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MODAL ANALYSIS ON CANTILEVER PLATES WITH 

ELASTIC BOUNDARY SUPPORTS FOR OPTIMIZING THE 

PLACEMENT OF ACTUATORS AND SENSORS IN ACTIVE 

VIBRATION CONTROL APPLICATIONS  

 

Lucian-Laurentiu CRISTEA1, Marius DEACONU2, Nicolae ENESCU3, 
 

The knowledge of the systems response to certain excitation conduct 

to the possibility of designing structures that have improved characteristics, 

and when using active control systems, this response is important for optimal 

positioning of sensors and actuators. It will be studied the case of vibrations 

reduction of a thin cantilever plate with different elastic boundary 

constrains, where it is necessary to perform modal tests to identify the modal 

parameters of the structure, especially to improve the system observability 

and controllability of using active vibration control systems. Mode shapes 

obtained from the finite element analysis FEA will be compared to those 

determined by tests and so the decision could be made for best placing the 

sensors and excitation elements.  
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1. Introduction 
 

There are dynamic systems, such as those with applications in the 

automotive or aerospace industries, where thin flexible structures are used in order 

to meet the requirements of low weight and increased resistance, and thus to 

sustain important dynamic displacements. Their operation in regimes that may 

endanger the integrity of the structure leads to the need of using the active control 

systems, especially on frequency domains where passive control proves to be 

insufficient [1]. Following modal tests, Frequency Response Function FRF is 

obtained, and this solution is used to identify the system's natural frequencies, 

modes and especially the damping coefficients, which would be extremely 

difficult to be determined by other methods involving an analytical calculation. 
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The FRF of a structure depends on the geometry and characteristics of the 

material from which the structure is made, the constraints to which it is subjected 

and the forces that act upon it [1]. If optimization of the response is considered 

during design, geometry and structure characteristics improvements can be 

achieved, and in the case of active control also the forces that act upon it. A modal 

test is performed in order to find a description concept for the dynamic 

movements of a system. In this article, a study was made starting from the 

objective of designing a feedback control model with modal based control 

obtained by an optimal placement of actuators and sensors. It is well known that 

in a feedback type active control approach, only the low frequency modes could 

be somehow controlled. High densities of modes conduct to a very complicated 

control system which is hard to be applied in reality [2].  

The results obtained after FEA simulation will be compared with those 

obtained from the experimental study. An eventual algorithm model for finding 

the optimal placement of sensors and actuators could lead to o better stabilization 

of the structure dynamics. Such optimal placement of sensors and actuators as 

mentioned generally by Baruh [13] are mainly done for a better action of forces 

and moments applied on the structure by the control system for stabilization of 

dynamic behavior. Another control characteristics improvement by right 

placement of sensors and actuators is reducing deflection by mode shapes control, 

increasing the energy dissipation or better controllability and observability [14]. 

This article is focused on finding the best placement of actuators and 

sensors used on active vibration control under the special case of elastic clamped 

boundary cantilever using comparative FEA and modal testing procedure and 

future studies will continue with applying this concept to different type of active 

control algorithms.  

 

2. Modal analysis and active control 

  

Generally, the modal analysis is a procedure used in the field of structural 

dynamics, with aim of finding the modal parameters as the natural frequencies ω, 

local damping ϛ and mode shape Φ. [2]  In an Active Vibration Control (AVC)  

system of a continuous structure, the energy is introduced in the system by an 

external or internal force and also by the AVC actuator which is equilibrating the 

input force, and it is dissipated by the passive damping elements which are 

connected directly to the structure or are part of boundary condition. The modal 

parameters, natural frequencies and mode shapes can be calculated analytically, 

numerically or after some experiments, but damping can be only the result of 

experiments. One important property is that one mode could be influenced by the 

presence of other modes, so, when we study the behavior of few modes inside of a 

frequency band, we should take into consideration also the number of modes 
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placed twice the frequency band outside the studied band. The energy of this 

„outside” modes is somehow present in the studied modes [3].  
In this article it was adopted a structural vibration approach studied in the 

way of modal vibrations. Because the boundary conditions are included in this 

study, also a reduction of transmitted energy is aimed.  According with classic 

theory [6, 7, 8], the behavior of a plate with elastic edges under forced vibration is 

according with equation: 

𝐷 [
𝜕4𝑤(𝑥,𝑦,𝑡)

𝜕𝑥4 + 2 
𝜕4𝑤(𝑥,𝑦,𝑡)

𝜕𝑥2𝜕𝑦2 +
𝜕4𝑤(𝑥,𝑦,𝑡)

𝜕𝑦4 ] = 𝜌ℎ𝜔2  
𝜕2𝑤(𝑥,𝑦,𝑡)

𝜕𝑡2 + 𝑓(𝑥, 𝑦, 𝑡),       (1) 

where it is noted with D –flexural rigidity, w – deflection, ρ – density, ω- angular 

frequency, h- thickness of the plate. 

