

STUDY ON OPERATOR REPRESENTATION OF FRAMES IN HILBERT SPACES

Jahangir Cheshmavar¹, Ayyaneh Dallaki²

The purpose of this paper is to give an overview of the operator structure of frames $\{f_k\}_{k=1}^{\infty}$ as $\{T^k\phi\}_{k=0}^{\infty}$, where the operator $T: \mathcal{H} \rightarrow \mathcal{H}$ belongs to certain classes of linear operators and the element ϕ belongs to \mathcal{H} . We discuss the size of the set of such elements. Also, for a given frame $\{f_k\}_{k=1}^{\infty}$ and any $n \in \mathbb{N}$, some results are obtained for $T^n(\{f_k\}_{k=1}^{\infty}) = \{T^n f_1, T^n f_2, \dots\}$. Finally, we conclude this note by raising several questions connecting frame theory and operator theory.

Keywords: frames, operator representation of frames, spectrum, spectral radius, hypercyclic operators.

MSC2020: 42C15.

1. Introduction

The system of iterations $\{T^k\phi\}_{k=0}^{\infty}$, where T is a bounded linear operator on a separable Hilbert space \mathcal{H} and $\phi \in \mathcal{H}$, the so-called dynamical sampling problem is a relatively new research topic in Harmonic analysis. This topic has been studied since the work of Aldroubi and Petrosyan [1] for some new results concerning frames and Bessel systems, see for example Aldroubi et al. [2] to study dynamical sampling problem in finite dimensional spaces. Christensen et al. [9, 11, 12] studied some properties of systems arising via iterated actions of operators and frame properties of operator orbits. For more details, we refer the interested reader to the [1, 4, 7, 8].

Let $F := \{f_k\}_{k=1}^{\infty}$ be a frame for \mathcal{H} which spans an infinite dimensional subspace. A natural question to ask is whether there exists a linear operator T such that $f_{k+1} = Tf_k$, for all $k \in \mathbb{N}$?

In [12], it was proved that such an operator exists if and only if F is linearly independent; also, T is bounded if and only if the kernel of the synthesis operator of F is invariant under the right shift operator on $\ell^2(\mathbb{N})$, in the affirmative case, $F = \{T^k f_1\}_{k=0}^{\infty}$.

In this note, for given frame F , some results are obtained for $T^n(F) = \{T^n f_1, T^n f_2, \dots\}$. Note that the problem considered in this note is of some interest from other points of view. Indeed, assume that the system $\{T^k\phi\}_{k=0}^{\infty}$ is a frame for \mathcal{H} . It is natural to ask for a characterization of $\mathcal{V}(T)$: the set of all $\phi \in \mathcal{H}$ such that $\{T^k\phi\}_{k=0}^{\infty}$ is a frame for \mathcal{H} . In [11], $\mathcal{V}(T)$ is obtained by applying all invertible operators from the set of commutant T' of T to ϕ . The chief aim of this paper is to understand the size of the set $\mathcal{V}(T)$ with a restriction on T . Also, we show that the set of all invertible operators $T \in B(\mathcal{H})$, for which $\{T^k\phi\}_{k=0}^{\infty}$ is a frame for \mathcal{H} for some $\phi \in \mathcal{H}$, is open. Finally, we close this work by raising some questions connecting frame theory and operator theory.

¹Department of Mathematics, Payame Noor University (PNU), P.O.Box 19395-3697, Tehran, Iran, E-mail: j_cheshmavar@pnu.ac.ir (Corresponding author)

²Department of Mathematics, Payame Noor University (PNU), P.O.Box 19395-3697, Tehran, Iran, E-mail: ayyanehdallaki@student.pnu.ac.ir

In the following, we denote by \mathcal{H} a separable Hilbert space. We use $B(\mathcal{H})$ for the set of all bounded linear operators on \mathcal{H} , \mathbb{N} for the natural numbers as the index set and we take $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$. The spectrum of an operator $T \in B(\mathcal{H})$ is denoted by $\sigma(T)$, which is defined as

$$\sigma(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not invertible}\},$$

and the spectral radius of T is denoted by $r(T)$, which is defined as

$$r(T) = \sup\{|\lambda| : \lambda \in \sigma(T)\}.$$

Given an operator Λ , we denote its domain by $dom(\Lambda)$ and its range by $ran(\Lambda)$.

