOR (), ¢)-HILFER FRACTIONAL DIFFERENTIAL EQUATIONS

by Salim Krim!, Abdelkrim Salim?!, Mouffak Benchohra! and Erdal Karapmar®*

The focus of this paper is on investigating a particular type of nonlinear
(A, )-Hilfer fractional differential equations, and analyzing their existence results. Our
approach involves utilizing Banach’s fixed point theorem, and we also explore the global
convergence of successive approximations to provide additional insights into the topic.
To further illustrate our findings, we provide some examples that supplement our main
results.
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1. Introduction

Fractional calculus extends differentiation and integration to non-integer orders, gain-
ing attention in theoretical studies and practical applications across research domains. Its
versatility has made it a crucial tool in the field. Recently, there has been a significant
increase in research on fractional calculus, exploring various outcomes under different con-
ditions and forms of fractional differential equations and inclusions. For more details on the
applications of fractional calculus, the reader is directed to the books of Herrmann [14], Hil-
fer [15], Kilbas et al. [16] and Samko et al. [29]. Agrawal [4] introduced some generalizations
of fractional integrals and derivatives and presented some of their properties. In [5,6], Ben-
chohra et al. demonstrated the existence, uniqueness, and stability results for various classes
of problems with different conditions with some form of extension of the well-known Hilfer
fractional derivative which unifies the Riemann-Liouville and Caputo fractional derivatives.

In a recent publication [11], Diaz introduced novel definitions for the special func-
tions A-gamma and A-beta. Those interested can find more information in other sources
such as [9,18,19]. Sousa et al. presented the v-Hilfer fractional derivative in another work
[33], highlighting important properties related to this type of fractional operator. Further
insights and results based on this operator can be explored in papers like [3,32] and their
references. Inspired by the cited papers, we have introduced a new extension of the renowned
Hilfer fractional derivative [28]. This extension, called the A-generalized -Hilfer fractional
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derivative, enabled us to establish a generalized version of Gr”onwall’s lemma and explore
various types of Ulam stability. Additionally, we have thoroughly investigated qualitative
and quantitative results for different classes of fractional differential problems [17,21-27], all
made possible by this new generalized fractional operator. More details can be found in [5,6].

Several research studies have investigated the convergence of successive approxima-
tions for nonlinear functional equations and the global convergence of successive approxima-
tions for functional differential equations [1,2,30,31]. Browder [7] established a generalization
of the classical Picard-Banach contraction principle, utilizing the convergence of successive
approximations in 1968. In a similar vein, Chen [8] employed the method of successive
approximations to analyze the existence of solutions for functional integral equations in
1981. Czlapiinski [10] investigated the global convergence of successive approximations of
the Darboux problem for partial functional differential equations with infinite delay, while
Faina [12] studied the generic property of global convergence of successive approximations
for functional differential equations with infinite delay.

Motivated by the aforementioned publications, in this paper, we study the following
problem:

(ngime) ) =¢ (5,m(5), (kHDgif;%) (5)) , 0 €V = (01,64),

A(1=Cs). A9 + (L.1)

(391+ . m) (677) = g, ,
where @gif;w and 321(1!@),)\;1# are, respectively, the A-generalized v-Hilfer fractional de-
rivative of order ¢; € (0,\) and type (2 € [0, 1], and A-generalized t-fractional integral of
order A(1 — (3), where (3 = §(C2(A — 1) +¢1), A >0, ¢ : [f1,02] x R x R — R are given
functions, and toy, € R.

This paper is structured as follows: In Section 2, we introduce the notations and
offer an overview of the (\,1)-Hilfer fractional derivatives that we will utilize throughout
the manuscript. In Section 3, we present an existence result of the problem (1.1) based on
Banach’s fixed point theorem. In Section 4, we examine a result on the global convergence
of successive approximations. Finally, in the last section, we provide various examples to
reinforce the obtained results.