For a rectangular plate with dimensions of L × l × h, the linear kx and 

rotational Kx elastic constants on elastic boundary conditions are according with 

equations: 

 𝑘𝑥=0 = − 
𝐷

𝑤(𝑥,𝑦)
 (

𝜕3𝑤(𝑥,𝑦)

𝜕𝑥3 + 2 
𝜕3𝑤(𝑥,𝑦)

𝜕𝑥𝜕𝑦2  − 𝜗
𝜕3𝑤(𝑥,𝑦)

𝜕𝑥𝜕𝑦2 ),                      (2) 

𝑘𝑥=𝑙 =
𝐷

𝑤(𝑥,𝑦) 
(

𝜕3𝑤(𝑥,𝑦)

𝜕𝑥3 + 2 
𝜕3𝑤(𝑥,𝑦)

𝜕𝑥𝜕𝑦2 − 𝜗
𝜕3𝑤(𝑥,𝑦)

𝜕𝑥𝜕𝑦2 ),                            (3) 

𝐾𝑥=0
𝜕𝑤(𝑥,𝑦)

𝜕𝑥
= 𝐷 (

𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2 + 𝜗
𝜕2𝑤(𝑥,𝑦)

𝜕𝑦2 ),  𝐾𝑥=𝑙
𝜕𝑤(𝑥,𝑦)

𝜕𝑥
= − 𝐷 (

𝜕2𝑤(𝑥,𝑦)

𝜕𝑥2 + 𝜗
𝜕2𝑤(𝑥,𝑦)

𝜕𝑦2 ).(4) 

 These equations could be used for an ideal case where the elastic boundaries are 

linearly distributed on the edge. If the plate is clamped on the edge, as it is in the 

most real cases, with different forces which are distributed on clamping area, such 

equations are not describing with good accuracy the phenomenon. Different 

clamping forces could induce on the plate structure different frequencies 

responses. The response of a mode of a plate under forced vibration can be 

defined by the equation: 

𝑚(𝑥, 𝑦, 𝑡) 
𝜕2𝑤(𝑥,𝑦,𝑡)

𝜕𝑡2 + 𝑐
𝜕𝑤(𝑥,𝑦,𝑡)

𝜕𝑡
+ 𝑘𝑤(𝑥, 𝑦, 𝑡) = 𝑓(𝑥, 𝑦, 𝑡),          (5) 

where w represents the displacement at (x, y) point, c = αm + βk is the 

proportional damping depending on stiffness and mass distribution [15].  

 

3. FEA analysis 

 

        For modelling the structure response with FEA, we use the matrix equation   

   𝑀𝑧̈ + 𝐶𝑧̇ + 𝐾𝑧 = 𝑓,                                              (6) 
with z=[z1, z2, … zn]T, the vector of displacements, M the mass matrix, C the 

damping matrix and K the stiffness matrix. Simulations with FEA will help us to 

define the frequency domains which contain the modes under the aimed control, 

finding the resonance frequencies and to obtain some suggestion or 

approximations for placement of actuators and sensors by locating the nodes and 

anti-nodes, under the various edge loading forces. The frequency response in the 
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case of forced excitation applied on systems with proportional damping, where 

other modes has a contribution on each other, is 

𝛼𝑗𝑘(𝜔) = ∑  
𝜓𝑖(𝑥𝑗) 𝜓𝑖(𝑥𝑘)

𝜔𝑖
2𝑚𝑖 [1 −  (

𝜔

𝜔𝑖
)

2

+ 2𝑗 (
𝜔

𝜔𝑖
)𝜁𝑖]

𝑁
𝑖=1 ,                                    (7) 

where ψi is a mode shape, xi is the location of the applied force, xk is the location 

of the response point and ζi is the damping ratio for a certain mode [15]. 

