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MODAL ANALYSIS ON CANTILEVER PLATES WITH
ELASTIC BOUNDARY SUPPORTS FOR OPTIMIZING THE
PLACEMENT OF ACTUATORS AND SENSORS IN ACTIVE

VIBRATION CONTROL APPLICATIONS

Lucian-Laurentiu CRISTEA!, Marius DEACONU?, Nicolae ENESCUS,

The knowledge of the systems response to certain excitation conduct
to the possibility of designing structures that have improved characteristics,
and when using active control systems, this response is important for optimal
positioning of sensors and actuators. It will be studied the case of vibrations
reduction of a thin cantilever plate with different elastic boundary
constrains, where it is necessary to perform modal tests to identify the modal
parameters of the structure, especially to improve the system observability
and controllability of using active vibration control systems. Mode shapes
obtained from the finite element analysis FEA will be compared to those
determined by tests and so the decision could be made for best placing the
sensors and excitation elements.

Keywords: active vibration control, modal analysis, FEA, state-space model,
actuators and sensors placement, observability and controllability

1. Introduction

There are dynamic systems, such as those with applications in the
automotive or aerospace industries, where thin flexible structures are used in order
to meet the requirements of low weight and increased resistance, and thus to
sustain important dynamic displacements. Their operation in regimes that may
endanger the integrity of the structure leads to the need of using the active control
systems, especially on frequency domains where passive control proves to be
insufficient [1]. Following modal tests, Frequency Response Function FRF is
obtained, and this solution is used to identify the system's natural frequencies,
modes and especially the damping coefficients, which would be extremely
difficult to be determined by other methods involving an analytical calculation.
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The FRF of a structure depends on the geometry and characteristics of the
material from which the structure is made, the constraints to which it is subjected
and the forces that act upon it [1]. If optimization of the response is considered
during design, geometry and structure characteristics improvements can be
achieved, and in the case of active control also the forces that act upon it. A modal
test is performed in order to find a description concept for the dynamic
movements of a system. In this article, a study was made starting from the
objective of designing a feedback control model with modal based control
obtained by an optimal placement of actuators and sensors. It is well known that
in a feedback type active control approach, only the low frequency modes could
be somehow controlled. High densities of modes conduct to a very complicated
control system which is hard to be applied in reality [2].

The results obtained after FEA simulation will be compared with those
obtained from the experimental study. An eventual algorithm model for finding
the optimal placement of sensors and actuators could lead to o better stabilization
of the structure dynamics. Such optimal placement of sensors and actuators as
mentioned generally by Baruh [13] are mainly done for a better action of forces
and moments applied on the structure by the control system for stabilization of
dynamic behavior. Another control characteristics improvement by right
placement of sensors and actuators is reducing deflection by mode shapes control,
increasing the energy dissipation or better controllability and observability [14].

This article is focused on finding the best placement of actuators and
sensors used on active vibration control under the special case of elastic clamped
boundary cantilever using comparative FEA and modal testing procedure and
future studies will continue with applying this concept to different type of active
control algorithms.

2. Modal analysis and active control

Generally, the modal analysis is a procedure used in the field of structural
dynamics, with aim of finding the modal parameters as the natural frequencies w,
local damping ¢ and mode shape &. [2] In an Active Vibration Control (AVC)
system of a continuous structure, the energy is introduced in the system by an
external or internal force and also by the AVC actuator which is equilibrating the
input force, and it is dissipated by the passive damping elements which are
connected directly to the structure or are part of boundary condition. The modal
parameters, natural frequencies and mode shapes can be calculated analytically,
numerically or after some experiments, but damping can be only the result of
experiments. One important property is that one mode could be influenced by the
presence of other modes, so, when we study the behavior of few modes inside of a
frequency band, we should take into consideration also the number of modes
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placed twice the frequency band outside the studied band. The energy of this
,outside” modes is somehow present in the studied modes [3].

In this article it was adopted a structural vibration approach studied in the
way of modal vibrations. Because the boundary conditions are included in this
study, also a reduction of transmitted energy is aimed. According with classic
theory [6, 7, 8], the behavior of a plate with elastic edges under forced vibration is
according with equation:
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where it is noted with D —flexural rigidity, w — deflection, p — density, w- angular
frequency, h- thickness of the plate.