Definition 1.1. [8] *A sequence of vectors F in \mathcal{H} is a frame for \mathcal{H} if there exist constants $A, B > 0$ so that*

$$A \|f\|^2 \leq \sum_{k=1}^{\infty} |\langle f, f_k \rangle|^2 \leq B \|f\|^2, \quad (1)$$

for all $f \in \mathcal{H}$.

It follows from the definition that if F is a frame for \mathcal{H} , then

$$\overline{\text{span}} F = \mathcal{H}. \quad (2)$$

If $A = B$, then F is called a *tight frame* and if $A = B = 1$, then F is called a *Parseval frame or a normalized tight frame*. Moreover, F is called a *Bessel sequence* if at least the upper condition in (1) holds.

For any sequence F in \mathcal{H} , the associated *synthesis operator* is defined by

$$U_F : D_1(F) \rightarrow \mathcal{H}; \quad U_F(\{c_k\}_{k=1}^{\infty}) = \sum_{k=1}^{\infty} c_k f_k,$$

where

$$D_1(F) := \left\{ \{c_k\}_{k=1}^{\infty} \in \ell^2(\mathbb{N}) : \sum_{k=1}^{\infty} c_k f_k \text{ converges in } \mathcal{H} \right\}.$$

The *analysis operator* is defined by

$$U_F^* : D_2(F) \rightarrow \ell^2(\mathbb{N}); \quad U_F^* f = \{\langle f, f_k \rangle\}_{k=1}^{\infty},$$

where

$$D_2(F) := \{f \in \mathcal{H} : \{\langle f, f_k \rangle\}_{k=1}^{\infty} \in \ell^2(\mathbb{N})\}.$$

Furthermore, the *frame operator* is defined by

$$S_F : D_3(F) \rightarrow \mathcal{H}; \quad S_F f = \sum_{k=1}^{\infty} \langle f, f_k \rangle f_k,$$

where

$$D_3(F) := \left\{ f \in \mathcal{H} : \sum_{k=1}^{\infty} \langle f, f_k \rangle f_k \text{ converges in } \mathcal{H} \right\}.$$

Remark 1.1. *It is known that if F is at least a Bessel sequence, then*

- (i) *the operator U_F is well-defined and $D_1(F) = \ell^2(\mathbb{N})$,*
- (ii) *the operators S_F and U_F^* are well-defined and the domain of both is \mathcal{H} .*

Definition 1.2. [8] A sequence of vectors F in \mathcal{H} is a Riesz basis for \mathcal{H} with bounds $0 < A \leq B < \infty$, if F satisfies the relation (2) and for every scalar sequence $(c_k)_k \in \ell^2$, one has

$$A \sum_k |c_k|^2 \leq \left\| \sum_k c_k f_k \right\|^2 \leq B \sum_k |c_k|^2. \quad (3)$$

We have the following result which is well-known in frame theory in general case, (see for example [3]), we include a sketch of the proof.

Proposition 1.1. Suppose that F is a frame (not tight frame) for a Hilbert space \mathcal{H} with bounds A and B , respectively, and with frame operator S_F . If $f_j \in F$ such that $\|S_F^{-1/2} f_j\| \leq \sqrt{\frac{A}{B}}$, then $F \setminus \{f_j\}$ is a frame for \mathcal{H} .