A FEA analysis and simulation should be performed before the decision 

upon which modes we intend to include in the design of the system. Such a 

simulation, compared with experimental modal analysis is a better method which 

should be done for finding the best location of actuators and sensors, for optimal 

modal control in the case of complicated elastic boundary condition. In some 

studies there were compared the results between FEA simulations and 

experimental modal analysis for cantilever plates with fixed constrains and the 

results were promising [1, 4, 5]. On this study, it was made a simulation with 

COMSOL FEA software for identifying the low frequencies modes and the mode 

shapes given by natural frequencies (Fig. 1). 

 
(a)                                                (b)                                                   (c) 

Fig. 1 FEA mode shapes of clamped cantilever plate 1430.3 Hz (a), 209.2 Hz (b), 722.2 Hz (c) 

As modal parameters, even the geometry and local damping coefficients 

remain the same, the stiffness and mode shapes are changing under different 

clamping forces applied on the elastic boundaries. From the point of view of 

active vibration control, this could lead to changing the observability and 

controllability coefficients, if a state-space model is considered [14]. 

 

4. State-space model 

  

For processing and control methods and finally for modal filtering 

realization, we have to re-express the modal equations in a state-space form [10, 
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12]. The design and optimization of control systems can be done using such state-

space techniques. The basic concept of frequency analysis for control systems is 

the transfer function TF. A continuous, linear and with no variation on time 

system, it is defined as Laplace’s transformation of the output y(s) and Laplace 

transform of its input u(s). The variable of Laplace transform is complex and is 

written in the form s=σ + jω (where j = √−1). Equations of state space are 

written in the general form: 
𝑥̇  =  𝐴𝑥 + 𝐵𝑢,                                                            (8)  
𝑦 = 𝐶𝑥 + 𝐷𝑢. 

Applying the Laplace transform, state equations are written in the form: 
(𝑠𝐼 − 𝐴) 𝑥(𝑠) = 𝐵𝑢(𝑠),                               (9) 

        𝑦(𝑠) = 𝐶 𝑥(𝑠) + 𝐷 𝑢(𝑠). 
The roots of the equation det(s I - A)=0, are named as poles and  the TF is: 

𝐺(𝑠) =
𝑦(𝑠)

𝑢(𝑠)
 = 𝐶 (𝑠𝐼 − 𝐴)−1 𝐵 + 𝐷 = 𝐶 

𝛼1𝑠𝑘−1+𝛼2𝑠𝑘−2+⋯𝛼𝑘

𝑠𝑘+𝛼1𝑠𝑘−1+⋯𝛼𝑘
 𝐵 + 𝐷.                (10) 

 In the case of a causal system, the connection between the input and output 

quantities is given by what is called the state of the system. The state of a linear 

system is expressed in a matrix form by the equations 

𝒙̇ = 𝑨𝒙 + 𝑩𝒖,                                       (11)  
                                        𝒚 = 𝑪𝒙 + 𝑫𝒖, 

where parameters A, B, C, D matrix shape the state of linear systems.  

 In the case of discrete systems, like those used in data acquisition and 

processing, the sampling of variables is done in time moments k and their value of 

the states, inputs and outputs at those moments is x(k), u(k) and y(k). Output 

quantities at a discrete moment k depend on the state of the system at that 

moment, a condition that is related to a previous k-1, which gives the causal 

character between input and output. In the case of linear systems with a single 

variable, the state equations are in the form of equations with differences 
𝒙(𝒌 + 𝟏) = 𝑨𝒙(𝒌) + 𝑩𝒖(𝒌),                                        (12) 

                                                 𝒚(𝒌) = 𝑪𝒙(𝒌) + 𝑫𝒖(𝒌).  
 The input-output models directly express the linkage between the u and y 

variables, in the form of differential equations for continuous time or differences 

for discrete time systems, as in digitization process. For a discrete time system, 

the transfer function is the ratio of the z-transforms of the output and input 

variables deducted under null initial conditions, similar with Laplace transform 

made for continuous systems. Writing the equation in differences and by applying 

the z-transform under null initial conditions, we obtain the TF [1, 11]: 

         ( )
1 2

1 2
1 2

1 2

...

1+ ...

n
n

n
n

b z b z b z
H z

a z a z a z

− − −

− − −

+ +
=

+ + +
.                                (13) 
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5. Poles and zeros 

FRF of a system which is a physical structure has poles and zeros which 

give its dynamic movement. Similar results, but is s-domain it can be obtained for 

Transfer Function TF using Laplace transform. From this, we can deduce the 

relation between FRF and TF. As both represent a ratio between inputs and 

outputs with aim of changing the differential equation in polynomial expressions, 

poles are the solutions of denominator and zeros of the nominator. As 

interpretation of this, poles represent the natural frequencies and zeros represent 

the position of the nodes and depends also on the boundary conditions [11]. 

