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STUDY ON OPERATOR REPRESENTATION OF FRAMES IN HILBERT

SPACES
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The purpose of this paper is to give an overview of the operator structure of
frames {fk}∞k=1 as {Tkφ}∞k=0, where the operator T : H→ H belongs to certain classes

of linear operators and the element φ belongs to H. We discuss the size of the set of such

elements. Also, for a given frame {fk}∞k=1 and any n ∈ N, some results are obtained
for Tn({fk}∞k=1) = {Tnf1, Tnf2, · · · }. Finally, we conclude this note by raising several

questions connecting frame theory and operator theory.
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1. Introduction

The system of iterations {T kφ}∞k=0, where T is a bounded linear operator on a sepa-
rable Hilbert space H and φ ∈ H, the so-called dynamical sampling problem is a relatively
new research topic in Harmonic analysis. This topic has been studied since the work of
Aldroubi and Petrosyan [1] for some new results concerning frames and Bessel systems, see
for example Aldroubi et al. [2] to study dynamical sampling problem in finite dimensional
spaces. Christensen et al. [9, 11, 12] studied some properties of systems arising via iterated
actions of operators and frame properties of operator orbits. For more details, we refer the
interested reader to the [1, 4, 7, 8].

Let F := {fk}∞k=1 be a frame for H which spans an infinite dimensional subspace. A
natural question to ask is whether there exists a linear operator T such that fk+1 = Tfk,
for all k ∈ N?

In [12], it was proved that such an operator exists if and only if F is linearly indepen-
dent; also, T is bounded if and only if the kernel of the synthesis operator of F is invariant
under the right shift operator on `2(N), in the affirmative case, F = {T kf1}∞k=0.

In this note, for given frame F , some results are obtained for Tn(F ) = {Tnf1, T
nf2, · · · }.

Note that the problem considered in this note is of some interest from other points of view.
Indeed, assume that the system {T kφ}∞k=0 is a frame for H. It is natural to ask for a char-
acterization of V(T ): the set of all φ ∈ H such that {T kφ}∞k=0 is a frame for H. In [11],

V(T ) is obtained by applying all invertible operators from the set of commutant T
′

of T to
φ. The chief aim of this paper is to understand the size of the set V(T ) with a restriction on
T . Also, we show that the set of all invertible operators T ∈ B(H), for which {T kφ}∞k=0 is a
frame for H for some φ ∈ H, is open. Finally, we close this work by raising some questions
connecting frame theory and operator theory.
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In the following, we denote by H a separable Hilbert space. We use B(H) for the set
of all bounded linear operators on H, N for the natural numbers as the index set and we
take N0 := N ∪ {0}. The spectrum of an operator T ∈ B(H) is denoted by σ(T ), which is
defined as

σ(T ) = {λ ∈ C : T − λI is not invertible},
and the spectral radius of T is denoted by r(T ), which is defined as

r(T ) = sup{|λ| : λ ∈ σ(T )}.

Given an operator Λ, we denote its domain by dom(Λ) and its range by ran(Λ).

Definition 1.1. [8] A sequence of vectors F in H is a frame for H if there exist constants
A,B > 0 so that

A ‖ f ‖2≤
∞∑
k=1

| 〈f, fk〉 |2≤ B ‖ f ‖2 , (1)

for all f ∈ H.

It follows from the definition that if F is a frame for H, then

spanF = H . (2)

If A = B, then F is called a tight frame and if A = B = 1, then F is called a Parseval
frame or a normalized tight frame. Moreover, F is called a Bessel sequence if at least the
upper condition in (1) holds.

For any sequence F in H, the associated synthesis operator is defined by

UF : D1(F )→ H; UF ({ck}∞k=1) =

∞∑
k=1

ckfk ,

where

D1(F ) :=

{
{ck}∞k=1 ∈ `2(N) :

∞∑
k=1

ckfk converges in H

}
.