For a rectangular plate with dimensions of L x | x h, the linear kyx and
rotational Ky elastic constants on elastic boundary conditions are according with
equations:
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These equations could be used for an ideal case where the elastic boundaries are
linearly distributed on the edge. If the plate is clamped on the edge, as it is in the
most real cases, with different forces which are distributed on clamping area, such
equations are not describing with good accuracy the phenomenon. Different
clamping forces could induce on the plate structure different frequencies
responses. The response of a mode of a plate under forced vibration can be

defined by the equation:

2
m(x,y,t) 9 Wa(:z'y't) +c aw(géy't) + kw(x,y,t) = f(x,y,t), (5)

where w represents the displacement at (X, y) point, ¢ = am + pk is the
proportional damping depending on stiffness and mass distribution [15].

3. FEA analysis

For modelling the structure response with FEA, we use the matrix equation

MZ+Cz+Kz=f, (6)
with z=[z1, 2, ... zn]", the vector of displacements, M the mass matrix, C the
damping matrix and K the stiffness matrix. Simulations with FEA will help us to
define the frequency domains which contain the modes under the aimed control,
finding the resonance frequencies and to obtain some suggestion or
approximations for placement of actuators and sensors by locating the nodes and
anti-nodes, under the various edge loading forces. The frequency response in the
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case of forced excitation applied on systems with proportional damping, where
other modes has a contribution on each other, is
N Yi(x;) Yilxr)

T otmi- () 2 (2)e]

where i is a mode shape, xi is the location of the applied force, x« is the location
of the response point and (i is the damping ratio for a certain mode [15].

A FEA analysis and simulation should be performed before the decision
upon which modes we intend to include in the design of the system. Such a
simulation, compared with experimental modal analysis is a better method which
should be done for finding the best location of actuators and sensors, for optimal
modal control in the case of complicated elastic boundary condition. In some
studies there were compared the results between FEA simulations and
experimental modal analysis for cantilever plates with fixed constrains and the
results were promising [1, 4, 5]. On this study, it was made a simulation with
COMSOL FEA software for identifying the low frequencies modes and the mode
shapes given by natural frequencies (Fig. 1)
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Fig. 1 FEA m(()d)e shapes of clamped cantilever [:()Iezte 1430.3 Hz (a), 209.2 Hz (b), 7(2)2.2 Hz (c)
As modal parameters, even the geometry and local damping coefficients
remain the same, the stiffness and mode shapes are changing under different
clamping forces applied on the elastic boundaries. From the point of view of
active vibration control, this could lead to changing the observability and
controllability coefficients, if a state-space model is considered [14].

4. State-space model

For processing and control methods and finally for modal filtering
realization, we have to re-express the modal equations in a state-space form [10,
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12]. The design and optimization of control systems can be done using such state-
space techniques. The basic concept of frequency analysis for control systems is
the transfer function TF. A continuous, linear and with no variation on time
system, it is defined as Laplace’s transformation of the output y(s) and Laplace
transform of its input u(s). The variable of Laplace transform is complex and is

written in the form s=¢ + jo (where j =,/—1). Equations of state space are
written in the general form:

X = Ax + Bu, (8)
y = Cx + Du.
Applying the Laplace transform, state equations are written in the form:
(sI — A) x(s) = Bu(s), 9)

y(s) = C x(s) + D u(s).
The roots of the equation det(s | - A)=0, are named as poles and the TF is:
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In the case of a causal system, the connection between the input and output
quantities is given by what is called the state of the system. The state of a linear
system is expressed in a matrix form by the equations

x = Ax + Bu, (12)
y = Cx + Du,
where parameters A, B, C, D matrix shape the state of linear systems.

In the case of discrete systems, like those used in data acquisition and
processing, the sampling of variables is done in time moments k and their value of
the states, inputs and outputs at those moments is x(k), u(k) and y(k). Output
quantities at a discrete moment k depend on the state of the system at that
moment, a condition that is related to a previous k-1, which gives the causal
character between input and output. In the case of linear systems with a single
variable, the state equations are in the form of equations with differences

x(k + 1) = Ax(k) + Bu(k), (12)
y(k) = Cx(k) + Du(k).

