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EXISTENCE, UNIQUENESS AND SUCCESSIVE APPROXIMATIONS

FOR (λ, ψ)-HILFER FRACTIONAL DIFFERENTIAL EQUATIONS
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The focus of this paper is on investigating a particular type of nonlinear

(λ, ψ)-Hilfer fractional differential equations, and analyzing their existence results. Our
approach involves utilizing Banach’s fixed point theorem, and we also explore the global

convergence of successive approximations to provide additional insights into the topic.
To further illustrate our findings, we provide some examples that supplement our main

results.
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1. Introduction

Fractional calculus extends differentiation and integration to non-integer orders, gain-
ing attention in theoretical studies and practical applications across research domains. Its
versatility has made it a crucial tool in the field. Recently, there has been a significant
increase in research on fractional calculus, exploring various outcomes under different con-
ditions and forms of fractional differential equations and inclusions. For more details on the
applications of fractional calculus, the reader is directed to the books of Herrmann [14], Hil-
fer [15], Kilbas et al. [16] and Samko et al. [29]. Agrawal [4] introduced some generalizations
of fractional integrals and derivatives and presented some of their properties. In [5,6], Ben-
chohra et al. demonstrated the existence, uniqueness, and stability results for various classes
of problems with different conditions with some form of extension of the well-known Hilfer
fractional derivative which unifies the Riemann-Liouville and Caputo fractional derivatives.

In a recent publication [11], Diaz introduced novel definitions for the special func-
tions λ-gamma and λ-beta. Those interested can find more information in other sources
such as [9, 18, 19]. Sousa et al. presented the ψ-Hilfer fractional derivative in another work
[33], highlighting important properties related to this type of fractional operator. Further
insights and results based on this operator can be explored in papers like [3, 32] and their
references. Inspired by the cited papers, we have introduced a new extension of the renowned
Hilfer fractional derivative [28]. This extension, called the λ-generalized ψ-Hilfer fractional
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derivative, enabled us to establish a generalized version of Gr”onwall’s lemma and explore
various types of Ulam stability. Additionally, we have thoroughly investigated qualitative
and quantitative results for different classes of fractional differential problems [17,21–27], all
made possible by this new generalized fractional operator. More details can be found in [5,6].

Several research studies have investigated the convergence of successive approxima-
tions for nonlinear functional equations and the global convergence of successive approxima-
tions for functional differential equations [1,2,30,31]. Browder [7] established a generalization
of the classical Picard-Banach contraction principle, utilizing the convergence of successive
approximations in 1968. In a similar vein, Chen [8] employed the method of successive
approximations to analyze the existence of solutions for functional integral equations in
1981. Czlapiiǹski [10] investigated the global convergence of successive approximations of
the Darboux problem for partial functional differential equations with infinite delay, while
Faina [12] studied the generic property of global convergence of successive approximations
for functional differential equations with infinite delay.

Motivated by the aforementioned publications, in this paper, we study the following
problem:

(
H
k D

ζ1,ζ2;ψ
θ1+

w
)
(δ) = ς

(
δ,w(δ),

(
H
k D

ζ1,ζ2;ψ
θ1+

w
)
(δ)
)
, δ ∈ ∇ := (θ1, θ2],(

J
λ(1−ζ3),λ;ψ
θ1+

w
)
(θ+1 ) = wθ1 ,

(1.1)

where H
k D

ζ1,ζ2;ψ
θ1+

and J
λ(1−ζ3),λ;ψ
θ1+

are, respectively, the λ-generalized ψ-Hilfer fractional de-

rivative of order ζ1 ∈ (0, λ) and type ζ2 ∈ [0, 1], and λ-generalized ψ-fractional integral of
order λ(1 − ζ3), where ζ3 = 1

λ (ζ2(λ − ζ1) + ζ1), λ > 0, ς : [θ1, θ2] × R × R −→ R are given
functions, and wθ1 ∈ R.

This paper is structured as follows: In Section 2, we introduce the notations and
offer an overview of the (λ, ψ)-Hilfer fractional derivatives that we will utilize throughout
the manuscript. In Section 3, we present an existence result of the problem (1.1) based on
Banach’s fixed point theorem. In Section 4, we examine a result on the global convergence
of successive approximations. Finally, in the last section, we provide various examples to
reinforce the obtained results.

2. Preliminaries

First, we will present the weighted spaces, notations, definitions, and preliminary
concepts that will be used in this paper. Let 0 < θ1 < θ2 < ∞, ∇ = [θ1, θ2], and let
ζ1 ∈ (0, λ), ϱ ∈ [0, 1], λ > 0 and ζ3 = 1

λ (ϱ(λ− ζ1) + ζ1).
By C(∇,R) we denote the Banach space of all continuous functions from ∇ into R

with the norm

∥w∥∞ = sup{|w(δ)| : δ ∈ ∇}.
Let ACβ(∇,R) and Cβ(∇,R) be the spaces of β-times absolutely continuous and

β-times continuously differentiable functions on ∇, respectively.
Consider the weighted Banach space

Cζ3;ψ(∇) =
{
w : (θ1, θ2] → R : δ → Φψζ3(δ, θ1)w(δ) ∈ C(∇,R)

}
,

where Φψζ3(δ, θ1) = (ψ(δ)− ψ(θ1))
1−ζ3 , with the norm

∥w∥Cζ3;ψ
= sup
δ∈∇

∣∣∣Φψζ3(δ, θ1)w(δ)
∣∣∣ ,
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and

Cβζ3;ψ(∇) =
{
w ∈ Cβ−1(∇) : w(β) ∈ Cζ3;ψ(∇)

}
, β ∈ N,

C0
ζ3;ψ(∇) = Cζ3;ψ(∇),

with the norm

∥w∥Cβζ3;ψ
=

β−1∑
i=0

∥w(i)∥∞ + ∥w(β)∥Cζ3;ψ
.