Proof. Let $f_j \in F$ such that $\|S_F^{-1/2} f_j\| \leq \sqrt{\frac{A}{B}}$. It is known that $\{S_F^{-1/2} f_k\}_{k=1}^\infty$ is a Parseval frame for \mathcal{H} , (see [14, Corollary 6.3.5] and [6, Theorem III.2]), so for any $h \in \mathcal{H}$ we obtain

$$\begin{aligned} \sum_{k=1}^{\infty} |\langle h, S_F^{-1/2} f_k \rangle|^2 - |\langle h, S_F^{-1/2} f_j \rangle|^2 &\geq \|h\|^2 - \|S_F^{-1/2} f_j\|^2 \|h\|^2 \\ &\geq \left(1 - \frac{A}{B}\right) \|h\|^2. \end{aligned}$$

That is, the sequence $S_F^{-1/2}(F \setminus \{f_j\})$ is a frame for \mathcal{H} with lower frame bound $1 - \frac{A}{B}$. Since $S_F^{-1/2}$ is an invertible operator on \mathcal{H} , thus $F \setminus \{f_j\}$ is a frame for \mathcal{H} as well. \square

The availability of the representation $F = \{T^k f_1\}_{k=0}^\infty$ is characterized in [12]:

Proposition 1.2. Consider any sequence F in \mathcal{H} for which $\text{span}F$ is infinite-dimensional. Then the following are equivalent:

- (i) F is linearly independent.
- (ii) There exists a linear operator $T : \text{span}F \rightarrow \mathcal{H}$ such that $F = \{T^k f_1\}_{k=0}^\infty$.

2. Main results

We begin with the following notations. Note that the sequence F being represented by T means that

$$F := \{f_k\}_{k=1}^\infty = \{f_1, f_2, f_3, \dots\} = \{f_1, T f_1, T^2 f_1, \dots\} = \{T^k f_1\}_{k=0}^\infty.$$

Therefore, for any $n \in \mathbb{N}$, we have

$$\begin{aligned} T_n(F) := T^n(F) = \{T^n f_k\}_{k=1}^\infty &= \{T^n f_1, T^n f_2, \dots\} \\ &= \{f_{n+1}, f_{n+2}, \dots\} = F \setminus \{f_1, f_2, \dots, f_n\}. \end{aligned}$$

Throughout this section, for any $n \in \mathbb{N}$, we simply take $T_n := T^n$. Suppose that F is a sequence in \mathcal{H} of the form $\{T^k f_1\}_{k=0}^\infty$ for some operator T . For any $n \in \mathbb{N}$, the associated synthesis, analysis, and frame operators of $T_n(F)$ are given by the following proposition:

Proposition 2.1. The synthesis, the analysis, and the frame operators for $T_n(F)$ are given by $T_n U_F$, $U_F^* T_n^*$, and $T_n S_F T_n^*$, respectively.

Proof. For each $n \in \mathbb{N}$, we have

$$U_{T_n(F)}(\{c_k\}_{k=1}^{\infty}) = \sum_{k=1}^{\infty} c_k T_n f_k = \sum_{k=1}^{\infty} T_n(c_k f_k) = T_n U_F(\{c_k\}_{k=1}^{\infty}),$$

it follows that $U_{T_n(F)} = T_n U_F$.

For the analysis operator, we have

$$U_{T_n(F)}^* f = \{\langle f, T_n f_k \rangle\}_{k=1}^{\infty} = \{\langle T_n^* f, f_k \rangle\}_{k=1}^{\infty} = U_F^* T_n^* f,$$

it follows that $U_{T_n(F)}^* = U_F^* T_n^*$. In addition, we have

$$S_{T_n(F)} f = \sum_{k=1}^{\infty} \langle f, T_n f_k \rangle T_n f_k = T_n \sum_{k=1}^{\infty} \langle T_n^* f, f_k \rangle f_k = T_n S_F T_n^* f,$$

it follows that $S_{T_n(F)} = T_n S_F T_n^*$. \square

It is well-known that F is a Riesz basis for \mathcal{H} if and only if the analysis operator U_F^* is bijective (because by [8, Theorem (5.4.1)] and [13, Proposition (5.1.5)], F is a Riesz basis if and only if F is a frame and U_F^* is surjective and also, by [8, Corollary (5.5.3)] F is a frame if and only if U_F^* is an injective operator with closed range). Now we have the following result:

Proposition 2.2. *Let F be a Riesz basis for \mathcal{H} of the form $\{T^k f_1\}_{k=0}^{\infty}$, for some operator T . Then, for any $n \in \mathbb{N}$, $T_n(F)$ is a Riesz basis for \mathcal{H} if and only if T_n is an invertible operator on \mathcal{H} .*

Proof. Since F is a Riesz basis for \mathcal{H} , then the analysis operator U_F^* is invertible. For any $n \in \mathbb{N}$, if T_n is an invertible operator on \mathcal{H} , then $U_F^* T_n^*$ (the analysis operator of $T_n(F)$) is invertible. Therefore, for any $n \in \mathbb{N}$, $T_n(F)$ is a Riesz basis for \mathcal{H} . Conversely, for any $n \in \mathbb{N}$, if $T_n(F)$ is a Riesz basis for \mathcal{H} , then the analysis operator $U_F^* T_n^*$ is invertible. Also, since the analysis operator U_F^* is an invertible operator on \mathcal{H} , it follows that T_n^* and then T_n is an invertible operator on \mathcal{H} . \square

We give some relations associated to the domain and range of the synthesis, analysis, and frame operators for $T_n(F)$.

Proposition 2.3. *For any $n \in \mathbb{N}$, the following statements hold:*

- (i) $\text{dom}(T_n S_F T_n^*) = \text{dom}(S_{T_n(F)}) \subseteq \text{dom}(U_{T_n(F)}^*) = \text{dom}(U_F^* T_n^*)$,
- (ii) $\text{ran}(T_n S_F T_n^*) = \text{ran}(S_{T_n(F)}) \subseteq \text{ran}(U_{T_n(F)}) = \text{ran}(T_n U_F)$,
- (iii) $\text{dom}(S_{T_n(F)}) = \text{dom}(U_{T_n(F)}^*)$ iff $\text{ran}(U_{T_n(F)}^*) \subseteq \text{dom}(U_{T_n(F)})$.

Proof. For any $n \in \mathbb{N}$, it is known that

$$\text{dom}(T_n S_F T_n^*) = \text{dom}(S_{T_n(F)}) = \{f \in \mathcal{H} : \sum_{k=1}^{\infty} \langle f, T_n f_k \rangle T_n f_k \text{ converges in } \mathcal{H}\},$$

$$\text{dom}(U_F^* T_n^*) = \text{dom}(U_{T_n(F)}^*) = \{f \in \mathcal{H} : \{\langle f, T_n f_k \rangle\}_{k=1}^{\infty} \in \ell^2(\mathbb{N})\},$$

$$\begin{aligned} \text{dom}(T_n U_F) &= \text{dom}(U_{T_n(F)}) \\ &= \{(c_k)_{k=1}^{\infty} \in \ell^2(\mathbb{N}) : \sum_{k=1}^{\infty} c_k T_n f_k = \sum_{k=1}^{\infty} T_n(c_k f_k) \text{ converges in } \mathcal{H}\}. \end{aligned}$$

For (i), let $f \in \text{dom}(S_{T_n(F)})$. It follows that

$$\sum_{k=1}^{\infty} \langle f, T_n f_k \rangle T_n f_k \text{ converges in } \mathcal{H}.$$

Then, we obtain that

$$\left\langle \sum_{k=1}^N \langle f, T_n f_k \rangle T_n f_k, f \right\rangle \longrightarrow \langle S_{T_n(F)} f, f \rangle, \text{ as } N \rightarrow \infty,$$

which implies that

$$\sum_{k=1}^N |\langle f, T_n f_k \rangle|^2 = \sum_{k=1}^N |\langle T_n^* f, f_k \rangle|^2 \text{ converges as } N \rightarrow \infty.$$

Therefore, $f \in \text{dom}(U_{T_n(F)}^*) = \text{dom}(U_F^* T_n^*)$.