The input-output models directly express the linkage between the u and y
variables, in the form of differential equations for continuous time or differences
for discrete time systems, as in digitization process. For a discrete time system,
the transfer function is the ratio of the z-transforms of the output and input
variables deducted under null initial conditions, similar with Laplace transform
made for continuous systems. Writing the equation in differences and by applying
the z-transform under null initial conditions, we obtain the TF [1, 11]:

-1 -2 -n
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5. Poles and zeros

FRF of a system which is a physical structure has poles and zeros which
give its dynamic movement. Similar results, but is s-domain it can be obtained for
Transfer Function TF using Laplace transform. From this, we can deduce the
relation between FRF and TF. As both represent a ratio between inputs and
outputs with aim of changing the differential equation in polynomial expressions,
poles are the solutions of denominator and zeros of the nominator. As
interpretation of this, poles represent the natural frequencies and zeros represent
the position of the nodes and depends also on the boundary conditions [11].

H(s) = Y(S) _ bpoas" 4 bp_ps™244+by b I, . L(s—z) (14)
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wherez;,i=1,n-1, are zeros and p;,i =1,n, the poles of the function. The poles

of a transfer function G(s) is the value of the coefficient s so that the solution of
the transfer function equation has a value other than zero for an input u(s) equal to
zero and from (9)
(sl — Au(s) =0, (15)
|sI —A] = s? — w2 =0,
result s = + jw,. The poles are the systems eigen-frequencies and are influenced
by the physical shape and properties of the materials and the boundary conditions
and have an important role in system stability. The poles have complex form and
the real part is related to the stability of the system and the imaginary part is the
oscillatory component of the system response. If the real part of all poles is
negative, the solution of the state equation tending asymptotically to zero and the
system is becoming asymptomatic stable. If the real part of any of the poles is
zero, the system is stable. If the real part of at least one pole is positive, the system
response increases exponentially without additional disturbance, and the system
becomes unstable [12]. Control system zeros are the frequencies for which a non-
zero input produces a null output and from (9) we have the matrix form:
SI —A —B1[x(s)
] [C(s) ' (16)
The poles depend only on the physu:al parameters of the system, and the
zeros depend on both the physical parameters and the position of the inputs,
outputs or actuators and sensors. Zeros are dead zones in which the energy
transfer is not realized, even if there is an input of energy. If a sensor is placed in
such a dead zone, the sum of the system’s natural modes will be null and it will
not be recorded by the sensors. Characteristics of the poles and zeros of TF of the
continuous systems are the same also in the case of discrete systems. Zeros-poles
representation on plan s or z it is done with TF of form:
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In the case of active vibro-acoustic control systems, the control parameters
aim to modify the mechanical disturbance parameters, without an initial direct
dependence between them. We have to place the poles, in the case of a stable
system, in the left half of the complex plane [12].

Controllability and observability matrix were introduced in 1960 by R.
Kalman [14] with the scope of obtaining a method of better controlling a dynamic
system under better observation of its behavior, or finding the dynamic response
of a system by interpreting the measurements outputs. If we know the model and
the state of the system x(k) at a certain step k, it could be found the control raw
u(k), u(k+1),...u(k+n-1) and with this it could be obtain a desired output after a
certain number of steps. By knowing the TF of a system which describe its
response, then we could have upon the system the controllability and
observability, in certain conditions. From this, we assume that the right placement
of actuators could lead to a better controllability by right placement of poles on
the complex plane. We can say that a system under control is observable if its
state x(k) at any step could be obtained from the systems model and from the
measurements of outputs or in other words, the behavior of the system could be
obtained by knowing the signals from the sensors. Using the modal analysis and
state-space model, modal filters could be made for controlling the system [8].

For knowing if a system is controllable or if it is not controllable, the rank
of the controllability matrix C=[B AB ...A?™B] should be a full rank one or
rankC=2n, where A is a state matrix and B is the input vector as multiple of (1, 0,
..,0)". The level of controllability is given by the optimal placement of actuators
and sensors. Also the observability matrix O=[C CA C A2 CA3... CA™™1]T
should be a full rank one, or rankO=2n, for the system to be observable [11, 12].
Although these conditions don’t give any information regarding the observability
of the modes, it gives the conclusion that the system is observable or not [16].