The analysis operator is defined by

U∗F : D2(F )→ `2(N); U∗F f = {〈f, fk〉}∞k=1 ,

where

D2(F ) :=
{
f ∈ H : {〈f, fk〉}∞k=1 ∈ `2(N)

}
.

Furthermore, the frame operator is defined by

SF : D3(F )→ H; SF f =

∞∑
k=1

〈f, fk〉fk ,

where

D3(F ) :=

{
f ∈ H :

∞∑
k=1

〈f, fk〉fk converges in H

}
.

Remark 1.1. It is known that if F is at least a Bessel sequence, then

(i) the operator UF is well-defined and D1(F ) = `2(N),
(ii) the operators SF and U∗F are well-defined and the domain of both is H.
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Definition 1.2. [8] A sequence of vectors F in H is a Riesz basis for H with bounds
0 < A ≤ B <∞, if F satisfies the relation (2) and for every scalar sequence (ck)k ∈ `2, one
has

A
∑
k

|ck|2 ≤ ‖
∑
k

ckfk‖2 ≤ B
∑
k

|ck|2 . (3)

We have the following result which is well-known in frame theory in general case, (see
for example [3]), we include a sketch of the proof.

Proposition 1.1. Suppose that F is a frame (not tight frame) for a Hilbert space H with

bounds A and B, respectively, and with frame operator SF . If fj ∈ F such that ||S−1/2F fj || ≤√
A
B , then F \ {fj} is a frame for H.

Proof. Let fj ∈ F such that ||S−1/2F fj || ≤
√

A
B . It is known that {S−1/2F fk}∞k=1 is a Parseval

frame for H, (see [14, Corollary 6.3.5] and [6, Theorem III.2]), so for any h ∈ H we obtain

∞∑
k=1

|〈h, S−1/2F fk〉|2 − |〈h, S−1/2F fj〉|2 ≥ ||h||2 − ||S−1/2F fj ||2||h||2

≥ (1− A

B
)||h||2.

That is, the sequence S
−1/2
F (F \{fj}) is a frame for H with lower frame bound 1− A

B . Since

S
−1/2
F is an invertible operator on H, thus F \ {fj} is a frame for H as well. �

The availability of the representation F = {T kf1}∞k=0 is characterized in [12]:

Proposition 1.2. Consider any sequence F in H for which spanF is infinite-dimensional.
Then the following are equivalent:

(i) F is linearly independent.
(ii) There exists a linear operator T : spanF → H such that

F = {T kf1}∞k=0 .

2. Main results

We begin with the following notations. Note that the sequence F being represented
by T means that

F := {fk}∞k=1 = {f1, f2, f3 · · · } = {f1, T f1, T 2f1 · · · } = {T kf1}∞k=0.

Therefore, for any n ∈ N, we have

Tn(F ) := Tn(F ) = {Tnfk}∞k=1 = {Tnf1, T
nf2, · · · }

= {fn+1, fn+2, · · · } = F\{f1, f2, · · · , fn}.

Throughout this section, for any n ∈ N, we simply take Tn := Tn. Suppose that F is
a sequence in H of the form {T kf1}∞k=0 for some operator T . For any n ∈ N, the associated
synthesis, analysis, and frame operators of Tn(F ) are given by the following proposition:

Proposition 2.1. The synthesis, the analysis, and the frame operators for Tn(F ) are given
by TnUF , U

∗
FT
∗
n , and TnSFT

∗
n , respectively.
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Proof. For each n ∈ N, we have

UTn(F )({ck}∞k=1) =

∞∑
k=1

ckTnfk =

∞∑
k=1

Tn(ckfk) = TnUF ({ck}∞k=1),

it follows that UTn(F ) = TnUF .
For the analysis operator, we have

U∗Tn(F )f = {〈f, Tnfk〉}∞k=1 = {〈T ∗nf, fk〉}∞k=1 = U∗FT
∗
nf,

it follows that U∗Tn(F ) = U∗FT
∗
n . In addition, we have

STn(F )f =

∞∑
k=1

〈f, Tnfk〉Tnfk = Tn

∞∑
k=1

〈T ∗nf, fk〉fk = TnSFT
∗
nf,

it follows that STn(F ) = TnSFT
∗
n . �

It is well-known that F is a Riesz basis for H if and only if the analysis operator
U∗F is bijective (because by [8, Theorem (5.4.1)] and [13, Proposition (5.1.5)], F is a Riesz
basis if and only if F is a frame and U∗F is surjective and also, by [8, Corollary (5.5.3)] F
is a frame if and only if U∗F is an injective operator with closed range). Now we have the
following result:

Proposition 2.2. Let F be a Riesz basis for H of the form {T kf1}∞k=0, for some operator
T . Then, for any n ∈ N, Tn(F ) is a Riesz basis for H if and only if Tn is an invertible
operator on H.

Proof. Since F is a Riesz basis for H, then the analysis operator U∗F is invertible. For any
n ∈ N, if Tn is an invertible operator on H, then U∗FT

∗
n (the analysis operator of Tn(F ))

is invertible. Therefore, for any n ∈ N, Tn(F ) is a Riesz basis for H. Conversely, for any
n ∈ N, if Tn(F ) is a Riesz basis for H, then the analysis operator U∗FT

∗
n is invertible. Also,

since the analysis operator U∗F is an invertible operator on H, it follows that T ∗n and then
Tn is an invertible operator on H. �

We give some relations associated to the domain and range of the synthesis, analysis,
and frame operators for Tn(F ).

Proposition 2.3. For any n ∈ N, the following statements hold:

(i) dom(TnSFT
∗
n) = dom(STn(F )) ⊆ dom(U∗Tn(F )) = dom(U∗FT

∗
n),

(ii) ran(TnSFT
∗
n) = ran(STn(F )) ⊆ ran(UTn(F )) = ran(TnUF ),

(iii) dom(STn(F )) = dom(U∗Tn(F )) iff ran(U∗Tn(F )) ⊆ dom(UTn(F )).

Proof. For any n ∈ N, it is known that

dom(TnSFT
∗
n) = dom(STn(F )) = {f ∈ H :

∞∑
k=1

〈f, Tnfk〉Tnfk converges in H},

dom(U∗FT
∗
n) = dom(U∗Tn(F )) = {f ∈ H : {〈f, Tnfk〉}∞k=1 ∈ `2(N)},

dom(TnUF ) = dom(UTn(F ))

= {(ck)∞k=1 ∈ `2(N) :

∞∑
k=1

ckTnfk =

∞∑
k=1

Tn(ckfk) converges in H}.



Study on operator representation of frames in Hilbert spaces 39

For (i), let f ∈ dom(STn(F )). It follows that

∞∑
k=1

〈f, Tnfk〉Tnfk converges in H.

Then, we obtain that〈
N∑

k=1

〈f, Tnfk〉Tnfk, f

〉
−→ 〈STn(F )f, f〉, as N −→∞,

which implies that

N∑
k=1

|〈f, Tnfk〉|2 =

N∑
k=1

|〈T ∗nf, fk〉|2 converges as N −→∞.

Therefore, f ∈ dom(U∗Tn(F )) = dom(U∗FT
∗
n).

(ii) follows from the fact that

STn(F ) = TnSFT
∗
n = TnUFU

∗
FT
∗
n = TnUF︸ ︷︷ ︸U∗Tn(F ).

For (iii), let dom(STn(F )) = dom(U∗Tn(F )) and take U∗Tn(F )f ∈ ran(U∗Tn(F )). Then,

f ∈ dom(STn(F )) which implies that U∗Tn(F )f ∈ dom(UTn(F )). Now, if ran(U∗Tn(F )) ⊆
dom(UTn(F )), it is clear that dom(U∗Tn(F )) ⊆ dom(STn(F )) and the other inclusion is given

in (i). Therefore,
dom(STn(F )) = dom(U∗Tn(F )), as desired. �

For a given operator T ∈ B(H), let

V(T ) :=
{
φ ∈ H : {T kφ}k∈N0

is a frame for H
}
.