2. Preliminaries

First, we will present the weighted spaces, notations, definitions, and preliminary
concepts that will be used in this paper. Let 0 < 61 < 6 < oo, V = [01,05], and let
G e (0.0), 00,1, A>0and s = L(o(A— 1) +C1):

By C(V,R) we denote the Banach space of all continuous functions from V into R
with the norm

[t0]|se = sup{|w(8)|: 6 € V}.
Let ACP(V,R) and C?(V,R) be the spaces of S-times absolutely continuous and

B-times continuously differentiable functions on V, respectively.
Consider the weighted Banach space

Ceyip(V) = {m D (01,02] > R : 6 — DF (6,01)w(0) € C(V,R)} ,
where @2&3(5, 01) = ((8) — ¥(61))'~°*, with the norm

”m”C(S;w = ?38 @?3(5,91)!“0(5) )
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and
Clu(V) = {"’ e CPH (V) i e Ccs;w(V)} ,BEN,
CCsn/J(V) = Ccs;w(V%
with the norm
Hm”C?s;w - Z Hm(l)”m + ”m(ﬁ)”CQW'
i=0

Consider the space X fZ (01,02) of those real-valued Lebesgue measurable functions y
on [61,02] with HMHXf/’ < 00, and the norm

72 P
lll s = < ; ¢’(5)u(5)pd5> :

where 1 is an increasing and positive function on [f1, 85] where ¢’ is continuous on [6;, 62]
and 1 <p < 0.

Definition 2.1 ([11]). The A-gamma function is given by
[e.e] q)\
T'y\(6) = / s°7le™ % ds, 5 > 0.
0

When X — 1 then T'(0) = T'A(d), and some other useful relations are T'y(5) = AX-IT (%),
Tx(6d + A) =6TA(0) and Tx(\) = 1. Moreover, the A-beta function is given as

A(8,6) = A/ $71(1 - 5)5~ds,

so that By(6,£) = (i, %) and B\(6,€) = B8

Now, we give the definition to the integral fractional operator used throughout this
paper and some of its properties.

Definition 2.2 (\-generalized t-fractional integral [20]). Let p € X7 (61,02), 1¥(5) > 0 be
an increasing function on (01,62] and '(6) > 0 be continuous on (61,02). The generalized
A-fractional integral operators of a function p of order (1 > 0 is defined by:

67
520 u0) = [ 8651 (uts)ds,

01
S1

(Y(8) —w(s) > !
A (C1) '

Theorem 2.1 ([23,24]). Let p € Xf;(@l,eg), (1 > 0 and X > 0. Then HCI’Aw,u S
C([81a02]aR)'

Lemma 2.1 ([23,24]). Let (1 > 0, 0 > 0 and X\ > 0. Then, the semigroup properties that
follow are met:

with A > 0 and @2\1’1’[’(6, s) =

WA WA WA WA WA
3gi+ wgglﬁli( )= 3(3119 () = 3§1+w3%+ Y u(6).

Lemma 2.2 ([23,24]). Let (1,0 >0 and XA > 0. Then, we get

Jgi NV (5,00) = DLY (5.61).
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Theorem 2.2 ([23,24]). Let 0 < 6; < < 00,(1,0 > 0,0 < (3= (oA — &)+ G) < 1,

A>0andw e Ceyp(V). Ifg>1 (3, then

(3cl,w ) (601) = 5£Iarll+ (3%?1& ) (5) = 0.

Definition 2.3 (A-generalized i-Hilfer derivative [23,24]). Let a —1 < C—; < a witha € N,
—00 < 01 < 03 < o0 and p,p € C¥([01, 0], R) where 1) is increasing and ' (8) # 0, for all
0 € [01,02]. The A-generalized 1-Hilfer fractional derivatives f@gif;w(-) of a function p of
order (1 and type 0 < o < 1, with A > 0 is given by:

Hapo ora—cny (1 d aq(1—0)(Aa—C1) A5
D 01+ U( ) <391+ (’l/)' (5) d(S) ()‘ 391+ M)) (6)