(ii) follows from the fact that

$$S_{T_n(F)} = T_n S_F T_n^* = T_n U_F U_F^* T_n^* = \underbrace{T_n U_F}_{\text{underbrace}} \underbrace{U_{T_n(F)}^*}_{\text{underbrace}}.$$

For (iii), let $\text{dom}(S_{T_n(F)}) = \text{dom}(U_{T_n(F)}^*)$ and take $U_{T_n(F)}^* f \in \text{ran}(U_{T_n(F)}^*)$. Then, $f \in \text{dom}(S_{T_n(F)})$ which implies that $U_{T_n(F)}^* f \in \text{dom}(U_{T_n(F)})$. Now, if $\text{ran}(U_{T_n(F)}^*) \subseteq \text{dom}(U_{T_n(F)})$, it is clear that $\text{dom}(U_{T_n(F)}^*) \subseteq \text{dom}(S_{T_n(F)})$ and the other inclusion is given in (i). Therefore, $\text{dom}(S_{T_n(F)}) = \text{dom}(U_{T_n(F)}^*)$, as desired. \square

For a given operator $T \in B(\mathcal{H})$, let

$$\mathcal{V}(T) := \{\phi \in \mathcal{H} : \{T^k \phi\}_{k \in \mathbb{N}_0} \text{ is a frame for } \mathcal{H}\}.$$

Also, let

$$\mathcal{E}(\mathcal{H}) := \{T \in B(\mathcal{H}) : \{T^k \phi\}_{k \in \mathbb{N}_0} \text{ is a frame for } \mathcal{H}, \text{ for some } \phi \in \mathcal{H}\}.$$

Let $T \in B(\mathcal{H})$ be an operator for which there exists some $f \in \mathcal{H}$, such that $\{T^k f\}_{k=0}^{\infty}$ is a frame for \mathcal{H} . A natural question to ask is whether there exist other vectors $\phi \in \mathcal{H}$ for which $\{T^k \phi\}_{k=0}^{\infty}$ is also a frame for \mathcal{H} . In the following theorem, we consider a viewpoint of this query; we discuss the size of the set of vectors $\phi \in \mathcal{H}$ for which $\{T^k \phi\}_{k=0}^{\infty}$ is a frame for \mathcal{H} , with a restriction on T .

Recall that an operator $T \in B(\mathcal{H})$ is said to be *hypercyclic* if there is some vector $\phi \in \mathcal{H}$, such that its T -orbit

$$O(\phi, T) := \{T^k \phi\}_{k \in \mathbb{N}_0}$$

is dense in \mathcal{H} . Such a vector ϕ is said to be hypercyclic for T .

Proposition 2.4. *Let $T \in B(\mathcal{H})$ be invertible. Then*

$$\bigcap_{f \in \mathcal{V}(T), k \in \mathbb{N}} \mathbf{B}(f, k) \subseteq \mathcal{V}(T), \quad (4)$$

where,

$$\mathbf{B}(f, k) = \bigcup_{n \in \mathbb{N}_0} \{\phi \in \mathcal{H} : \|T^n \phi - f\| < \frac{1}{k}\}.$$

Moreover, if T admits $\mathcal{V}(T)$ as hypercyclic vectors, then

$$\mathcal{V}(T) = \bigcap_{f \in \mathcal{V}(T), k \in \mathbb{N}} \mathbf{B}(f, k). \quad (5)$$

Proof. For any $f \in \mathcal{V}(T)$, it is obvious that $T \in \mathcal{E}(\mathcal{H})$. Now, let $B_{f,k}$ be an open ball centered at $f \in \mathcal{V}(T)$ and with radius $\frac{1}{k}$. Then by continuity, for any $n \in \mathbb{N}_0$

$$(T^n)^{-1}B_{f,k} = \{\phi \in \mathcal{H} : \|T^n\phi - f\| < \frac{1}{k}\},$$

is open in \mathcal{H} . Therefore, for any $k \in \mathbb{N}$

$$\mathbf{B}(f, k) := \bigcup_{n \in \mathbb{N}_0} (T^n)^{-1}B_{f,k}, \quad (6)$$

is open in \mathcal{H} .

