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THE DYNAMICS OF AN ECO-EPIDEMIOLOGICAL SYSTEM 

Cristina BERCIA1 

In acest articol se prezintă un sistem de ecuaţii diferenţiale care modelează 
evoluţia a trei specii, două dintre ele sunt populaţia susceptibilă, respectiv cea 
infectată, iar a treia este cea a prădatorilor. Am realizat un studiu de stabilitate 
locală a acestui model. La variaţia unuia dintre parametri, am gasit un punct de 
bifurcaţie Hopf care reprezintă o limită între controlul eradicării bolii, pe de o parte 
şi coexistenţa celor trei specii pe de altă parte. Apoi am ilustrat rezultatele analitice 
prin simulări numerice. 

In this paper we present an ODE system which models the evolution of three 
species, two of them are susceptible, respectively infected preys, and the third is the 
predator population. We performed a local stability study of the model. We found a 
Hopf bifurcation point by varying one of the parameters, point which represents a 
threshold between the control disease eradication and the three species coexistence. 
We illustrated the analytical results through numerical simulations.  

Keywords: Predator-prey system, Stability, Limit cycles. 

1. Introduction 

It is worthwhile to study the combined effect of epidemiological and 
demographic features on real ecological populations. 

The classical prey-predator system which is a two trophic level food chain 
model often takes the general form    
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where x,y stand for prey and predator density, respectively and ( )xp  is so called 

predator functional response. If ,)(
xa

mxxp
+

=  then (1) becomes the predator-prey 

model with Michaelis-Menten (or Holling type II) functional response. 
In this paper we study a prey-predator system with three populations, 

infected prey, susceptible prey and predators on both populations. Here the 
Michaelis-Menten type predation functional response is also used. The model has 
9 parameters and was studied in [1], regarding sufficient conditions for the local 
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stability of the equilibrium points of the system and numerical simulations for its 
dynamical behavior. In the present article our goal is to find the domain of the 
parameters for the existence and local stability of the equilibrium points and to 
proof the existence of a Hopf bifurcation point, when one parameter is varied. 
This point will represent a threshold between the control disease eradication and 
the coexistence of the three populations. 

2. The eco-epidemiological model 

The three-dimensional ODE system is described by the following three-
differential equations: 
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where the prey population density consists of susceptible one- S and the infected 
prey- I . The predator population density is Y.  

There are general assumptions of the model, namely: 
1. In the absence of disease, the prey population grows logistically with 

intrinsic growth rate r and environmental carrying capacity k. 
2. Only the susceptible prey can reproduce. The infected prey is removed 

with death rate 1d  or by predation. The infected population I contributes with S to 
population growth towards the carrying capacity. 

3. The disease is spread among the prey only and the infected ones do not 
recover. Susceptible prey becomes infected when it comes in contact with the 
infected prey and this process follows the simple mass action kinetics with b as 
the rate of conversion. 

The predation functional response of the predator towards susceptible as 
well as infected prey are following Michaelis-Menten kinetics with predation 
coefficients 1p  and 2p . Here m denotes the half-saturation constant. Consumed 
prey is converted into predator with efficiency q. The loss of predator population 
is due to death at a constant rate, 2d . 

So all the parameters are strictly positive and ]1,0(∈q . We introduce 

scaling variables, ',',~,~,~ m
k
mbbkY

k
YI

k
IS

k
S

===== , and then still using old 

variables for simplicity in notations, we obtain  
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and the system will remain with 8 parameters. 

Proposition 1 The first octant 3R+  is an invariant set for the system (3). 
Proof Let be ),,( 321 vvv  the vector-field which defines the differential 

system (3). In I-Y plane, 0),,0(1 =YIv , therefore all trajectories which initiate in 
this plane, remain in it, 0≥∀t , so the plane S=0 is an invariant set for the system. 
With similar arguments, S=0, Y=0 are also invariant sets and the three coordonate 
planes separate the interior of 3R+  which will be also an invariant set.  

In consequence, all solutions with 0)0(),0(),0( >YIS  remain in the first 
octant. From [1] we know that, with positive initial conditions and kS <)0( , the 
system (2)  has only bounded solutions. 

The existence criteria of the equilibrium points of the system (3) are the 
following: 

Proposition 2 i) The trivial equilibrium )0,0,0(0 =E  and the axial 
equilibrium )0,0,1(1 =E  always exist; 

ii) The boundary equilibrium ⎟⎟
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3. Stability analysis and a bifurcation study from an equilibrium point 

We discuss the local stability of the equilibria of the system (3). We 
evaluate the Jacobian matrix at every equilibrium point and the sign of the real 
part of each eigenvalue will give us information about local stability. 

Proposition 3 i) )0,0,0(0 =E  is a saddle-point, always stable in the 
directions of I and Y and unstable in S direction; 

ii) )0,0,1(1 =E  is local asymptotic stable iff 1db <  and )1(21 mdqp +> , 
stable in the direction of S;  

iii) 1BE  is local asymptotic stable iff 1db >  and 
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Proof The eigenvalues corresponding to 0E  are 21,, ddr −− . For the 

Jacobian matrix in 1E , we find the eigenvalues 2
1

1 1
,, d

m
qpdbr −
+

−− . An 

eigenvector corresponding to ( r− ) is (1,0,0), so OS is the invariant stable 
manifold if the two conditions for 1E  don’t hold.  