(Helm @) g (Aagé:g)(m—cl),w@) OF

1 d
where 53 = (W 0 d§> .
G

Lemma 2.3 ([23,24]). Let § > 601, 0 < Y <1,0<0<1,A>0. Then for 0 < (3 < 1;(3 =
(oA = 1) + ¢1), we have

[Eﬂﬂéif”” (@zwﬂ)_l} =0

Theorem 2.3 ([23,24]). If p € C¢ ,[01,62],a —1 < g <a,0<p<1, where o € N and
A >0, then
C3—1
G H G0 ¥(61)) ai (gha—Cs) A
(301+ kDo “) Z/V ark <3—z+1)) {% (391+ “(91))}’
where

G =+ (e(Aa—G1) + 1)

>/M—‘

If a =1, we have
(3527 D5 n) (0) = n(8) -

Lemma 2.4 ([23,24]). Let ¢, > 0,0 < 9 <1, and w € Cf,,
d € (01,062, we have

($(6) = 9(01)° " La-or—c)rmw
Te(el— ) + G 0ot ()

(V), where A > 0. Then for

(FDfe 352" 1) (3) = (o).

3. Existence of Solutions
Initially, we present the following theorem in order to convert our system (1.1) into

a fractional integral equation.

A\ —
Theorem 3.1. Let (5 = w, where A > 0, 0 < (3 < A\,0 < p <1, and let
o(-) € C(V,R). The function w satisfies the initial value problem for A-generalized 1p-Hilfer
fractional differential equations:

(FD§e¥) (6) = w(0), 8 € (61,02], (3.1)
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(3 ) (6) = oy, (32)
if and only if it verifies the following integral equation:
04, 1A
w(d) = + (350 ) (), 6 € (61,04]. (3.3)
Fk(/\C?))‘Dé(f;’ 01) ( o )

Proof. Assume that to satisfies the equations (3.1)-(3.2). We apply Hgi’j‘;w(-) on both sides
of equation (3.1) to obtain

(312 Ho5evw) (0) = (35:2%0) (6),

and using Theorem 2.3, we get

() = Do (0
P (0,01)k(AG)
From the initial condition (3.2), we get
g/\(l—@%)\ﬂ/fm

+(35:27%) (9). (3.4)

5) = 01+ 01 + (1,9 §
™) = B OO0 (5:2%) @)
g,

_ C1, A5 5).
Fk()\Cg)@Zpg((S, o) + (3914- SO) (6)

For the converse, let us now prove that if to satisfies equation (3.3), then it satisfies
(8.1)-(8.2). We apply the operator kHDC“Q;w() on equation (3.3) to get

01+
H@Cl,g;wm 5) = HtDCl:Q;’/) o, + HDClv.Q%wHClv/\;w 5).
(k 01+ )( ) E o+ <I>2”3(5,01)Fk(A43) (k 01+ 90,4+ ‘P)( )

Using Lemma 2.3 and Lemma 2.4, we get (3.1). Now we apply the operator 82‘1(1743)’)‘"#(-)

to equation (3.3), to obtain

A(1—Cs) A\ip Mg, A(1—Cs), A\ 1 A(L=C3) A5 4C1 A
(80 m) (9) = AL (@w G m)) B e) 0)
Ca\™

Now, using Lemma 2.1 and 2.2, we get

A(1—=C3),; A(1— WA
(35 w) (8) = wg, + (BTN %) (). (35)
Using Theorem 2.2 with § — 67, we obtain (3.2). This completes the proof. O
As a consequence of Theorem 3.1, we have the following result:
A—1)+ 9
Lemma 3.1. Let (3 = u where 0 < ¥ <X and 0 < (3 <1. Thenw € C¢,.y(V)

satisfies the system (1.1) if and only if vo is the fized point of the operator 3 : Cey,yy(V) —
Ceyip (V) defined by:

_ 106, 1A
) = f e Gy (7127¢) ), (3.6)

where ¢ € Cey.p (V) such that () = < (J,10(5), ¢(9)).