6. Experiment and results

In the experiment, the TF will be determined and will be located the most
suitable points for positioning sensors and actuators. For this purpose, as in Fig. 2,
an electrodynamic exciter attached to a simple structure, one laser velocimeter,
two accelerometers and a microphone will be used to determine both the structure
response to harmonic sweep excitation and the acoustic response generated by the
excited structure. Exciter and sensors mounted at various points of the structure
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will be tested to obtain an optimal location. Also load cell for force measurement
and piezoresistive matrix sensor for mapping the distribution of the force on the
boundary domain it is used. Measurements were made and Bode frequency
response were plotted for amplitude and phase, the coherence diagram between
the excitation signal and the structure and acoustic response, and Nyquist
diagrams in the complex field as in Fig. 3, 4. It was used a sweep frequency signal
from 100 to 2000 Hz. As structure was used an aluminium plate with dimensions
of 330 x 90 x 2 mm with E = 71000 [N/mm?], Poisson 0.37 and p = 2710 [kg/m?],
rigidly clamped using also an elastic thin layer on one side and it was marked on it
18 places for possible placements of sensors and actuators. On the clamped side it
was placed a distributed force matrix sensor from company Tekscan which came
with its own amplifier and signal conditioning, for measuring and mapping the
force. The clamping total force applied was changed between three different
levels, 1 N, 1.5 N and 2 N and measured with a piezoresistive sensor produced by
company Laumas. Two accelerometers and one microphone from Bruel&Kjaer
were used. The electrodynamic actuator HIAX was used for actuating the
generated input function and also forces. All the signals acquired from the sensors
and also the actuator control was made with a DEWESsoft Sirius 8 channel system
as in Fig. 2. With DEWEsoft software it was made the modal analysis and also the
function generation for the actuator. The main objective of the article was to find
the modal parameters and as a consequence, the optimal poles and zeros and
finally the location of sensors and actuators, if there are different boundary
constraints. In analytical calculation, the boundaries are considered mostly as
ideal, mainly because of complexities and difficulties of modeling the constraints.
In this study the approach was for using an elastic boundary at one edge with
different clamping forces mapped with a matrix piezoresistive sensor. Using smart
matrix force sensors for mapping the distribution of the force on the interface
between the structure and the fixed base or between two structures, the frequency
response function was found as being different than the classic rigidly fixed
(clamped). In the case of active vibration control, modal testing under different
boundary conditions it is a more realistic method for finding more precise the
modal parameters (natural frequencies, damping and mode shapes) and this could
lead to a better observability and controllability of the system and better dynamic
response and behavior. Circle matching or circle-fit method [2, 13] which consists
in a series of operations around the resonance mode peak has the aim of more
precise fixing of resonance frequency. The theory under the calculation of circle-
fit for structures with structural damping on these tests has as basis the equation
1

w2 [1 - (wﬂr)z— inr]’ (18)
where « is the response function , wr is the natural frequency, and 7 is the
structural loss [15]. It has the aim of obtaining more precise information about the

a(w) =
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resonance frequency and damping values, damping which cannot be obtained in
other ways than experimentally. Because the frequency resolution is not so
precise, it is hard to find the exact value where the real part of FRF is passing the
abscissa axis of complex plane. This zero passing point is happening at the natural

frequency and at this value the structural loss is

Cl)lz— (4)22

==z (19)

The advantage of circle-fit method (Fig. 4, 5) is that it includes the
influence of other modes on the one to whom the determination is made. There is
the case of systems which have many degrees of freedom, where is an influence of
a number of adjacent modes on the resonance mode for which is made the
analysis. On the plate was marked 45 points, equidistant covering the surface (ex.
A10-S16-S22 means that the actuator is placed at point 10 and accelerometers at
point 16 and 22). The TF between actuator and accelerometers was noted with

AS1 or AS2.