𝐻(𝑠) =  
𝑌(𝑠)

𝑈(𝑠)
=

𝑏𝑛−1𝑠𝑛−1 + 𝑏𝑛−2𝑠𝑛−2 +...+ 𝑏0

𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + 𝑎𝑛−2𝑠𝑛−2 +...+ 𝑎0
= 𝑏𝑛−1   

∏ (𝑠− 𝑧𝑖)𝑛−1
𝑖=1

∏ (𝑠− 𝑝𝑖)𝑛−1
𝑖=1

,               (14) 

where , 1, 1iz i n= − , are zeros and  , 1,ip i n= , the poles of the function. The poles 

of a transfer function G(s) is the value of the coefficient s so that the solution of 

the transfer function equation has a value other than zero for an input u(s) equal to 

zero and from (9) 
(𝑠𝐼 − 𝐴)𝑢(𝑠) = 0,                                            (15) 

                                               |𝑠𝐼 − 𝐴| = 𝑠2 − 𝜔𝑛
2 = 0, 

result  𝑠 = ±  𝑗𝜔𝑛. The poles are the systems eigen-frequencies and are influenced 

by the physical shape and properties of the materials and the boundary conditions 

and have an important role in system stability. The poles have complex form and 

the real part is related to the stability of the system and the imaginary part is the 

oscillatory component of the system response. If the real part of all poles is 

negative, the solution of the state equation tending asymptotically to zero and the 

system is becoming asymptomatic stable. If the real part of any of the poles is 

zero, the system is stable. If the real part of at least one pole is positive, the system 

response increases exponentially without additional disturbance, and the system 

becomes unstable [12]. Control system zeros are the frequencies for which a non-

zero input produces a null output and from (9) we have the matrix form: 

[
𝑠𝐼 − 𝐴 −𝐵

𝐶   0
] [

𝑥(𝑠)
𝐶(𝑠)

]  =  0.              (16) 

The poles depend only on the physical parameters of the system, and the 

zeros depend on both the physical parameters and the position of the inputs, 

outputs or actuators and sensors. Zeros are dead zones in which the energy 

transfer is not realized, even if there is an input of energy. If a sensor is placed in 

such a dead zone, the sum of the system’s natural modes will be null and it will 

not be recorded by the sensors. Characteristics of the poles and zeros of TF of the 

continuous systems are the same also in the case of discrete systems. Zeros-poles 

representation on plan s or z it is done with TF of form: 
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 .              (17) 

In the case of active vibro-acoustic control systems, the control parameters 

aim to modify the mechanical disturbance parameters, without an initial direct 

dependence between them. We have to place the poles, in the case of a stable 

system, in the left half of the complex plane [12]. 

Controllability and observability matrix were introduced in 1960 by R. 

Kalman [14] with the scope of obtaining a method of better controlling a dynamic 

system under better observation of its behavior, or finding the dynamic response 

of a system by interpreting the measurements outputs. If we know the model and 

the state of the system x(k) at a certain step k, it could be found the control raw 

u(k), u(k+1),...u(k+n-1) and with this it could be obtain a desired output after a 

certain number of steps. By knowing the TF of a system which describe its 

response, then we could have upon the system the controllability and 

observability, in certain conditions. From this, we assume that the right placement 

of actuators could lead to a better controllability by right placement of poles on 

the complex plane. We can say that a system under control is observable if its 

state x(k) at any step could be obtained from the systems model and from the 

measurements of outputs or in other words, the behavior of the system could be 

obtained by knowing the signals from the sensors. Using the modal analysis and 

state-space model, modal filters could be made for controlling the system [8]. 

For knowing if a system is controllable or if it is not controllable, the rank 

of the controllability matrix C=[B   AB   ....A2n-1B]   should be a full rank one or 

rankC=2n, where A is a state matrix and B is the input vector as multiple of (1, 0, 

...,0)T. The level of controllability is given by the optimal placement of actuators 

and sensors. Also the observability matrix O=[C   CA  C A2   CA3.... CA2n-1]T 

should be a full rank one, or rankO=2n, for the system to be observable [11, 12]. 

Although these conditions don’t give any information regarding the observability 

of the modes, it gives the conclusion that the system is observable or not [16].  