Consider the space Xp
ψ(θ1, θ2) of those real-valued Lebesgue measurable functions µ

on [θ1, θ2] with ∥µ∥Xpψ <∞, and the norm

∥µ∥Xpψ =

(∫ θ2

θ1

ψ′(δ)|µ(δ)|pdδ

) 1
p

,

where ψ is an increasing and positive function on [θ1, θ2] where ψ
′ is continuous on [θ1, θ2]

and 1 ≤ p ≤ ∞.

Definition 2.1 ([11]). The λ-gamma function is given by

Γλ(δ) =

∫ ∞

0

sδ−1e−
sλ

λ ds, δ > 0.

When λ → 1 then Γ(δ) = Γλ(δ), and some other useful relations are Γλ(δ) = λ
δ
λ−1Γ

(
δ
λ

)
,

Γλ(δ + λ) = δΓλ(δ) and Γλ(λ) = 1. Moreover, the λ-beta function is given as

Bλ(δ, ξ) =
1

λ

∫ 1

0

s
δ
λ−1(1− s)

ξ
λ−1ds,

so that Bλ(δ, ξ) =
1
λB
(
δ
λ ,

ξ
λ

)
and Bλ(δ, ξ) =

Γλ(δ)Γλ(ξ)
Γλ(δ+ξ)

.

Now, we give the definition to the integral fractional operator used throughout this
paper and some of its properties.

Definition 2.2 (λ-generalized ψ-fractional integral [20]). Let µ ∈ Xp
ψ(θ1, θ2), ψ(δ) > 0 be

an increasing function on (θ1, θ2] and ψ
′(δ) > 0 be continuous on (θ1, θ2). The generalized

λ-fractional integral operators of a function µ of order ζ1 > 0 is defined by:

J
ζ1,λ;ψ
θ1+

µ(δ) =

∫ δ

θ1

Φ̄λ,ψζ1 (δ, s)ψ′(s)µ(s)ds,

with λ > 0 and Φ̄λ,ψζ1 (δ, s) =
(ψ(δ)− ψ(s))

ζ1
λ −1

λΓλ(ζ1)
.

Theorem 2.1 ([23, 24]). Let µ ∈ Xp
ψ(θ1, θ2), ζ1 > 0 and λ > 0. Then J

ζ1,λ;ψ
θ1+

µ ∈
C([θ1, θ2],R).

Lemma 2.1 ([23, 24]). Let ζ1 > 0, ϱ > 0 and λ > 0. Then, the semigroup properties that
follow are met:

J
ζ1,λ;ψ
θ1+

J
ϱ,λ;ψ
θ1+

µ(δ) = J
ζ1+ϱ,λ;ψ
θ1+

µ(δ) = J
ϱ,λ;ψ
θ1+

J
ζ1,λ;ψ
θ1+

µ(δ).

Lemma 2.2 ([23,24]). Let ζ1, ϱ > 0 and λ > 0. Then, we get

J
ζ1,λ;ψ
θ1+

Φ̄λ,ψϱ (δ, θ1) = Φ̄λ,ψζ1+ϱ(δ, θ1).
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Theorem 2.2 ([23, 24]). Let 0 < θ1 < θ2 < ∞, ζ1, ϱ > 0, 0 ≤ ζ3 = 1
λ (ϱ(λ − ζ1) + ζ1) < 1,

λ > 0 and w ∈ Cζ3;ψ(∇). If
ζ1
λ
> 1− ζ3, then(

J
ζ1,λ;ψ
θ1+

w
)
(θ1) = lim

δ→θ1+

(
J
ζ1,λ;ψ
θ1+

w
)
(δ) = 0.

Definition 2.3 (λ-generalized ψ-Hilfer derivative [23,24]). Let α− 1 <
ζ1
λ

≤ α with α ∈ N,
−∞ ≤ θ1 < θ2 ≤ ∞ and µ, ψ ∈ Cα([θ1, θ2],R) where ψ is increasing and ψ′(δ) ̸= 0, for all

δ ∈ [θ1, θ2]. The λ-generalized ψ-Hilfer fractional derivatives Hk D
ζ1,ϱ;ψ
θ1+

(·) of a function µ of
order ζ1 and type 0 ≤ ϱ ≤ 1, with λ > 0 is given by:

H
k D

ζ1,ϱ;ψ
θ1+

µ (δ) =

(
J
ϱ(λα−ζ1),λ;ψ
θ1+

(
1

ψ′ (δ)

d

dδ

)α (
λαJ

(1−ϱ)(λα−ζ1),λ;ψ
θ1+

µ
))

(δ)

=
(
J
ϱ(λα−ζ1),λ;ψ
θ1+

δαψ

(
λαJ

(1−ϱ)(λα−ζ1),λ;ψ
θ1+

µ
))

(δ) ,

where δαψ =

(
1

ψ′ (δ)

d

dδ

)α
.