>

Laser
: Ampl. |
P Data
| | oaquisition
/- \.Plate Distrib. force densor |
o N " '
Actuator Acc.l ﬁ
Acc. 2 r
Load cell
Mic
T . 1 Ampl
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As comparison, FEA / pole fitting modes with certain placement of
actuators A and sensors S with which was made actually the experiment and
obtained the transfer function. The frequency response function is obtained after
the measurements and processing the signal, as a ratio between the cross-spectrum
of force-excitation and acceleration-response signal Sas and auto-spectrum (Fig.2)
of the signal obtained from the force-exciter Saa.

H(w) = 45 (20)

Saa(w)
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Fig. 4 Transfer function on amplitude Bode plot (a) and phase Bode plot (b), location of actuator A
and accelerometers S1 and S2 (c), poles circle-fit and damping, for 1.5 N total boundary force
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Fig. 5 Actuator-sensors placement A10-S16-S22 (a), S13-S16-A22 (b), A10-S13-S19 (c), A10-
S19-S22 (d) and corresponding poles circle-fit and damping
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Table 1
Comparison of FEA mode shapes and experimental modal analysis results
Actuator- Bound_a Yy FEA modes Experime_n tal Damping experimental
Sensors clamping [Hz] poles fitting response AS1/AS2
locations force AS1/AS2 [Hz]
A10-S16-S22 AN 1430.3/1411.7 | 1435.5/1416.1 0.076709 / 0.076196
A10-S13-S19 AN 14517209.2 1455/ 204.48 0.050794 / 0.19566
A10-S16-S22 1.5N 1427714214 1420.7 / 1415.2 0.077432/0.075402
A10-S13-S19 1.5N 14571 217.6 1462 /211.5 0.057325/0.09369
A10-S16-522 2N 1415/1439.2 1425.4 11432 0.073264 / 0.071475
A10-S13-519 2N 1477/ 255.5 147172513 0.068934 /0.074974
S13-S16-A22 1IN 1451/722.2 1455/714.12 0.038555/0.27721
A10-S19-S22 AN 863.2/1447.9 869.18 / 1454.9 0.075099 / 0.040815
S13-S16-A22 1.5N 1469/714.3 1461.3/723.4 0.056349/0.13477
A10-S19-S22 1.5N 849.6 / 1469.6 852.2 /1477.3 0.096634 / 0.063597
S13-S16-A22 2N 1518.5/794.1 1521.3/772.4 0.075093 / 0.093664
A10-S19-S22 1.5N 881/1494.6 891.7/1479.7 0.076354 / 0.093345

In the Table 1 we have included the results of different locations of
actuators and sensors according with poles placements obtained experimentally
and similar mode shapes obtained with FEA, under different clamping boundary
force. The poles experimentally obtained and circumscribed in the fitting circle
gives the position of sensors and actuators and this position it is compared with
position of maximum displacement on mode shapes obtained with FEA. For this
case of structural damping, the frequency response function FRF was used. The
method of poles matching the circle was adopted because of the assumption that
the resonance of the system takes place at the point of maximum of the vibration
amplitude and the damping corresponding to this peak can be determined from the
frequency band around the peak resonance mode, considered at half level of
power which is with 3dB lower than the peak.

7. Conclusion

Modal analysis and state-space methods are good approaches to determine
the position of poles and zeros and thus, the level of stability, observability and
controllability of the control system. The placement of poles and zeros are giving
the positions where could be applied the sensors and actuators. An optimal control
implies a correct positioning of the sensors and actuators and for this,
determination of the frequency response of the structure is compulsory. Thus, this
article approached the modal analysis as a good solution for a small system where
it was supposed that the mode shapes are well separated and a feedback control
could be used. Feedback type active vibration control has the optimal effect when
it is tuned to the resonant low-frequencies of the vibro-acoustic structure or space.
For this analysis it was considered a frequency band much broader, because each
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mode inside the researched band is influenced by modes which are placed outside
the band, so the energy introduced by these modes should be considered also. The
aim was to determine the resonance frequency and structure response using modal
analysis and from this, the mode shapes and damping, under different elastic
boundary clamped edge. The main objective of this study was to get the response
of the structure on the condition where on the clamped area an exterior force was
applied at different levels for “augmenting” the elastic behavior and finally the
response of the structure. It can be also appreciated that effective modal control
can be achieved on the low frequency range, including on the feedback loop the
control of the clamping force.
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