 

6. Experiment and results 

In the experiment, the TF will be determined and will be located the most 

suitable points for positioning sensors and actuators. For this purpose, as in Fig. 2, 

an electrodynamic exciter attached to a simple structure, one laser velocimeter, 

two accelerometers and a microphone will be used to determine both the structure 

response to harmonic sweep excitation and the acoustic response generated by the 

excited structure. Exciter and sensors mounted at various points of the structure 
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will be tested to obtain an optimal location. Also load cell for force measurement 

and piezoresistive matrix sensor for mapping the distribution of the force on the 

boundary domain it is used. Measurements were made and Bode frequency 

response were plotted for amplitude and phase, the coherence diagram between 

the excitation signal and the structure and acoustic response, and Nyquist 

diagrams in the complex field as in Fig. 3, 4. It was used a sweep frequency signal 

from 100 to 2000 Hz. As structure was used an aluminium plate with dimensions 

of 330 × 90 × 2 mm with E = 71000 [N/mm2], Poisson 0.37 and ρ = 2710 [kg/m3], 

rigidly clamped using also an elastic thin layer on one side and it was marked on it 

18 places for possible placements of sensors and actuators. On the clamped side it 

was placed a distributed force matrix sensor from company Tekscan which came 

with its own amplifier and signal conditioning, for measuring and mapping the 

force. The clamping total force applied was changed between three different 

levels, 1 N, 1.5 N and 2 N and measured with a piezoresistive sensor produced by 

company Laumas. Two accelerometers and one microphone from Bruel&Kjaer 

were used. The electrodynamic actuator HIAX was used for actuating the 

generated input function and also forces. All the signals acquired from the sensors 

and also the actuator control was made with a DEWEsoft Sirius 8 channel system 

as in Fig. 2. With DEWEsoft software it was made the modal analysis and also the 

function generation for the actuator.  The main objective of the article was to find 

the modal parameters and as a consequence, the optimal poles and zeros and 

finally the location of sensors and actuators, if there are different boundary 

constraints. In analytical calculation, the boundaries are considered mostly as 

ideal, mainly because of complexities and difficulties of modeling the constraints. 

In this study the approach was for using an elastic boundary at one edge with 

different clamping forces mapped with a matrix piezoresistive sensor. Using smart 

matrix force sensors for mapping the distribution of the force on the interface 

between the structure and the fixed base or between two structures, the frequency 

response function was found as being different than the classic rigidly fixed 

(clamped). In the case of active vibration control, modal testing under different 

boundary conditions it is a more realistic method for finding more precise the 

modal parameters (natural frequencies, damping and mode shapes) and this could 

lead to a better observability and controllability of the system and better dynamic 

response and behavior. Circle matching or circle-fit method [2, 13] which consists 

in a series of operations around the resonance mode peak has the aim of more 

precise fixing of resonance frequency. The theory under the calculation of circle-

fit for structures with structural damping on these tests has as basis the equation  

𝛼(𝜔) =
1

𝜔𝑟
2 [1 − (

𝜔

𝜔𝑟
)

2
− 𝑖𝜂𝑟]

,                                             (18) 

where α is the response function , ωr is the natural frequency, and ηr is the 

structural loss [15]. It has the aim of obtaining more precise information about the 
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resonance frequency and damping values, damping which cannot be obtained in 

other ways than experimentally. Because the frequency resolution is not so 

precise, it is hard to find the exact value where the real part of FRF is passing the 

abscissa axis of complex plane. This zero passing point is happening at the natural 

frequency and at this value the structural loss is 

𝜂𝑟 =
𝜔1

2− 𝜔2
2

𝜔𝑟
2   .                                                  (19) 

The advantage of circle-fit method (Fig. 4, 5) is that it includes the 

influence of other modes on the one to whom the determination is made. There is 

the case of systems which have many degrees of freedom, where is an influence of 

a number of adjacent modes on the resonance mode for which is made the 

analysis. On the plate was marked 45 points, equidistant covering the surface (ex. 

A10-S16-S22 means that the actuator is placed at point 10 and accelerometers at 

point 16 and 22). The TF between actuator and accelerometers was noted with 

AS1 or AS2.  

      
(a)                                                    (b) 

Fig. 2 Experiment configuration (a) working stand, (b) experiment concept        

 
Fig. 3 Cross-correlation actuator-accelerometer A/S1 (a) and A/S2 (b), auto-correlation 

accelerometer S1 (c) and S2 (d)  
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As comparison, FEA / pole fitting modes with certain placement of 

actuators A and sensors S with which was made actually the experiment and 

obtained the transfer function. The frequency response function is obtained after 

the measurements and processing the signal, as a ratio between the cross-spectrum 

of force-excitation and acceleration-response signal SAS and auto-spectrum (Fig.2) 

of the signal obtained from the force-exciter SAA. 