We may employ Theorem 2.1 to easily demonstrate that for v € C¢,.,(V), we have
H(r) € Ce,;p(V), where J{ is the operator defined in (3.6).

The hypotheses:
(Cdy) The function ¢ : V x R x R — R; is continuous.
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(Cdy) There exist constants ¢ > 0 and 0 < y < 1 such that
|<(6,10,101) = ¢(6,S, 31)| < ofro — [ + oy —
for any to,101,3,31 € Rand § € V.

Remark 3.1. We note that for any w,3 € R, and each § € V, hypothesis (Cdy) implies
that
|<(6, w0, I)| < ofw] +5[S| + <7,

where ¢* = sup ¢(4,0,0).
6ev

We can now declare and demonstrate our existence result for problem (1.1). The first result
is based on Banach’s fixed point theorem [13].

Theorem 3.2. Suppose that (Cdy) and (Cdz) hold. If

TA(AG) (B(05) — () T
(1= A(C + AGa)

then problem (1.1) has a unique solution on V.

{:=

<1, (3.7)

Proof. Consider the operator H defined in (3.6). Let w,3 € C,., (V). Then, for 6 € V we
have

[3¢(w)(0) = HSON < 357y

where @1, 2 € C¢y,y(V) such that

s <1
/9 (0(6) — () F 1 (5)|pa(5) — a(s)lds

By hypothesis (Cdz) we have
lp1(s) — wa(s)] < 7|m( ) = 3(9)]-

Therefore, for each § € V

|H (1) (8) — H(I)(8)] (1= )ATA(G) Jo
z||m - S”C%;u

G5 (0(8) — p(0n)

< Ty
By Lemma 2.2, we have
9tm)8) =90 < | T ey (40— vt } I — Sllee,

Hence,

| ((8) = (01))' ™ (3H(w)(8) — FH(I)(8)) |

IN

IN
—
~
=
>
—
>~
&
N
<
—
>
N
N
@
—~
e
=
S~—
S~—
N

which implies that

LA (AG3) (¥(02) — ¥(01))
(1= 7)TA(C1 + AC3)

T1
|30 — HS|e,., < [ o —Sllog, -
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Hence, we get
H:H:m - J{%HC%;U) < £||m - S”CCS”W

Consequently, by Banach’s fixed point theorem, the operator J has a unique fixed
point, which is the unique solution of our problem (1.1) on V. g

4. Successive Approximations and Uniqueness Results

This section is devoted to giving the main result of the global convergence of successive
approximations of our problem (1.1). We will study the solution in C¢,., (V) of our problem.

Set J, := [0, pbs] for any p € [0,1]. In what follows, we need the following hypothe-
ses:

(Hy): There exist a constant s > 0 and a continuous function h : V x [0, 5] x [0, 5] —
R, such that h(d,-, ) is nondecreasing for all 6 € V and the inequality
[$(6, 01, 101) — §(6, w2, W02)[ < A (4, [01 — 12, |01 — 1w3|) (4.1)
holds for § € V and toy, w2, 101,102 € R, with |to; — 3| < 3¢ and |07 — 02| < s
(H2): R =0 is the only function in C¢,.(Je, [0, 5¢]) which satisfies the integral inequality
R() < oo
Te(AG) L, (6,01)

) €02 1/ (s)g (S,R(S), (kHDgifgwR) (5)) d
/

+ = : s,
AA@) Jo, () - w(s)'
with p < ¢ < 1.
For § € V, we define the successive approximations of the problem (1.1) as follows:
vy
m0(5) = L s
Fk(/\C:s)‘b?g, (6,61)
tog,
wg11(0) =
Tx(AGs)®E, (6, 61)

ds.

. 1 /5 Y'(s)s (3, wg(s), (f@gifz;wmﬁ) (S))
¢
ARG Jo, ($(6) = ()
Theorem 4.1. Assume that the hypotheses (Hy)-(Hz) hold. Then, the successive approzi-

mations wg; 5 € N are well defined and converge to the unique solution of the problem (1.1)
uniformly in Ceyup (V).