Lemma 2.3 ([23, 24]). Let δ > θ1, 0 <
ζ1
λ
< 1, 0 ≤ ϱ ≤ 1, λ > 0. Then for 0 < ζ3 < 1; ζ3 =

1
λ (ϱ(λ− ζ1) + ζ1), we have [

H
k D

ζ1,ϱ;ψ
θ1+

(
Φψζ3(s, θ1)

)−1
]
(δ) = 0.

Theorem 2.3 ([23, 24]). If µ ∈ Cαζ3;ψ[θ1, θ2], α − 1 <
ζ1
λ
< α, 0 ≤ ϱ ≤ 1, where α ∈ N and

λ > 0, then(
J
ζ1,λ;ψ
θ1+

H
k D

ζ1,ϱ;ψ
θ1+

µ
)
(δ) = µ(δ)−

α∑
i=1

(ψ(δ)− ψ(θ1))
ζ3−i

λi−αΓk(λ(ζ3 − i+ 1))

{
δα−iψ

(
J
λ(α−ζ3),λ;ψ
θ1+

µ(θ1)
)}

,

where

ζ3 =
1

λ
(ϱ(λα− ζ1) + ζ1) .

If α = 1, we have(
J
ζ1,λ;ψ
θ1+

H
k D

ζ1,ϱ;ψ
θ1+

µ
)
(δ) = µ(δ)− (ψ(δ)− ψ(θ1))

ζ3−1

Γk(ϱ(λ− ζ1) + ζ1)
J
(1−ϱ)(λ−ζ1),λ;ψ
θ1+

µ(θ1).

Lemma 2.4 ([23, 24]). Let ζ1 > 0, 0 ≤ ϱ ≤ 1, and w ∈ C1
ζ3;ψ

(∇), where λ > 0. Then for

δ ∈ (θ1, θ2], we have (
H
k D

ζ1,ϱ;ψ
θ1+

J
ζ1,λ;ψ
θ1+

w
)
(δ) = w(δ).

3. Existence of Solutions

Initially, we present the following theorem in order to convert our system (1.1) into
a fractional integral equation.

Theorem 3.1. Let ζ3 =
ϱ(λ− ζ1) + ζ1

λ
, where λ > 0, 0 < ζ1 < λ, 0 ≤ ϱ ≤ 1, and let

φ(·) ∈ C(∇,R). The function w satisfies the initial value problem for λ-generalized ψ-Hilfer
fractional differential equations:(

H
k D

ζ1,ϱ;ψ
θ1+

w
)
(δ) = φ(δ), δ ∈ (θ1, θ2], (3.1)
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J
λ(1−ζ3),λ;ψ
θ1+

w
)
(θ+1 ) = wθ1 , (3.2)

if and only if it verifies the following integral equation:

w(δ) =
wθ1

Γk(λζ3)Φ
ψ
ζ3
(δ, θ1)

+
(
J
ζ1,λ;ψ
θ1+

φ
)
(δ), δ ∈ (θ1, θ2]. (3.3)

Proof. Assume that w satisfies the equations (3.1)-(3.2). We apply J
ζ1,λ;ψ
θ1+

(·) on both sides

of equation (3.1) to obtain(
J
ζ1,λ;ψ
θ1+

H
k D

ζ1,ϱ;ψ
θ1+

w
)
(δ) =

(
J
ζ1,λ;ψ
θ1+

φ
)
(δ),

and using Theorem 2.3, we get

w(δ) =
J
λ(1−ζ3),λ;ψ
θ1+

w(θ1)

Φψζ3(δ, θ1)Γk(λζ3)
+
(
J
ζ1,λ;ψ
θ1+

φ
)
(δ). (3.4)

From the initial condition (3.2), we get

w(δ) =
J
λ(1−ζ3),λ;ψ
θ1+

wθ1

Φψζ3(δ, θ1)Γk(λζ3)
+
(
J
ζ1,λ;ψ
θ1+

φ
)
(δ)

=
wθ1

Γk(λζ3)Φ
ψ
ζ3
(δ, θ1)

+
(
J
ζ1,λ;ψ
θ1+

φ
)
(δ).

For the converse, let us now prove that if w satisfies equation (3.3), then it satisfies

(3.1)-(3.2). We apply the operator Hk D
ζ1,ϱ;ψ
θ1+

(·) on equation (3.3) to get(
H
k D

ζ1,ϱ;ψ
θ1+

w
)
(δ) = H

k D
ζ1,ϱ;ψ
θ1+

(
wθ1

Φψζ3(δ, θ1)Γk(λζ3)

)
+
(
H
k D

ζ1,ϱ;ψ
θ1+

J
ζ1,λ;ψ
θ1+

φ
)
(δ).

Using Lemma 2.3 and Lemma 2.4, we get (3.1). Now we apply the operator J
λ(1−ζ3),λ;ψ
θ1+

(·)
to equation (3.3), to obtain(

J
λ(1−ζ3),λ;ψ
θ1+

w
)
(δ) =

wθ1
Γk(λζ3)

J
λ(1−ζ3),λ;ψ
θ1+

(
1

Φψζ3(δ, θ1)

)
+
(
J
λ(1−ζ3),λ;ψ
θ1+

J
ζ1,λ;ψ
θ1+

φ
)
(δ).