Claim:

$$\bigcap_{f \in \mathcal{V}(T), k \in \mathbb{N}} \mathbf{B}(f, k) \subseteq \mathcal{V}(T).$$

Let $\phi \in \bigcap_{f \in \mathcal{V}(T), k \in \mathbb{N}} \mathbf{B}(f, k)$, then for any $f \in \mathcal{V}(T)$ and any $k \in \mathbb{N}$,

$$\phi \in \mathbf{B}(f, k). \quad (7)$$

Hence, for any $f \in \mathcal{V}(T)$ and any $k \in \mathbb{N}$, from (6) and (7) we conclude that there exists $m \in \mathbb{N}_0$ such that $\phi \in (T^m)^{-1}B_{f,k}$, it follows that

$$T^m\phi \in B_{f,k}. \quad (8)$$

Now we need the following fact in the sequel.

Fact. For any $f \in \mathcal{V}(T)$ and for $k \in \mathbb{N}$ sufficiently large, $B_{f,k} \subset \mathcal{V}(T)$.

Proof of the fact. We have to show that for any $f \in \mathcal{V}(T)$, if $\|f - \phi\|$ is small enough, then $\phi \in \mathcal{V}(T)$, i.e., $\{\phi_i\}_{i \in \mathbb{N}_0} := \{T^i\phi\}_{i \in \mathbb{N}_0}$ is a frame for \mathcal{H} . For this purpose, it is enough that $\{\phi_i\}_{i \in \mathbb{N}_0}$ satisfies the assumptions of Theorem (2) in [5]. Let A be a lower frame bound for the frame $\{f_i\}_{i \in \mathbb{N}_0} := \{T^i f\}_{i \in \mathbb{N}_0}$. We have

$$\begin{aligned} \left\| \sum_{i=0}^n c_i(f_i - \phi_i) \right\| &= \sup_{\|g\|=1} \left| \left\langle \sum_{i=0}^n c_i(f_i - \phi_i), g \right\rangle \right| \\ &\leq \sup_{\|g\|=1} \sum_{i=0}^n |c_i \langle (f_i - \phi_i), g \rangle| \\ (\text{Cauchy-Schwarz inequality}) &\leq \left(\sum_{i=0}^n |c_i|^2 \right)^{1/2} \sup_{\|g\|=1} \left(\sum_{i=0}^n |\langle f_i - \phi_i, g \rangle|^2 \right)^{1/2}. \end{aligned}$$

On the other hand,

$$\begin{aligned} \sup_{\|g\|=1} \left(\sum_{i=0}^n |\langle f_i - \phi_i, g \rangle|^2 \right)^{1/2} &= \sup_{\|g\|=1} \left(\sum_{i=0}^n |\langle T^i(f - \phi), g \rangle|^2 \right)^{1/2} \\ &\leq \sup_{\|g\|=1} \left(\sum_{i=0}^n \|T\|^{2i} \|f - \phi\|^2 \|g\|^2 \right)^{1/2} \\ &\leq \frac{1}{k} \left(\sum_{i=0}^n \|T\|^{2i} \right)^{1/2}. \end{aligned}$$

Therefore, we have

$$\left\| \sum_{i=0}^n c_i(f_i - \phi_i) \right\| \leq \mu \left(\sum_{i=0}^n |c_i|^2 \right)^{1/2},$$

where $\mu := \frac{1}{k} (\sum_{i=0}^n \|T\|^{2i})^{1/2}$. Choose $k \in \mathbb{N}$ sufficiently large such that $\mu < \sqrt{A}$. Therefore, $\{\phi_i\}_{i \in \mathbb{N}_0} := \{T^i \phi\}_{i \in \mathbb{N}_0}$ satisfies in [5, Theorem (2)] with $\lambda_1 = \lambda_2 = 0$.