Proof. Since the function ¢ is continuous, then the successive approximations are well de-
fined. Differentiating the two sides of the successive approximations wg; 5 € N by using
the A-generalized 1-Hilfer fractional derivative of order (1, by Lemma 2.3, Lemma 2.4 and
Theorem 2.3, we have

(kHDgi’_fwmo) (8)=0, 6¢co,

(kH@gifz%wmﬂH) (6) = ¢ (5, w05(8), (kHDgifz%wmﬂ) (5)) . fco.
And since g € C¢,.5(V), then there exist two constants d1,d2 > 0 such that

”mﬁHng,;w <4 and HkHDE)?-E%meHCQ;«/} < d.
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Let (51, bo € Vv, 01 < da. Then,

| ((82) — ¥(61)) '~ w(82) — (¥(61) — 1 (61))' ™ 10,5(81)]
((02) — (61)" /52 V()5 (s, 051 (s), (FDEHE 5 1)(s))
ADG) 2 ((62) = p(s))' %
((81) — (02)' /51 V()5 (s, 1(s), (F DG w5-1)(s))
AP G 2 ((61) — (s) %
_ () —(6:) /62 W (8)ls(s, w1 (5), (F DpyE105-1) (5))]
- ARG 2 ((6:) — (s))F
L1 /51 ($(%2) = (6:1)" _ (¥(81) — ¥ (61)
ADMC) o | (p(3) = ()™ ((61) — (s))
x [s(s,5-1(s), (1 Dg 105 1)(s))[ds

N

ds

ds

ds

< su §) —v(61) % (6,0,
- (6,m,%)ev><[%,61]><[0,62] | ((0) =9 (0) ( ) A\ (C1)

N ERLOICIO) w<911>><3*1 i
| —

(S§
X

o ((62) —(s)

_ S
sup (W(8) = (01)) " (00,9 o
(8,10,3)EV x[0,51]%[0,82]
* /
01

A (C1)

($(61) — (1))~
($(61) — w(s) ™%

V() ($(8) = (61)) " ds.

By Lemma 2.2, we have

| (¥(82) = (61))" " w05)(J2 — (V(01) — (61))' " 105(61)]
sup | (1(8) — (61))" ™% (8,10, )|

< (m.3)EVx[0.61]x[0.52]
- ATA (G + AG3)

x TA(ACa) (10(62) — 1(61))' ™ ((02) — ¥(81)
sup | (¥(8) — 1(61))" < (8, w,

(6,0,3)€V x[0,61]%[0,62]

AT\ (Cr)
01
y /0 1

((82) = 9(60))' " ((6) — $(6:)"
&
($(02) =9(s)) ™™ ((61) = (s))
As 01 —> do the right hand side of the above inequality tends to zero. On the other
hand, we have

y‘,ﬁ?

~—

>
3
\(:2
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|(0(82) = (0) % (FDGE 05 ) (82) = (w(01) — w(00))' ™ (FDG w05 (81)]
< |((62) = w(00)' <(8a. w51 (82), (£ DG r05-1)(32))
= (B(0) = w(0)) " <0111 (01), (FDFF v01)(01))

— 0, as 51 —>(§2.

Thus,

($(02) = $(0)' % (F DG w5) (02) = ((81) = (01)' = (DG ws) (81)] — 0,
as 51 — 52.

As a result, the sequences {wg(d); 8 € N} and {(f@éi’f;wm/;) (0); B € N} are equicon-
tinuous on V.

Let
¥ :={pel0,1] : {rg(d); B € N} converges uniformly on .J,} .

If ¥ = 1, then we have the global convergence of successive approximations. Suppose that
T < 1, then the sequence {wg(d); 8 € N} converges uniformly on Jy. As this sequence is
equicontinuous, it converges uniformly to a continuous function t(4). In the case that we
prove that there exists £ € (¢, 1] that {wg(d); 8 € N} converges uniformly on Je, this will
yield a contradiction.

