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THE DYNAMICS OF AN ECO-EPIDEMIOLOGICAL SYSTEM

Cristina BERCIA!

In acest articol se prezintd un sistem de ecuatii diferentiale care modeleaza
evolutia a trei specii, doud dintre ele sunt populatia susceptibild, respectiv cea
infectatd, iar a treia este cea a pradatorilor. Am realizat un studiu de stabilitate
locala a acestui model. La variatia unuia dintre parametri, am gasit un punct de
bifurcatie Hopf care reprezinta o limita intre controlul eradicarii bolii, pe de o parte
§i coexistenta celor trei specii pe de alta parte. Apoi am ilustrat rezultatele analitice
prin simulari numerice.

In this paper we present an ODE system which models the evolution of three
species, two of them are susceptible, respectively infected preys, and the third is the
predator population. We performed a local stability study of the model. We found a
Hopf bifurcation point by varying one of the parameters, point which represents a
threshold between the control disease eradication and the three species coexistence.
We illustrated the analytical results through numerical simulations.
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1. Introduction

It is worthwhile to study the combined effect of epidemiological and
demographic features on real ecological populations.

The classical prey-predator system which is a two trophic level food chain
model often takes the general form

X(0)=wrl-) - () O
y'(0) = (p(x)-d)y
where x,y stand for prey and predator density, respectively and p(x) is so called

predator functional response. If p(x) = % then (1) becomes the predator-prey
a+Xx
model with Michaelis-Menten (or Holling type 1) functional response.

In this paper we study a prey-predator system with three populations,
infected prey, susceptible prey and predators on both populations. Here the
Michaelis-Menten type predation functional response is also used. The model has
9 parameters and was studied in [1], regarding sufficient conditions for the local
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stability of the equilibrium points of the system and numerical simulations for its
dynamical behavior. In the present article our goal is to find the domain of the
parameters for the existence and local stability of the equilibrium points and to
proof the existence of a Hopf bifurcation point, when one parameter is varied.
This point will represent a threshold between the control disease eradication and
the coexistence of the three populations.

2. The eco-epidemiological model

The three-dimensional ODE system is described by the following three-
differential equations:

S'(1) = rs(l—ﬂj—bm— pSY
k m+S

() = bSI —dy1 - P21
m+7Y

SY 1Y
Y'(t):—dZY+qp1 +qp2
m+S m+Y

)

where the prey population density consists of susceptible one- S and the infected
prey- I . The predator population density is Y.

There are general assumptions of the model, namely:

1. In the absence of disease, the prey population grows logistically with
intrinsic growth rate » and environmental carrying capacity £.

2. Only the susceptible prey can reproduce. The infected prey is removed
with death rate d; or by predation. The infected population 7 contributes with S to

population growth towards the carrying capacity.

3. The disease is spread among the prey only and the infected ones do not
recover. Susceptible prey becomes infected when it comes in contact with the
infected prey and this process follows the simple mass action kinetics with 4 as
the rate of conversion.

The predation functional response of the predator towards susceptible as
well as infected prey are following Michaelis-Menten kinetics with predation
coefficients p; and p,. Here m denotes the half-saturation constant. Consumed
prey is converted into predator with efficiency ¢. The loss of predator population
is due to death at a constant rate, d .

So all the parameters are strictly positive and ¢ € (0,1]. We introduce
scaling variables, %zié:f%:?,bk:b',%:m', and then still using old

variables for simplicity in notations, we obtain
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p1SY

m+S

I'(t) = bSI — dy] — nfzz—ﬁ; (3)
1Y

, nsSY p
Y'(t) =—-doY + +
Q 2 qm+S qm+Y

S'() =rSA—S —I)—bSI —

and the system will remain with 8 parameters.

Proposition 1 The first octant Rf is an invariant set for the system (3).

Proof Let be (vq,vo,v3) the vector-field which defines the differential
system (3). In I-Y plane, v(0,7,Y) =0, therefore all trajectories which initiate in
this plane, remain in it, V¢ >0, so the plane S=0 is an invariant set for the system.
With similar arguments, S=0, Y=0 are also invariant sets and the three coordonate
planes separate the interior of Ri which will be also an invariant set.