Hence, by (8) and the previous fact we have $T^m \phi \in \mathcal{V}(T)$, it follows that $\{T^n(T^m \phi)\}_{n \in \mathbb{N}_0}$ is a frame for \mathcal{H} . By adding finite elements of points $\{\phi, T\phi, \dots, T^{m-1}\phi\}$ to the system $\{T^n(T^m \phi)\}_{n=0}^\infty$, it yields that the system $\{T^n \phi\}_{n=0}^\infty$ is a frame for \mathcal{H} , that is, $\phi \in \mathcal{V}(T)$ which proves inclusion (4).

Finally, let T admit any $\phi \in \mathcal{V}(T)$ as a hypercyclic vector. Let $\phi \in \mathcal{V}(T)$. Since the T -orbit $O(\phi, T) := \{T^n \phi\}_{n \in \mathbb{N}_0}$ is dense in $\mathcal{V}(T)$ with respect to the relative topology, then for any $f \in \mathcal{V}(T)$ and any $k \in \mathbb{N}$, there exists $n \in \mathbb{N}_0$ such that $T^n \phi \in B_{f,k}$, it follows that $\phi \in (T^n)^{-1} B_{f,k}$. Therefore,

$$\phi \in \bigcap_{k \in \mathbb{N}} \bigcup_{n \in \mathbb{N}_0} (T^n)^{-1} B_{f,k}.$$

It follows that $\phi \in \bigcap_{k \in \mathbb{N}} \mathbf{B}(f, k)$, for any $f \in \mathcal{V}(T)$. Therefore,

$$\mathcal{V}(T) \subseteq \bigcap_{f \in \mathcal{V}(T), k \in \mathbb{N}} \mathbf{B}(f, k).$$

The other inclusion is given in (4). Therefore,

$$\mathcal{V}(T) = \bigcap_{f \in \mathcal{V}(T), k \in \mathbb{N}} \mathbf{B}(f, k),$$

as desired. \square

It is well-known that for any $T \in B(\mathcal{H})$, $\sigma(T)$ is included in the ball $B(0, \|T\|)$. Therefore, $r(T) \leq \|T\|$ for any $T \in B(\mathcal{H})$. In [10], it is proved that $\mathcal{E}(\mathcal{H})$ does not form an open set in $B(\mathcal{H})$. The next proposition yields that the set of invertible elements in $\mathcal{E}(\mathcal{H})$ is relatively open in $\mathcal{E}(\mathcal{H})$.

Proposition 2.5. *The set of invertible operators in $\mathcal{E}(\mathcal{H})$ is relatively open in $\mathcal{E}(\mathcal{H})$.*

Proof. Suppose that $\tilde{\mathcal{E}}(\mathcal{H})$ is a set of invertible operators in $\mathcal{E}(\mathcal{H})$ and take $T \in \tilde{\mathcal{E}}(\mathcal{H})$. For each $U \in \mathcal{E}(\mathcal{H})$, we have

$$U = T(I - T^{-1}(T - U)). \quad (9)$$

Assume that $\mathcal{N}_r(T)$ is an open neighborhood centered at T and with radius $r := \|T^{-1}\|^{-1}$, i.e., for every $U \in \mathcal{N}_r(T)$, we have

$$\|T - U\| < \|T^{-1}\|^{-1}.$$

Also, we have

$$\begin{aligned} r(T^{-1}(T - U)) &\leq \|T^{-1}(T - U)\| \\ &\leq \|T^{-1}\| \|(T - U)\| \\ &< \|T^{-1}\| \|T^{-1}\|^{-1} \\ &= 1. \end{aligned}$$

Hence, the value 1 is not in $\sigma(T^{-1}(T - U))$, that is, the operator $I - T^{-1}(T - U)$ is invertible, and therefore, by (9) U is invertible and belongs to $\tilde{\mathcal{E}}(\mathcal{H})$. We have proved that there exists

an open ball around T made of bounded invertible operators in $\mathcal{E}(\mathcal{H})$, that is, $\tilde{\mathcal{E}}(\mathcal{H})$ is open. \square