Also, let

E(H) :=
{
T ∈ B(H) : {T kφ}k∈N0

is a frame for H, for some φ ∈ H
}
.

Let T ∈ B(H) be an operator for which there exists some f ∈ H, such that {T kf}∞k=0

is a frame for H. A natural question to ask is whether there exist other vectors φ ∈ H for
which {T kφ}∞k=0 is also a frame for H. In the following theorem, we consider a viewpoint
of this query; we discuss the size of the set of vectors φ ∈ H for which {T kφ}∞k=0 is a frame
for H, with a restriction on T .

Recall that an operator T ∈ B(H) is said to be hypercyclic if there is some vector
φ ∈ H, such that its T -orbit

O(φ, T ) := {T kφ}k∈N0

is dense in H. Such a vector φ is said to be hypercyclic for T .

Proposition 2.4. Let T ∈ B(H) be invertible. Then⋂
f∈V(T ), k∈N

B(f, k) ⊆ V(T ), (4)

where,

B(f, k) =
⋃

n∈N0

{φ ∈ H : ‖Tnφ− f‖ < 1

k
}.
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Moreover, if T admits V(T ) as hypercyclic vectors, then

V(T ) =
⋂

f∈V(T ), k∈N

B(f, k). (5)

Proof. For any f ∈ V(T ), it is obvious that T ∈ E(H). Now, let Bf,k be an open ball
centered at f ∈ V(T ) and with radius 1

k . Then by continuity, for any n ∈ N0

(Tn)−1Bf,k = {φ ∈ H : ‖Tnφ− f‖ < 1

k
},

is open in H. Therefore, for any k ∈ N

B(f, k) :=
⋃

n∈N0

(Tn)−1Bf,k, (6)

is open in H.

Claim: ⋂
f∈V(T ), k∈N

B(f, k) ⊆ V(T ).

Let φ ∈
⋂

f∈V(T ),k∈N B(f, k), then for any f ∈ V(T ) and any k ∈ N,

φ ∈ B(f, k). (7)

Hence, for any f ∈ V(T ) and any k ∈ N, from (6) and (7) we conclude that there exists
m ∈ N0 such that φ ∈ (Tm)−1Bf,k, it follows that

Tmφ ∈ Bf,k. (8)

Now we need the following fact in the sequel.

Fact. For any f ∈ V(T ) and for k ∈ N sufficiently large, Bf,k ⊂ V(T ).
Proof of the fact. We have to show that for any f ∈ V(T ), if ‖f −φ‖ is small enough,

then φ ∈ V(T ), i.e., {φi}i∈N0
:= {T iφ}i∈N0

is a frame for H. For this purpose, it is enough
that {φi}i∈N0

satisfies the assumptions of Theorem (2) in [5]. Let A be a lower frame bound
for the frame {fi}i∈N0 := {T if}i∈N0 . We have

‖
n∑

i=0

ci(fi − φi)‖ = sup
‖g‖=1

|〈
n∑

i=0

ci(fi − φi), g〉|

≤ sup
‖g‖=1

n∑
i=0

|ci〈(fi − φi), g〉|

(Cauchy-Schwarz inequality) ≤ (
n∑

i=0

|ci|2)1/2 sup
‖g‖=1

(

n∑
i=0

|〈fi − φi, g〉|2)1/2.

On the other hand,

sup
‖g‖=1

(

n∑
i=0

|〈fi − φi, g〉|2)1/2 = sup
‖g‖=1

(

n∑
i=0

|〈T i(f − φ), g〉|2)1/2

≤ sup
‖g‖=1

(

n∑
i=0

‖T‖2i‖f − φ‖2‖g‖2)1/2

≤ 1

k
(

n∑
i=0

‖T‖2i)1/2.
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Therefore, we have