Put () = w(d) for € Jy. From (H;), there exist a constant » > 0 and a continuous
function h : V x [0, 5] x [0, 2] — R, ensuring inequality (4.1). Also, there exist £ € [, 1]
and By € N, such that for all 6 € Je and 3, > By, we have

3(8) — 10 (6)] < =
and
(D5 ws) (0) = (HD§ " wa) (9)] < =
For all § € J¢, put
RE(6) = w3 (8) = win(9)],

Rx(6) = sup RP)(5),
B,a>X

bl

(Fo5RO) 0) = [ (F D51 s ) (6) = (D5 o) 9)

and

(kH'Dgif%wa) (0) = ;353 (f@éiﬁz;wR(ﬁﬂ)) (5),

Since the sequence Ry(d) is non-increasing, it is convergent to a function R(J) for each
d € J¢. From the equicontinuity of {Rx(0)}, it follows that lim Ry(0) = R(J) uniformly on
A—00
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Je¢. Furthermore, for § € J¢ and 3, a > A, we have
R(B"Oé)(is) = [wp(6) — 1,,(0)]

< sup [wg(s) — 10, (s)|
s€[0,6]

’ ¥'(s)
< COREIS)

X ’g 8,081 ( (H®<1,<2,wm6_1) (s)) —g (s,ma_l(s) (HDgifQ’wmaq) (8)) ‘ ds

£02 ¢/(S)
< b () - w(s)'

X ’g (s, wg_1(s), (Hﬂ)gif’wmg_l) (s)) - (8, Wa—1(8), (HDgif’wmaq) (s)) ‘ ds.
Then, by inequality (4.1), we have
R (§)

L V'(s)
< () = w(s)'*
@ | (FD5 w41) (5) = (£ DG w0 ) (5)]) ds

L > w,(s) (B=1,a—1) HqyC1,¢25% p(B—1,a—1)
SAW@/% (zﬁ(a)w(s))l?h(s’R (o). (Fofifen ) () ds.

x h (S,|m5,1( ) a1

Thus,

_ I b ¥'(s) o Be (s) (HpGcat .
50 556 @z}«s)—w(s))l‘fh(ﬂh_l()(ibel+ Froa) ()

By the Lebesgue dominated convergence theorem we have

1 62 ’l/)/ S 1,623
R®) <51 / (5) —h (S,R(s) (HDglﬁ ”’R) (s )) ds.
MBS0 (1h(8) —o(s))
Then, by (Hz) we get R = 0 on Jg¢, which yields that lim Ry(0) = 0 uniformly on J¢. Thus,
A—00

{wx(0)}532, is a Cauchy sequence on ©,. Consequently, {roy(5)}>°
on J¢, which yields the contradiction.

S, is uniformly convergent

Also, {wx(6)}5? | converges uniformly on V to a continuous function v, (5). By the

Lebesgue dominated convergence theorem, we get

- 0o, 1 ’ ¥'(s)
ALOO Ty (AGs)®E (6, 61) * ALA(C1) /0 (1 (8) — (s)) -3

B g, 1 ’ Y'(s) s HpGGity ) (s)) ds
= Fk()\<3)¢)2b3(6791) + AFA(CI) /91 (’(/}(6) q/}(S))l_c/\lh( 7173*( ) ( D91+ ) ( )) d )

for all § € V. This means that to, is a solution of the problem (1.1).

h(s,mx(s) (Hjagif Yrox )( )) ds

Let us now prove the uniqueness result of the problem (1.1). Let to; and toy be two
solutions of (1.1). As above, put

0= {p € [0,1] : w1 (8) = w02() for § € Jut
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and suppose that ¥ < 1. There exist a constant > 0 and a comparison function h :
J5 % [0, ] x [0, 2] — R verifying inequality (4.1). We take § € (u, 1) such that
01(6) — w2(5)[ < 5,
and
(D500 ) (0) = (HDGE¥10) (0)] < 5=
for § € J¢. Then, for all § € J¢, we have

[01(8) — 12(0)]

L V'(s)
<
@ b (W)~ w(s)' ¥

[<(r,wos), (H D5 {100 ) (7)) = s(rwou (), (FDGf w1 ) (5))| ds

X

o~

1 592 ’(/J/(S)
<
< (¥(6) ~ v(s)'

X h (57 [o(s) — 11 (s)], (Hﬂgifz’wm ) (s) — (Hngifz’ ml) (S)D ds.