Now, using Lemma 2.1 and 2.2, we get(
J
λ(1−ζ3),λ;ψ
θ1+

w
)
(δ) = wθ1 +

(
J
λ(1−ζ3)+ζ1,λ;ψ
θ1+

φ
)
(δ). (3.5)

Using Theorem 2.2 with δ → θ1, we obtain (3.2). This completes the proof. □

As a consequence of Theorem 3.1, we have the following result:

Lemma 3.1. Let ζ3 =
ζ2(λ− ϑ) + ϑ

λ
where 0 < ϑ < λ and 0 ≤ ζ2 ≤ 1. Then w ∈ Cζ3;ψ(∇)

satisfies the system (1.1) if and only if w is the fixed point of the operator H : Cζ3;ψ(∇) →
Cζ3;ψ(∇) defined by:

H(w)(δ) =
wθ1

Γk(λζ3)Φ
ψ
ζ3
(δ, θ1)

+
(
J
ζ1,λ;ψ
θ1+

φ
)
(δ), (3.6)

where φ ∈ Cζ3;ψ(∇) such that φ(δ) = ς (δ,w(δ), φ(δ)).

We may employ Theorem 2.1 to easily demonstrate that for w ∈ Cζ3;ψ(∇), we have
H(w) ∈ Cζ3;ψ(∇), where H is the operator defined in (3.6).

The hypotheses:

(Cd1) The function ς : ∇× R× R → R; is continuous.
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(Cd2) There exist constants ı > 0 and 0 < ȷ < 1 such that

|ς(δ,w,w1)− ς(δ,ℑ,ℑ1)| ≤ ı|w−ℑ|+ ȷ|w1 −ℑ1|
for any w,w1,ℑ,ℑ1 ∈ R and δ ∈ ∇.

Remark 3.1. We note that for any w,ℑ ∈ R, and each δ ∈ ∇, hypothesis (Cd1) implies
that

|ς(δ,w,ℑ)| ≤ ı|w|+ ȷ|ℑ|+ ς∗,

where ς∗ = sup
δ∈∇

ς(δ, 0, 0).

We can now declare and demonstrate our existence result for problem (1.1). The first result
is based on Banach’s fixed point theorem [13].

Theorem 3.2. Suppose that (Cd1) and (Cd2) hold. If

ℓ :=
ıΓλ(λζ3) (ψ(θ2)− ψ(θ1))

ζ1
λ

(1− ȷ)Γλ(ζ1 + λζ3)
< 1, (3.7)

then problem (1.1) has a unique solution on ∇.

Proof. Consider the operator H defined in (3.6). Let w,ℑ ∈ Cζ3;ψ(∇). Then, for δ ∈ ∇ we
have

|H(w)(δ)−H(ℑ)(δ)| ≤ 1

λΓλ(ζ1)

∫ δ

θ1

(ψ(δ)− ψ(s))
ζ1
λ −1

ψ′(s)|φ1(s)− φ2(s)|ds

where φ1, φ2 ∈ Cζ3;ψ(∇) such that

φ1(δ) = ς (δ,w(δ), φ1(δ)) ,

φ2(δ) = ς (δ,ℑ(δ), φ2(δ)) .

By hypothesis (Cd2) we have

|φ1(s)− φ2(s)| ≤
ı

1− ȷ
|w(δ)−ℑ(δ)|.

Therefore, for each δ ∈ ∇

|H(w)(δ)−H(ℑ)(δ)| ≤ ı

(1− ȷ)λΓλ(ζ1)

∫ δ

θ1

(ψ(δ)− ψ(s))
ζ1
λ −1

ψ′(s)|w(s)−ℑ(s)|ds

≤
ı∥w−ℑ∥Cζ3;ψ

(1− ȷ)
J
ζ1,λ;ψ
θ1+

(ψ(δ)− ψ(θ1))
ζ3−1

.

By Lemma 2.2, we have

|H(w)(δ)−H(ℑ)(δ)| ≤
[

ıΓλ(λζ3)

(1− ȷ)Γλ(ζ1 + λζ3)
(ψ(δ)− ψ(θ1))

ζ1+λζ3
λ −1

]
∥w−ℑ∥Cζ3;ψ

.

Hence,

| (ψ(δ)− ψ(θ1))
1−ζ3 (H(w)(δ)−H(ℑ)(δ)) | ≤

[
ıΓλ(λζ3) (ψ(δ)− ψ(θ1))

ζ1
λ

(1− ȷ)Γλ(ζ1 + λζ3)

]
∥w−ℑ∥Cζ3;ψ

≤

[
ıΓλ(λζ3) (ψ(θ2)− ψ(θ1))

ζ1
λ

(1− ȷ)Γλ(ζ1 + λζ3)

]
∥w−ℑ∥Cζ3;ψ

,

which implies that

∥Hw−Hℑ∥Cζ3;ψ
≤

[
ıΓλ(λζ3) (ψ(θ2)− ψ(θ1))

ζ1
λ

(1− ȷ)Γλ(ζ1 + λζ3)

]
∥w−ℑ∥Cζ3;ψ

.
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Hence, we get

∥Hw−Hℑ∥Cζ3;ψ
≤ ℓ∥w−ℑ∥Cζ3;ψ

.

Consequently, by Banach’s fixed point theorem, the operator H has a unique fixed
point, which is the unique solution of our problem (1.1) on ∇. □

4. Successive Approximations and Uniqueness Results

This section is devoted to giving the main result of the global convergence of successive
approximations of our problem (1.1). We will study the solution in Cζ3;ψ(∇) of our problem.