‖
n∑

i=0

ci(fi − φi)‖ ≤ µ(

n∑
i=0

|ci|2)1/2,

where µ := 1
k (
∑n

i=0 ‖T‖2i)1/2. Choose k ∈ N sufficiently large such that µ <
√
A. Therefore,

{φi}i∈N0
:= {T iφ}i∈N0

satisfies in [5, Theorem (2)] with λ1 = λ2 = 0.
Hence, by (8) and the previous fact we have Tmφ ∈ V(T ), it follows that {Tn(Tmφ)}n∈N0

is a frame for H. By adding finite elements of points {φ, Tφ, · · ·Tm−1φ} to the system
{Tn(Tmφ)}∞n=0, it yields that the system {Tnφ}∞n=0 is a frame for H, that is, φ ∈ V(T )
which proves inclusion (4).

Finally, let T admit any φ ∈ V(T ) as a hypercyclic vector. Let φ ∈ V(T ). Since the
T-orbit O(φ, T ) := {Tnφ}n∈N0

is dense in V(T ) with respect to the relative topology, then
for any f ∈ V(T ) and any k ∈ N, there exists n ∈ N0 such that Tnφ ∈ Bf,k, it follows that
φ ∈ (Tn)−1Bf,k. Therefore,

φ ∈
⋂
k∈N

⋃
n∈N0

(Tn)−1Bf,k.

It follows that φ ∈
⋂

k∈N B(f, k), for any f ∈ V(T ). Therefore,

V(T ) ⊆
⋂

f∈V(T ), k∈N

B(f, k).

The other inclusion is given in (4). Therefore,

V(T ) =
⋂

f∈V(T ), k∈N

B(f, k),

as desired. �

It is well-known that for any T ∈ B(H), σ(T ) is included in the ball B(0, ‖T‖).
Therefore, r(T ) ≤ ‖T‖ for any T ∈ B(H). In [10], it is proved that E(H) does not form an
open set in B(H). The next proposition yields that the set of invertible elements in E(H)
is relatively open in E(H).

Proposition 2.5. The set of invertible operators in E(H) is relatively open in E(H).

Proof. Suppose that Ẽ(H) is a set of invertible operators in E(H) and take T ∈ Ẽ(H). For
each U ∈ E(H), we have

U = T (I − T−1(T − U)). (9)

Assume that Nr(T ) is an open neighborhood centered at T and with radius r :=
‖T−1‖−1, i.e., for every U ∈ Nr(T ), we have

‖T − U‖ < ‖T−1‖−1.
Also, we have

r(T−1(T − U)) ≤ ‖T−1(T − U)‖
≤ ‖T−1‖‖(T − U)‖
< ‖T−1‖‖T−1‖−1

= 1.

Hence, the value 1 is not in σ(T−1(T−U)), that is, the operator I−T−1(T−U) is invertible,

and therefore, by (9) U is invertible and belongs to Ẽ(H). We have proved that there exists
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an open ball around T made of bounded invertible operators in E(H), that is, Ẽ(H) is
open. �

Remark 2.1. It is clear that E(H) cannot be dense in B(H) with respect to the norm topol-
ogy. Indeed, by Prop. 2.2. in [9], every operator T ∈ E(H) has norm greater than or equal
to 1. Therefore, the norm topology is not always the most natural topology on B(H). It
is often more useful to consider the weakest topology on B(H), the so-called strong opera-
tor topology, which is defined by the family of seminorms {ph : h ∈ H}, where ph(T ) = ‖Th‖.

We conclude this note by raising the following questions:

Q1. For T ∈ B(H), take c = ‖T‖ + α, (0 < α < 1) and replace the norm topology
by the strong operator topology. What can we say for the size of the set of all operators in
E(H) with the norm of at most c?

Q2. Does there exist T ∈ E(H) such that T−1 ∈ E(H)?

Q3. Let T ∈ B(H) be invertible and that there exists a dense subset D ⊂ H such
that T k and (T−1)k tend to zero, as k → ∞ on D. Does there exist ϕ ∈ H such that
{T kφ}∞k=0 and {(T−1)kφ}∞k=0 are frames in H?
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