The Jacobian matrix evaluated in 1BE  gives one eigenvalue ∈1λ R and 
the condition (4) is equivalent with 01 <λ . The others verify the equation 

0)( 111
2 =−++ dbrdrdb λλ . So, if 1BE  exists, 1db >  , then 0Re 3,2 <λ . If (4) 

doesn’t hold, the plain Y=0 is a stable manifold for it. 
Now we investigate the disease-free equilibrium point 2BE . The 

eigenvalues of the Jacobian matrix in this point are Y
m
pdSb ˆˆ 2

11 −−=λ  and 

3,2λ , the roots of the equation  
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We assume 21 dqp > , 1<m  and the equilibrium point 2BE  is stable in 
the plane 0=I  iff the coefficient of λ  is strictly positive, equivalent with  
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+<⇔< SS ˆˆ01λ , where +Ŝ  is the positive root of the equation  
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The last condition can be written as q
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establish the following result: 
Proposition 4 i) Let ,1<m  1db > . Then 2BE  is local asymptotic stable 

iff 0ˆ qqq <<  and for the other parameters, 0
2

1
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ii) When 1db < ,  2BE  is local asymptotic stable iff 0
1
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p
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We are investigating now whether the system admits a stable limit cycle 
which also represents states of coexistence for the biological system. When 
interested in periodic or quasiperiodic solutions of a dynamical system, Hopf 
bifurcation points are first to be considered. 

Suppose we have an autonomous system of  ODE, ),( pvFv =′  where 
nv R∈ is the vector of variables and mp R∈ is the vector of parameters. We say 

that mnpv RR ×∈),( 00 is a Hopf point, provided there exists 0>a  such that 

there is a smooth function [ ] ( ) ( ) ( )( )ζζζϕϕ pvaa mn ,,,: =→− +R  such that 
i) ( ) ( )00 ,0 pv=ϕ ; 
ii) ( )( ) [ ]aavF ,,0 −∈∀= ζζ ; 

iii) The Jacobian matrix ( ) ( )( )ζζ pv
Dv
DF ,  has at least one pair of 

conjugated complex eigenvalues ( ) ( )ζβζα i± , [ ]aa,−∈∀ζ  with 
( ) ( ) ( ) 00,00',00 ≠≠= βαα ; 

iv) All other eigenvalues of the Jacobian matrix except ( )0βi±  have 
nonzero real parts. 

In our case we consider q  as a control parameter. 
Theorem 1 Suppose 1<m . The point ),( 02 qEB  is a supercritical Hopf 

bifurcation point, for every value of the other parameters, for the system (3). 
Proof A necessary condition for Hopf bifurcation is that the Jacobian 

matrix evaluated at 2BE  has one pair of pure imaginary eigenvalues. Only 3,2λ  
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which verify equation (5) can satisfy this condition iff 032 0 qq =⇔=+ λλ . As 
a function of the control parameter q, )()()(3,2 qiqq βαλ ±=  defined in a 

neighborhood of 
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qα . In consequence, from a stable branch of equilibrium 

points corresponding to 2BE  for 0qq < , it bifurcates a branch of periodic 
solutions (stable limit cycles) for 0qq > , while 2BE  becomes unstable. This is 
the case of supercritical Hopf bifurcation.  

4. Numerical simulations 

In this section we expect some numerical simulations to illustrate our 
analytical findings. Since we took q as a control parameter, we fixed the others: 

08.0,6.0,016.0,4.0,36,2.11 2211 ======= dpmdpbr . We found  

,206.00 =q  2034.0ˆ =q , .2033.0)1(
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2
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+
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p
mdq  

 
Fig. 1. The phase portrait of the system (2) for ),ˆ( 0qqq∈  around the disease free steady state 

(0.66;0;6,37) when 205.0=q . 
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For 205.0),,ˆ( 0 =∈ qqqq , we integrated numerically the system using 
MATLAB. Solutions which start only from a neighborhood of 2BE =(0.66;0;6,37) 
will approach the equilibrium point for ∞→t ( figure 1), so the stability of 2BE  
is of local nature. 

For 25.0,0 => qqq , we depicted one trajectory which tends to a stable 
limit cycle (Fig. 2-left). Our simulations revealed that the cycle is a global 
attractor for the interior of the first octant. In Fig. 2-right we represented the time 
evolution of the correspondent solution. 

Now for q  very small, satisfying the condition (4), 02.0=q , the 
boundary equilibrium 1BE  is stable. A solution with initial condition 0)0( >Y  
will end at 1BE  where 0=Y  (see figure 3). 

 
Fig. 2-left. One trajectory which tends to the stable limit cycle, when 25.0,0 => qqq . Fig. 2-

right. Time evolution of the solution which tends to a periodic behavior, corresponding to the limit 
cycle 

 
Fig. 3-left. For 02.0=q , a trajectory which starts at (0.9 ;0.3 ;2) tends to the predator free 

equilibrium for ∞→t . Fig. 3-right. Time evolution of the correspondent solution. 
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5. Conclusions 

Using the predator conversion efficiency (q) as a control parameter, we 
showed that for small values of q, the system evolves to the free-predator state 
(condition (4)). Then, for medium q, we have obtained a threshold value 0q , such 
that for 0qq < , the system exhibits stable characteristics around the uninfected 
steady state and for 0qq > , this state is replaced by a limit cycle, so all the three 
populations coexist in an oscillatory behavior with no possibility of disease 

eradication. Since 
)1(
)1(

1

2
0 mp

md
q

−
+

= , the predator conversion efficiency ( q ), 

together with the half saturation constant ( m ), the predator mortality ( 2d ) and the 
consuming capacity of the predator on the susceptible prey ( 1p ) are important 
parameters that control global stability aspects. 

A further study should be a two-parameter bifurcation analysis which 
could bring us new information about the periodic behavior of the dynamical 
system. A simultaneous variation of parameters such as q  and b  could raise the 
question whether a generalized Hopf bifurcation can take place. This codimension 
2 bifurcation type from equilibria could demonstrate the appearance of limit cycle 
bifurcation. 
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