Set Jµ := [θ1, µθ2] for any µ ∈ [0, 1]. In what follows, we need the following hypothe-
ses:

(H1): There exist a constant κ > 0 and a continuous function h : ∇× [0,κ]× [0,κ] −→
R+, such that h(δ, ·, ·) is nondecreasing for all δ ∈ ∇ and the inequality

|ς(δ,w1, w̄1)− ς(δ,w2, w̄2)| ≤ h (δ, |w1 −w2|, |w̄1 − w̄2|) (4.1)

holds for δ ∈ ∇ and w1,w2, w̄1, w̄2 ∈ R, with |w1 −w2| ≤ κ and |w̄1 − w̄2| ≤ κ.
(H2): R ≡ 0 is the only function in Cζ3;ψ(Jξ, [0,κ]) which satisfies the integral inequality

R(δ) ≤ wθ1

Γk(λζ3)Φ
ψ
ζ3
(δ, θ1)

+
1

λΓλ(ζ1)

∫ ξθ2

θ1

ψ′(s)ς
(
s,R(s),

(
H
k D

ζ1,ζ2;ψ
θ1+

R
)
(s)
)

(ψ(δ)− ψ(s))
1− ζ1

λ

ds,

with µ ≤ ξ ≤ 1.

For δ ∈ ∇, we define the successive approximations of the problem (1.1) as follows:

w0(δ) =
wθ1

Γk(λζ3)Φ
ψ
ζ3
(δ, θ1)

,

wβ+1(δ) =
wθ1

Γk(λζ3)Φ
ψ
ζ3
(δ, θ1)

+
1

λΓλ(ζ1)

∫ δ

θ1

ψ′(s)ς
(
s,wβ(s),

(
H
k D

ζ1,ζ2;ψ
θ1+

wβ

)
(s)
)

(ψ(δ)− ψ(s))
1− ζ1

λ

ds.

Theorem 4.1. Assume that the hypotheses (H1)-(H2) hold. Then, the successive approxi-
mations wβ; β ∈ N are well defined and converge to the unique solution of the problem (1.1)
uniformly in Cζ3;ψ(∇).

Proof. Since the function ς is continuous, then the successive approximations are well de-
fined. Differentiating the two sides of the successive approximations wβ ; β ∈ N by using
the λ-generalized ψ-Hilfer fractional derivative of order ζ1, by Lemma 2.3, Lemma 2.4 and
Theorem 2.3, we have (

H
k D

ζ1,ζ2;ψ
θ1+

w0

)
(δ) = 0, θ ∈ Θ,(

H
k D

ζ1,ζ2;ψ
θ1+

wβ+1

)
(δ) = ς

(
δ,wβ(δ),

(
H
k D

ζ1,ζ2;ψ
θ1+

wβ

)
(δ)
)
, θ ∈ Θ.

And since wβ ∈ Cζ3;ψ(∇), then there exist two constants δ1, δ2 > 0 such that

∥wβ∥Cζ3;ψ
≤ δ1 and ∥Hk D

ζ1,ζ2;ψ
θ1+

wβ∥Cζ3;ψ
≤ δ2.
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Let δ1, δ2 ∈ ∇, δ1 < δ2. Then,

| (ψ(δ2)− ψ(θ1))
1−ζ3 wβ(δ2)− (ψ(δ1)− ψ(θ1))

1−ζ3 wβ(δ1)|

≤

∣∣∣∣∣ (ψ(δ2)− ψ(θ1))
1−ζ3

λΓλ(ζ1)

∫ δ2

θ1

ψ′(s)ς(s,wβ−1(s), (
H
k D

ζ1,ζ2;ψ
θ1+

wβ−1)(s))

(ψ(δ2)− ψ(s))
1− ζ1

λ

ds

− (ψ(δ1)− ψ(θ1))
1−ζ3

λΓλ(ζ1)

∫ δ1

θ1

ψ′(s)ς(s,wβ−1(s), (
H
k D

ζ1,ζ2;ψ
θ1+

wβ−1)(s))

(ψ(δ1)− ψ(s))
1− ζ1

λ

ds

∣∣∣∣∣
≤ (ψ(δ2)− ψ(θ1))

1−ζ3

λΓλ(ζ1)

∫ δ2

δ1

ψ′(s)|ς(s,wβ−1(s), (
H
k D

ζ1,ζ2;ψ
θ1+

wβ−1)(s))|

(ψ(δ2)− ψ(s))
1− ζ1

λ

ds

+
1

λΓλ(ζ1)

∫ δ1

θ1

∣∣∣∣∣ (ψ(δ2)− ψ(θ1))
1−ζ3

(ψ(δ2)− ψ(s))
1− ζ1

λ

− (ψ(δ1)− ψ(θ1))
1−ζ3

(ψ(δ1)− ψ(s))
1− ζ1

λ

∣∣∣∣∣ψ′(s)

× |ς(s,wβ−1(s), (
H
k D

ζ1,ζ2;ψ
θ1+

wβ−1)(s))|ds

≤ sup
(δ,w,ℑ)∈∇×[0,δ1]×[0,δ2]

| (ψ(δ)− ψ(θ1))
1−ζ3 ς(δ,w,ℑ)| (ψ(δ2)− ψ(θ1))

1−ζ3

λΓλ(ζ1)

×
∫ δ2

δ1

ψ′(s) (ψ(δ)− ψ(θ1))
ζ3−1

(ψ(δ2)− ψ(s))
1− ζ1

λ

ds

+

sup
(δ,w,ℑ)∈∇×[0,δ1]×[0,δ2]

| (ψ(δ)− ψ(θ1))
1−ζ3 ς(δ,w,ℑ)|

λΓλ(ζ1)

∫ δ1

θ1

∣∣∣∣∣ (ψ(δ2)− ψ(θ1))
1−ζ3

(ψ(δ2)− ψ(s))
1− ζ1

λ

− (ψ(δ1)− ψ(θ1))
1−ζ3

(ψ(δ1)− ψ(s))
1− ζ1

λ

∣∣∣∣∣ψ′(s) (ψ(δ)− ψ(θ1))
ζ3−1

ds.