𝐻(𝜔)  =  
𝑆𝐴𝑆(𝜔)

𝑆𝐴𝐴(𝜔)
 .                                                       (20) 

 

Fig. 4 Transfer function on amplitude Bode plot (a) and phase Bode plot (b), location of actuator A 

and accelerometers S1 and S2 (c), poles circle-fit and damping, for 1.5 N total boundary force  

 

Fig. 5 Actuator-sensors placement A10-S16-S22 (a),  S13-S16-A22 (b), A10-S13-S19 (c), A10-

S19-S22 (d) and corresponding poles circle-fit and damping  

(a) (b) 

(c) 
(d) 
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Table 1 

Comparison of FEA mode shapes and experimental modal analysis results 

Actuator-

sensors 

locations 

Boundary 

clamping 

force 

FEA modes 

[Hz] 

Experimental 

poles fitting 

AS1/AS2 [Hz] 

Damping experimental 

response AS1/AS2 

A10-S16-S22 1N 1430.3 / 1411.7 1435.5 / 1416.1 0.076709 / 0.076196 

A10-S13-S19 1N 1451 / 209.2 1455 / 204.48 0.050794 / 0.19566 

A10-S16-S22 1.5N 1427 / 1421.4 1420.7 / 1415.2 0.077432 / 0.075402 

A10-S13-S19 1.5N 1457 / 217.6 1462 / 211.5 0.057325 / 0.09369 

A10-S16-S22 2N 1415 / 1439.2 1425.4 / 1432 0.073264 / 0.071475 

A10-S13-S19 2N 1477 / 255.5 1471 / 251.3 0.068934 / 0.074974 

S13-S16-A22 1N 1451 / 722.2 1455 / 714.12 0.038555 / 0.27721 

A10-S19-S22 1N 863.2 / 1447.9 869.18 / 1454.9 0.075099 / 0.040815 

S13-S16-A22 1.5N 1469 / 714.3 1461.3 / 723.4 0.056349 / 0.13477 

A10-S19-S22 1.5N 849.6 / 1469.6 852.2 / 1477.3 0.096634 / 0.063597 

S13-S16-A22 2N 1518.5 / 794.1 1521.3 / 772.4 0.075093 / 0.093664 

A10-S19-S22 1.5N 881 / 1494.6 891.7 / 1479.7 0.076354 / 0.093345 

 

In the Table 1 we have included the results of different locations of 

actuators and sensors according with poles placements obtained experimentally 

and similar mode shapes obtained with FEA, under different clamping boundary 

force. The poles experimentally obtained and circumscribed in the fitting circle 

gives the position of sensors and actuators and this position it is compared with 

position of maximum displacement on mode shapes obtained with FEA. For this 

case of structural damping, the frequency response function FRF was used. The 

method of poles matching the circle was adopted because of the assumption that 

the resonance of the system takes place at the point of maximum of the vibration 

amplitude and the damping corresponding to this peak can be determined from the 

frequency band around the peak resonance mode, considered at half level of 

power which is with 3dB lower than the peak.  

 

7. Conclusion  

Modal analysis and state-space methods are good approaches to determine 

the position of poles and zeros and thus, the level of stability, observability and 

controllability of the control system. The placement of poles and zeros are giving 

the positions where could be applied the sensors and actuators. An optimal control 

implies a correct positioning of the sensors and actuators and for this, 

determination of the frequency response of the structure is compulsory. Thus, this 

article approached the modal analysis as a good solution for a small system where 

it was supposed that the mode shapes are well separated and a feedback control 

could be used. Feedback type active vibration control has the optimal effect when 

it is tuned to the resonant low-frequencies of the vibro-acoustic structure or space. 

For this analysis it was considered a frequency band much broader, because each 
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mode inside the researched band is influenced by modes which are placed outside 

the band, so the energy introduced by these modes should be considered also.  The 

aim was to determine the resonance frequency and structure response using modal 

analysis and from this, the mode shapes and damping, under different elastic 

boundary clamped edge. The main objective of this study was to get the response 

of the structure on the condition where on the clamped area an exterior force was 

applied at different levels for “augmenting” the elastic behavior and finally the 

response of the structure. It can be also appreciated that effective modal control 

can be achieved on the low frequency range, including on the feedback loop the 

control of the clamping force.  
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