Remark 2.1. *It is clear that $\mathcal{E}(\mathcal{H})$ cannot be dense in $B(\mathcal{H})$ with respect to the norm topology. Indeed, by Prop. 2.2. in [9], every operator $T \in \mathcal{E}(\mathcal{H})$ has norm greater than or equal to 1. Therefore, the norm topology is not always the most natural topology on $B(\mathcal{H})$. It is often more useful to consider the weakest topology on $B(\mathcal{H})$, the so-called strong operator topology, which is defined by the family of seminorms $\{p_h : h \in \mathcal{H}\}$, where $p_h(T) = \|Th\|$.*

We conclude this note by raising the following questions:

Q1. For $T \in B(\mathcal{H})$, take $c = \|T\| + \alpha$, ($0 < \alpha < 1$) and replace the norm topology by the strong operator topology. What can we say for the size of the set of all operators in $\mathcal{E}(\mathcal{H})$ with the norm of at most c ?

Q2. Does there exist $T \in \mathcal{E}(\mathcal{H})$ such that $T^{-1} \in \mathcal{E}(\mathcal{H})$?

Q3. Let $T \in B(\mathcal{H})$ be invertible and that there exists a dense subset $D \subset \mathcal{H}$ such that T^k and $(T^{-1})^k$ tend to zero, as $k \rightarrow \infty$ on D . Does there exist $\varphi \in \mathcal{H}$ such that $\{T^k \varphi\}_{k=0}^{\infty}$ and $\{(T^{-1})^k \varphi\}_{k=0}^{\infty}$ are frames in \mathcal{H} ?

Acknowledgment

The authors would like to thank the anonymous reviewers for important comments and suggestions that improved the quality of the paper.

REFERENCES

- [1] *A. Aldroubi and A. Petrosyan*, Dynamical sampling and systems from iterative actions of operators, 2016.
- [2] *A. Aldroubi, C. Cabrelli, U. Molter and S. Tang*, Dynamical sampling, *Appl. Harmon. Anal. Appl.* 42 (3), 2017, 378-401.
- [3] *R. Balan, P.G. Casazza, C. Hill and Z. Landau*, Deficits and excesses of frames, *Advances in computational mathematics*, 18, 2003, 93-116.
- [4] *F. Bayart, E. Matheron*, Dynamics of linear operators, Cambridge University Press, 2009.
- [5] *P. Casazza, O. Christensen*, Perturbation of Operators and Applications to Frame Theory, *The Journal of Fourier Analysis and Applications*, 3 (5), 1997, 543-556.
- [6] *P. Casazza*, Modern tools for Weyl-Heisenberg (Gabor) frame theory, *Advances in Imageing and Electron Physics*, 115, 2000, 1-127.
- [7] *J. Cheshmavar, A. Dallaki and J. Baradaran*, On abstract results of operator representation of frames in Hilbert spaces, arXiv:2301.06183v1 [math.FA] 15 Jan 2023.
- [8] *O. Christensen*, An Introduction to Frame and Riesz Bases, Birkhäuser, Boston, 2003.
- [9] *O. Christensen, M. Hasannasab*, Operator Representations of Frames: Boundedness, Duality and stability, *Integr. Equ. Oper. Theory* 88, 2017, 483-499.
- [10] *O. Christensen, M. Hasannasab*, Dynamical sampling and frame representations with bounded operators, *J. Math. Anal. Appl.*, 463, 2017, 634-644.
- [11] *O. Christensen, M. Hasannasab and F. Philipp*, Frames properties of operator orbits, *Math. Nach.*, 293 (1), 2020, 52-66.
- [12] *O. Christensen, M. Hasannasab*, Frame properties of systems arising via iterated actions of operators, *Appl. Comput. Har. Anal.*, 46 (3), 2019, 664-673.
- [13] *K. Gröchenig*, Foundations of time-frequency analysis, Birkhäuser, Boston, 2001.
- [14] *C. Heil*, Wiener amalgam spaces in generalized harmonic analysis and wavelet theory, Ph.D. Thesis, University of Maryland, 1990.