By Lemma 2.2, we have

| (ψ(δ2)− ψ(θ1))
1−ζ3 wβ)(δ2 − (ψ(δ1)− ψ(θ1))

1−ζ3 wβ(δ1)|

≤
sup

(δ,w,ℑ)∈∇×[0,δ1]×[0,δ2]

| (ψ(δ)− ψ(θ1))
1−ζ3 ς(δ,w,ℑ)|

λΓλ(ζ1 + λζ3)

× Γλ(λζ3) (ψ(θ2)− ψ(θ1))
1−ζ3 (ψ(δ2)− ψ(δ1))

ζ1
λ

+

sup
(δ,w,ℑ)∈∇×[0,δ1]×[0,δ2]

| (ψ(δ)− ψ(θ1))
1−ζ3 ς(δ,w,ℑ)|

λΓλ(ζ1)

×
∫ δ1

θ1

∣∣∣∣∣ (ψ(δ2)− ψ(θ1))
1−ζ3

(ψ(δ2)− ψ(s))
1− ζ1

λ

− (ψ(δ1)− ψ(θ1))
1−ζ3

(ψ(δ1)− ψ(s))
1− ζ1

λ

∣∣∣∣∣ψ′(s) (ψ(δ)− ψ(θ1))
ζ3−1

ds.

As δ1 −→ δ2 the right hand side of the above inequality tends to zero. On the other
hand, we have
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∣∣∣(ψ(δ2)− ψ(θ1))
1−ζ3

(
H
k D

ζ1,ζ2;ψ
θ1+

wβ

)
(δ2)− (ψ(δ1)− ψ(θ1))

1−ζ3
(
H
k D

ζ1,ζ2;ψ
θ1+

wβ

)
(δ1)

∣∣∣
≤
∣∣∣(ψ(δ2)− ψ(θ1))

1−ζ3 ς(δ2,wβ−1(δ2), (
H
k D

ζ1,ζ2;ψ
θ1+

wβ−1)(δ2))

− (ψ(δ1)− ψ(θ1))
1−ζ3 ς(δ1,wβ−1(δ1), (

H
k D

ζ1,ζ2;ψ
θ1+

wβ−1)(δ1))
∣∣∣

−→ 0, as δ1 −→ δ2.

Thus,∣∣∣(ψ(δ2)− ψ(θ1))
1−ζ3

(
H
k D

ζ1,ζ2;ψ
θ1+

wβ

)
(δ2)− (ψ(δ1)− ψ(θ1))

1−ζ3
(
H
k D

ζ1,ζ2;ψ
θ1+

wβ

)
(δ1)

∣∣∣ −→ 0,

as δ1 −→ δ2.

As a result, the sequences {wβ(δ); β ∈ N} and
{(

H
k D

ζ1,ζ2;ψ
θ1+

wβ

)
(δ); β ∈ N

}
are equicon-

tinuous on ∇.

Let

ϑ := {µ ∈ [0, 1] : {wβ(δ); β ∈ N} converges uniformly on Jµ} .

If ϑ = 1, then we have the global convergence of successive approximations. Suppose that
τ < 1, then the sequence {wβ(δ); β ∈ N} converges uniformly on Jϑ. As this sequence is
equicontinuous, it converges uniformly to a continuous function w̃(δ). In the case that we
prove that there exists ξ ∈ (ϑ, 1] that {wβ(δ); β ∈ N} converges uniformly on Jξ, this will
yield a contradiction.

Put w(δ) = w̃(δ) for δ ∈ Jϑ. From (H1), there exist a constant κ > 0 and a continuous
function h : ∇× [0,κ]× [0,κ] −→ R+ ensuring inequality (4.1). Also, there exist ξ ∈ [ϑ, 1]
and β0 ∈ N, such that for all δ ∈ Jξ and β, α > β0, we have

|wβ(δ)−wm(δ)| ≤ κ,

and ∣∣∣(Hk D
ζ1,ζ2;ψ
θ1+

wβ

)
(δ)−

(
H
k D

ζ1,ζ2;ψ
θ1+

wα

)
(δ)
∣∣∣ ≤ κ.

For all δ ∈ Jξ, put

R(β,α)(δ) = |wβ(δ)−wm(δ)|,

Rλ(δ) = sup
β,α≥λ

R(β,α)(δ),

(
H
k D

ζ1,ζ2;ψ
θ1+

R(β,α)
)
(δ) =

∣∣∣(Hk D
ζ1,ζ2;ψ
θ1+

wβ

)
(δ)−

(
H
k D

ζ1,ζ2;ψ
θ1+

wm

)
(δ)
∣∣∣ ,

and (
H
k D

ζ1,ζ2;ψ
θ1+

Rλ

)
(δ) = sup

β,α≥λ

(
H
k D

ζ1,ζ2;ψ
θ1+

R(β,α)
)
(δ),

Since the sequence Rλ(δ) is non-increasing, it is convergent to a function R(δ) for each
δ ∈ Jξ. From the equicontinuity of {Rλ(δ)}, it follows that lim