Again, by (Hz) we get wy —tvg = 0 on Je. This gives us tv; = 1y on Je, which gives

a contradiction. Consequently, ¥ = 1 and the solution of the problem (1.1) is unique on
V. O

5. Some Examples

We give now some examples that illustrate our obtained results throughout the paper.

Example 5.1. Toking (o — 0, (1 = %, &= % =0,0,=1, () =e% and vy = 0, we
obtain the following problem:

6_5 6_5

(F28"w) )= g5 e * 130 (1+ | (1105 0) (3)]) eV

(Héjrl;wm) (0) = 0.

(5.1)
Set
S e’ e’ 50,1, m.JeR
<(6,w,3) = 190 (L +w) " 1B0(A+[S]) €0.1], w.SER.
We have
Ceyp(V) = C1,4(V) = {w: (0,1] > R: 6 — e’w(6) € C(V,R)}.

Since the continuous function ¢ € C%;w(V). For any w,10,w,10 € R, and 6 € [0,1], we have

o~ 1 - ~
) ) < — |t — =Gl
[6(6,10,3) = <(6, 10, )| < 55w — o + o[ = I
Hence hypothesis (Cda) is satisfied with
1 1
1=— and j= —.
190 130
Neat, the condition (3.7) is verifies with A =1, (3 = % and (1 = % Indeed,

y‘,f)

LANG) ($(02) —9(61) > _ 1ol1(z) (€° —1)* L

(1= 7)TA(G +AG) (1 - )T (1)
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Some calculations indicate that all of the requirements of Theorem 3.2 are verified. Thus,
(5.1) has a unique solution.

Example 5.2. Taking (; =0, (1 =3, 6=1,6,=0,0,=1, ¥(0) = ”;T_‘S and wg = 0,
we consider the following problem involving the \-generalized 1-Hilfer fractional derivative:

Hemd.00 _ VI3 (7ef + /207 4 33)
( Dos “’) (6)_7965+1 <1+|m(5)l+}(f[ 5f%> (6)‘)

, 0€:=10,7,
(5.2)

(33" w) (0%) = 0.

Set
Hapy 3,05 VT3 (768 4 /267 4 33)
<(6,w(0), (1 Dy w)(9)) = . :
79¢5+1 (1+|m )|+ ’(Hﬂg’ ’ )(5)‘)
where (1 = %
We have

VT =20

™

Ceyip(V) = C1y(V) = {m 2(0,71] 2 R:6— w(0) GC(V,R)}.

For each 11,101, w2,105 € R and 6 € [0, 7], we have

7’ + /267 + 33
79ed+1
Therefore, (Hy) is verified for all § € [0,7], 5 > 0 and the comparison function h : V X

[0, 5¢] x [0, 3] — Ry is defined by:

(0, 1, 2) — ¢(6, 101, 102)| < [[to1 — 01| + [tog — toa]] .

7e® + /267 + 33

h(d,ml,mg) = 79e0+1

(m1 =+ mg).
Moreover, we have

lim (C (62,m1,m2) — g(él,ml,mg)) =0.
51*}62

Thus, < is equicontinuous. Consequently, Theorem 4.1 means that the successive approxi-
mations tog; B € N, defined by

we(6) =0, 6¢€][0,n],

wg1(0) = — ds,

1
2

1 /5 e’ + V267 +33
F(z) Jo 22 (2 — ﬁ) 79er+1 (1 -+ [ro(8)| + | (10§, w) (5)])

converges uniformly on [0, 7] to the unique solution of the problem (5.2).
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