In consequence, all solutions with S(0),7(0),Y(0) >0 remain in the first
octant. From [1] we know that, with positive initial conditions and S(0) < k&, the

system (2) has only bounded solutions.

The existence criteria of the equilibrium points of the system (3) are the
following:

Proposition 2 i) The trivial equilibrium Ey =(0,0,0) and the axial

equilibrium E; = (1,0,0) always exist;

ii) The boundary equilibrium £z = L, "C=%) o\ axists iff b>d; and
b b(b+r)
~ ~ . . ~ mdz
Epo=(S,0,Y) exists iff  gpy>d,(1+m), where S=—-"+5—,
gp1—dy

ﬁzra—SXm+S%

P1
(bS *—dy)(m + I*)

P2

iii) The interior equilibrium is E* = (S*,1*,Y*), where Y* =

mlmdy —(gpp —d)1*]

S* =
(g1 +qpp —dp)I *+m(qpy —d3)

and 7* is the positive root of the
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_ _ *
equation 1o mimdp—(gp 2 d)I"] _b [mdy — (qpy — do)1*]—
(gp1+app —do) I *+m(gp1 —d3) | pag
d
—(r+b) [ *+—2—[(gp1 +qps — d2) I *+m(gpy —d5)] = 0.
pa2gm

3. Stability analysis and a bifurcation study from an equilibrium point

We discuss the local stability of the equilibria of the system (3). We
evaluate the Jacobian matrix at every equilibrium point and the sign of the real
part of each eigenvalue will give us information about local stability.

Proposition 3 i) E,=(0,0,0) is a saddle-point, always stable in the
directions of 7 and Y and unstable in S direction;

i) £, =(10,0) is local asymptotic stable iff 6 <d; and gp; > dy(1+m),
stable in the direction of S;

iii) Epq is local asymptotic stable iff 5 > d; and

dy > g pdy  por(b—di) _ 4)
mb+dy mb(b+r)+r(b—dy)
Proof The eigenvalues corresponding to Eq are r,—dq,—d,. For the

Jacobian matrix in E;, we find the eigenvalues —r,b—dl,lqﬁ—dz. An
+m

eigenvector corresponding to (—r) is (1,0,0), so OS is the invariant stable
manifold if the two conditions for £; don’t hold.

The Jacobian matrix evaluated in Ep; gives one eigenvalue 4; R and
the condition (4) is equivalent with 4; <0. The others verify the equation

bA? +rdiA+rdy(b—dy)=0. So, if Ep exists, b>d; , then Redy3 <0. If (4)

doesn’t hold, the plain Y=0 is a stable manifold for it.
Now we investigate the disease-free equilibrium point Eg,. The

eigenvalues of the Jacobian matrix in this point are 4 =b§—dl—&}7 and
m

A2 3, the roots of the equation
n 5 4
Y |2 Y
(m+S) (m+S)
We assume gp; >do, m <1 and the equilibrium point E g, is stable in
the plane 7 =0 iff the coefficient of A is strictly positive, equivalent with

0. (5)
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do(l+m
_do@+m) 7
p1l—m)
M <0< §<S,,where S isthe positive root of the equation

(6)

()= porx® + (mbpy = por + parm)x = m(pidy + ppr) =0.  (7)

. . d -
The last condition can be written as q>—2(£+l) ='gand we can
P Sy
establish the following result:
Proposition 4 i) Let m <1, b>dy. Then Ep, is local asymptotic stable

iff ¢ < g < qq and for the other parameters, f(l_ij <0;

i) When b<dy, Epy is local asymptotic stable iff da+m) <q<qqp-

P1
We are investigating now whether the system admits a stable limit cycle
which also represents states of coexistence for the biological system. When
interested in periodic or quasiperiodic solutions of a dynamical system, Hopf
bifurcation points are first to be considered.
Suppose we have an autonomous system of ODE, v' = F(v, p) where

v e R"is the vector of variables and p € R is the vector of parameters. We say
that (v, pg) € R” xR™is a Hopf point, provided there exists a >0 such that

there is a smooth function ¢ : [~ a,a]— R"*"™ ()= ((¢), p(¢)) such that
i) 9(0)=(vo. po);
i) F(\(¢))=0,V¢ e[-a,al;

iii) The Jacobian matrix %(v(é’),p(é’» has at least one pair of
1%

conjugated  complex eigenvalues  a(¢)+if(¢), V< el[-aa]  with
a(0)=0,a'(0)= 0, A(0)=0;

iv) All other eigenvalues of the Jacobian matrix except +i3(0) have
nonzero real parts.