λ→∞
Rλ(δ) = R(δ) uniformly on
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Jξ. Furthermore, for δ ∈ Jξ and β, α ≥ λ, we have

R(β,α)(δ) = |wβ(δ)−wm(δ)|
≤ sup
s∈[0,δ]

|wβ(s)−wm(s)|

≤ 1

λΓλ(ζ1)

∫ δ

θ1

ψ′(s)

(ψ(δ)− ψ(s))
1− ζ1

λ

×
∣∣∣ς (s,wβ−1(s),

(
H
k D

ζ1,ζ2;ψ
θ1+

wβ−1

)
(s)
)
− ς

(
s,wα−1(s),

(
H
k D

ζ1,ζ2;ψ
θ1+

wα−1

)
(s)
)∣∣∣ ds

≤ 1

λΓλ(ζ1)

∫ ξθ2

θ1

ψ′(s)

(ψ(δ)− ψ(s))
1− ζ1

λ

×
∣∣∣ς (s,wβ−1(s),

(
H
k D

ζ1,ζ2;ψ
θ1+

wβ−1

)
(s)
)
− ς

(
s,wα−1(s),

(
H
k D

ζ1,ζ2;ψ
θ1+

wα−1

)
(s)
)∣∣∣ ds.

Then, by inequality (4.1), we have

R(β,α)(δ)

≤ 1

λΓλ(ζ1)

∫ ξθ2

θ1

ψ′(s)

(ψ(δ)− ψ(s))
1− ζ1

λ

× h
(
s, |wβ−1(s)−wα−1(s)|,

∣∣∣(Hk D
ζ1,ζ2;ψ
θ1+

wβ−1

)
(s)−

(
H
k D

ζ1,ζ2;ψ
θ1+

wα−1

)
(s)
∣∣∣) ds

≤ 1

λΓλ(ζ1)

∫ ξθ2

θ1

ψ′(s)

(ψ(δ)− ψ(s))
1− ζ1

λ

h
(
s,R(β−1,α−1)(s),

(
H
k D

ζ1,ζ2;ψ
θ1+

R(β−1,α−1)
)
(s)
)
ds.

Thus,

Rλ(δ) ≤
1

λΓλ(ζ1)

∫ ξθ2

θ1

ψ′(s)

(ψ(δ)− ψ(s))
1− ζ1

λ

h
(
s,Rλ−1(s),

(
H
k D

ζ1,ζ2;ψ
θ1+

Rλ−1

)
(s)
)
ds.

By the Lebesgue dominated convergence theorem we have

R(δ) ≤ 1

λΓλ(ζ1)

∫ ξθ2

θ1

ψ′(s)

(ψ(δ)− ψ(s))
1− ζ1

λ

h
(
s,R(s),

(
H
k D

ζ1,ζ2;ψ
θ1+

R
)
(s)
)
ds.

Then, by (H2) we get R ≡ 0 on Jξ, which yields that lim
λ→∞

Rλ(δ) = 0 uniformly on Jξ. Thus,

{wλ(θ)}∞λ=1 is a Cauchy sequence on Θξ. Consequently, {wλ(δ)}∞λ=1
is uniformly convergent

on Jξ, which yields the contradiction.

Also, {wλ(δ)}∞λ=1
converges uniformly on ∇ to a continuous function w∗(δ). By the

Lebesgue dominated convergence theorem, we get

lim
λ→∞

wθ1

Γk(λζ3)Φ
ψ
ζ3
(δ, θ1)

+
1

λΓλ(ζ1)

∫ δ

θ1

ψ′(s)

(ψ(δ)− ψ(s))
1− ζ1

λ

h
(
s,wλ(s),

(
H
k D

ζ1,ζ2;ψ
θ1+

wλ

)
(s)
)
ds

=
wθ1

Γk(λζ3)Φ
ψ
ζ3
(δ, θ1)

+
1

λΓλ(ζ1)

∫ δ

θ1

ψ′(s)

(ψ(δ)− ψ(s))
1− ζ1

λ

h
(
s,w∗(s),

(
H
k D

ζ1,ζ2;ψ
θ1+

w∗

)
(s)
)
ds,

for all δ ∈ ∇. This means that w∗ is a solution of the problem (1.1).

Let us now prove the uniqueness result of the problem (1.1). Let w1 and w2 be two
solutions of (1.1). As above, put

ϑ̂ := {µ ∈ [0, 1] : w1(δ) = w2(δ) for δ ∈ Jµ} ,
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and suppose that ϑ̂ < 1. There exist a constant κ > 0 and a comparison function h :
Jϑ̂ × [0,κ]× [0,κ] −→ R+ verifying inequality (4.1). We take ξ ∈ (µ, 1) such that

|w1(δ)−w2(δ)| ≤ κ,

and ∣∣∣(Hk D
ζ1,ζ2;ψ
θ1+

w1

)
(δ)−

(
H
k D

ζ1,ζ2;ψ
θ1+

w2

)
(δ)
∣∣∣ ≤ κ.

for δ ∈ Jξ. Then, for all δ ∈ Jξ, we have

|w1(δ)−w2(δ)|

≤ 1

λΓλ(ζ1)

∫ ξθ2

θ1

ψ′(s)

(ψ(δ)− ψ(s))
1− ζ1

λ

×
∣∣∣ς(τ,w0(s),

(
H
k D

ζ1,ζ2;ψ
θ1+

w0

)
(τ))− ς(τ,w1(τ),

(
H
k D

ζ1,ζ2;ψ
θ1+

w1

)
(s))

∣∣∣ ds
≤ 1

λΓλ(ζ1)

∫ ξθ2

θ1

ψ′(s)

(ψ(δ)− ψ(s))
1− ζ1

λ

× h
(
s, |w0(s)−w1(s)|,

∣∣∣(Hk D
ζ1,ζ2;ψ
θ1+

w0

)
(s)−

(
H
k D

ζ1,ζ2;ψ
θ1+

w1

)
(s)
∣∣∣) ds.

Again, by (H2) we get w1 − w2 ≡ 0 on Jξ. This gives us w1 = w2 on Jξ, which gives

a contradiction. Consequently, ϑ̂ = 1 and the solution of the problem (1.1) is unique on
∇. □

5. Some Examples

We give now some examples that illustrate our obtained results throughout the paper.

Example 5.1. Taking ζ2 → 0, ζ1 = 1
2 , ξ =

1
2 , θ1 = 0, θ2 = 1, ψ(δ) = e−δ and w0 = 0, we

obtain the following problem:
(
H
1 D

1
2 ,0;ψ
0+ w

)
(δ) =

e−δ

190 (1 + |w(δ)|)
+

e−δ

130
(
1 +

∣∣∣(H1 D
1
2 ,0;ψ
0+ w

)
(δ)
∣∣∣) ; δ ∈ ∇ := [0, 1],(

J
1
2 ,1;ψ
0+ w

)
(0+) = 0.

(5.1)
Set

ς(δ,w,ℑ) = e−δ

190 (1 + |w|)
+

e−δ

130 (1 + |ℑ|)
; δ ∈ [0, 1], w,ℑ ∈ R.

We have

Cζ3;ψ(∇) = C 1
2 ;ψ

(∇) =
{
w : (0, 1] → R : δ → e−δw(δ) ∈ C(∇,R)

}
.

Since the continuous function ς ∈ C 1
2 ;ψ

(∇). For any w, w̃,w, w̃ ∈ R, and δ ∈ [0, 1], we have

|ς(δ,w,ℑ)− ς(δ, w̃, ℑ̃)| ≤ 1

190
|w− w̃|+ 1

130
|ℑ − ℑ̃|.

Hence hypothesis (Cd2) is satisfied with

ı =
1

190
and ȷ =

1

130
.

Next, the condition (3.7) is verifies with λ = 1, ζ3 = 1
2 and ζ1 = 1

2 . Indeed,

ıΓλ(λζ3) (ψ(θ2)− ψ(θ1))
ζ1
λ

(1− ȷ)Γλ(ζ1 + λζ3)
=

1
190Γ1(

1
2 )
(
e2 − 1

) 1
2

(1− 1
130 )Γ(1)

< 1.
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Some calculations indicate that all of the requirements of Theorem 3.2 are verified. Thus,
(5.1) has a unique solution.

Example 5.2. Taking ζ2 → 0, ζ1 = 1
2 , ξ = 1

2 , θ1 = 0, θ2 = 1, ψ(δ) =
√
π−δ
π and w0 = 0,

we consider the following problem involving the λ-generalized ψ-Hilfer fractional derivative:

(
H
1 D

1
2 ,0;ψ
0+ w

)
(δ) =

√
π−δ
π (7eδ +

√
2δ7 + 33)

79eδ+1
(
1 + |w(δ)|+

∣∣∣(H1 D
1
2 ,0;ψ
0+ w

)
(δ)
∣∣∣) , δ ∈:= [0, π],

(
J

1
2 ,1;ψ
0+ w

)
(0+) = 0.

(5.2)

Set

ς(δ,w(δ), (H1 D
1
2 ,0;ψ
0+ w)(δ)) =

√
π−δ
π (7eδ +

√
2δ7 + 33)

79eδ+1
(
1 + |w(δ)|+

∣∣∣(H1 D
1
2 ,0;ψ
0+ w

)
(δ)
∣∣∣) ,

where ζ1 = 1
2 .

We have

Cζ3;ψ(∇) = C 1
2 ;ψ

(∇) =

{
w : (0, π] → R : δ →

√
π − δ

π
w(δ) ∈ C(∇,R)

}
.

For each w1, w̄1,w2, w̄2 ∈ R and δ ∈ [0, π], we have

|ς(δ,w1,w2)− ς(δ, w̄1, w̄2)| ≤
7eδ +

√
2δ7 + 33

79eδ+1
[|w1 − w̄1|+ |w2 − w̄2|] .

Therefore, (H1) is verified for all δ ∈ [0, π], κ > 0 and the comparison function h : ∇ ×
[0,κ]× [0,κ] −→ R+ is defined by:

h(δ,w1,w2) =
7eδ +

√
2δ7 + 33

79eδ+1
(w1 +w2).

Moreover, we have

lim
δ1−→δ2

(ς (δ2,w1,w2)− ς (δ1,w1,w2)) = 0.

Thus, ς is equicontinuous. Consequently, Theorem 4.1 means that the successive approxi-
mations wβ; β ∈ N, defined by

w0(δ) = 0, θ ∈ [0, π],

wβ+1(δ) = − 1

Γ( 12 )

∫ δ

0

7eδ +
√
2δ7 + 33

2π2
(√

π−δ
π −

√
π−s
π

) 1
2

79eδ+1
(
1 + |w(δ)|+

∣∣∣(H1 D
1
2 ,0;ψ
0+ w

)
(δ)
∣∣∣)ds,

converges uniformly on [0, π] to the unique solution of the problem (5.2).
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