In our case we consider ¢ as a control parameter.

Theorem 1 Suppose m <1. The point (Ez5,qq) is a supercritical Hopf
bifurcation point, for every value of the other parameters, for the system (3).

Proof A necessary condition for Hopf bifurcation is that the Jacobian
matrix evaluated at E g, has one pair of pure imaginary eigenvalues. Only 4 3
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which verify equation (5) can satisfy this condition iff A, + A3 =0< g =¢q. As
a function of the control parameter g, A,3(q) =a(q)+if(q) defined in a

neighborhood  of =M. Since a(q)zm, we find
p1d—m) 2
, rdy (1+ m) e
a'(q)=—=—=>0. In consequence, from a stable branch of equilibrium
2q"mp,

points corresponding to Ep, for g <gqq, it bifurcates a branch of periodic
solutions (stable limit cycles) for g > gq, while Ep, becomes unstable. This is
the case of supercritical Hopf bifurcation.

4. Numerical simulations

In this section we expect some numerical simulations to illustrate our
analytical findings. Since we took ¢ as a control parameter, we fixed the others:
r=11.2,b=36, p; =dy =0.4, m =0.016, p, = 0.6, do =0.08. We found

d0=0206, §=0.2034, g = 24F™ _ g 5033

P

06

04 — o8

Fig. 1. The phase portrait of the system (2) for g € (¢,qo) around the disease free steady state
(0.66;0;6,37) when ¢ =0.205.
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For ¢ €(q,q90), ¢ =0.205, we integrated numerically the system using
MATLAB. Solutions which start only from a neighborhood of Ez,=(0.66;0;6,37)
will approach the equilibrium point for 1 — oo ( figure 1), so the stability of £z,
is of local nature.

For ¢ >qg,q=0.25, we depicted one trajectory which tends to a stable

limit cycle (Fig. 2-left). Our simulations revealed that the cycle is a global
attractor for the interior of the first octant. In Fig. 2-right we represented the time
evolution of the correspondent solution.

Now for ¢ very small, satisfying the condition (4), ¢ =0.02, the

boundary equilibrium Ep, is stable. A solution with initial condition Y(0) >0
will end at Ez; where Y =0 (see figure 3).
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Fig. 2-left. One trajectory which tends to the stable limit cycle, when ¢ > ¢, ¢ = 0.25. Fig. 2-

right. Time evolution of the solution which tends to a periodic behavior, corresponding to the limit
cycle
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Fig. 3-left. For ¢ =0.02, a trajectory which starts at (0.9 ;0.3 ;2) tends to the predator free
equilibrium for ¢ — o . Fig. 3-right. Time evolution of the correspondent solution.
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5. Conclusions

Using the predator conversion efficiency (¢) as a control parameter, we
showed that for small values of ¢, the system evolves to the free-predator state
(condition (4)). Then, for medium ¢, we have obtained a threshold value ¢g, such

that for g < ¢qq, the system exhibits stable characteristics around the uninfected
steady state and for ¢ > g, this state is replaced by a limit cycle, so all the three
populations coexist in an oscillatory behavior with no possibility of disease
d2 (1+ m)
p1d—m)
together with the half saturation constant (), the predator mortality (d5 ) and the
consuming capacity of the predator on the susceptible prey ( p;) are important

parameters that control global stability aspects.

A further study should be a two-parameter bifurcation analysis which
could bring us new information about the periodic behavior of the dynamical
system. A simultaneous variation of parameters such as ¢ and » could raise the
question whether a generalized Hopf bifurcation can take place. This codimension
2 bifurcation type from equilibria could demonstrate the appearance of limit cycle
bifurcation.

eradication. Since ¢ = , the predator conversion efficiency (gq),
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