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ANALYTICAL AND NUMERICAL APPROACH FOR LOAD 
CAPACITY OF A SINGLE SQUARE CELL FROM A 

TEXTURED SURFACE 
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Texturarea suprafeţelor lubrifiate contribuie la reducerea coeficientului de 

frecare şi a ratei de uzare a suprafeţelor. Lucrarea de faţă prezintă un studiu 
analitic şi numeric al forţei portante şi al coeficientului de frecare în cazul unei 
degajări de formă pătrată, degajare realizată de regulă prin procedeul 
fotolitografic. Modelul analitic este bazat pe liniarizarea distribuţiei de presiuni iar 
modelul numeric se bazează pe utilizarea metodei diferenţelor finite. Este prezentată 
de asemenea o comparaţie a rezultatelor obţinute prin cele două metode. Se 
constată o bună corelaţie între rezultatele obţinute prin metoda analitică şi cele 
obţinute prin metoda numerică. 

Lubricated textured surfaces reduce the friction coefficient and the surface 
wear rate. The present work is dedicated to the analytical and numerical study of 
load capacity and friction coefficient of a single, square dimple, typical for textured 
surfaces realized by lithography. The analytical model is based on the pressure 
linearization while the numerical model on the finite difference method. A 
comparison between the results obtained by the two methods is presented. It is 
shown that the results obtained by the analytical method are close to the results 
obtained by the numerical method. 

 
Keywords:  Hydrodynamic Lubrication, Textured Surfaces, Parallel Slider, 

Finite Difference Method 

Introduction 

The important role played by roughness in fluid film applications has been 
recognized since the beginning of modern studies in lubrication. However, only in 
the last decade, controlled roughness was systematically analyzed as a possible 
mechanism for lift-off effects, for nominally parallel sliding surfaces. This 
evolution reflected by the great number of recent papers (see Fig. 10 (created by 
the authors)) is correlated with the recent developments of new and improved 
techniques for creating surfaces with controlled microstructure or patterns. 
Indentation, chemical etching, micromachining, laser ablation, LIGA processes, 
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etc., have recently become available for large scale production of textured 
surfaces. These techniques for “surface texturing” allow creation of well defined 
“dimples” regularly distributed on the surface.  

It is generally accepted that surface texturing can be benefic for lubricated 
pairs in several ways: increased capacity, reduced friction, increased film stiffness 
or providing a lubricant storage [2], [6]. On a micro-scale, dimples on textured 
surfaces have the same effects as the pocket in step bearings [15] or an inclined 
pad [5]. 

The geometry of a dimple can take various configurations, function of the 
technique used for texturing. Cylindrical, conical, spherical or parallelepiped 
configurations are typical models for real dimples. 
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Fig. 1 Number of published papers related to surface texturing 

A review of the present state-of-the art for textured surfaces modeling 
show that few papers present numerical solutions for pressure generation in the 
case of square dimples and an analytical solution has not been yet developed.  

Wang et al. [14] presents the first analytical approach based on standard 
Rayleigh step bearing model. However, the use of the equations for an infinite pad 
is questionable. They conclude that for cylindrical dimples there exists a 
theoretical optimum of 40% in the dimple area ratio. 

Brizmer and co-workers present in a series of papers a numerical solution 
for Reynolds equation for spherical dimples, obtained by laser techniques [6].  

Siripuram et al. [12] and Burstein et al. [7] present the effect of different 
dimple geometry (including the square dimples) on the load carrying capacity of 
mechanical seals. 
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The present work is dedicated to the study of load capacity of a single, 
square dimple typical for textured surfaces realized by lithography [1] [10]. This 
procedure allows a better control of the depth of each dimple in respect with 
classical laser-textured technique. 

The analysis is performed using two models: a simple analytical model 
and a more complex, 2D numerical model. Reported to the literature presented 
above the original part of the article is the analytical solution who offers a fast and 
reliable method for determining the load capacity and the friction coefficient. The 
results predicted with each of the models are compared and conclusions on 
optimum design parameters are obtained. 

Nomenclature 

F – load capacity 
Ff –  friction force 

F  – dimensionless load, 
2

3
mFh

ULη
 

fF  - dimensionless friction force, 

2
f mF h
ULη

 

h – film thickness 
h –  dimensionless film thickness, 
h/hm 
hm –  minimal film thickness (film 
thickness on the lands) 
A –  dimple characteristic dimension  
L –  cell characteristic dimension  
p –  pressure  
pmax –  maximum pressure  

p  – dimensionless pressure, 
2

mph
ULη

 

 

maxp –  maximum dimensionless 
pressure  
Q – rate of flow 
s  –  dimple depth  
s  - dimensionless dimple depth, s/hm 
U –  sliding velocity  
x – longitudinal Cartesian coordinate 
y – lateral Cartesian coordinate 
x –  dimensionless longitudinal 
coordinate, x/L  
y  –  dimensionless lateral coordinate, 
y/L 
η – dynamic viscosity 
Δ – discretization step 
ρt –   dimple area density,  A2/L2 

 μ- friction coefficient 

μ  - “dimensionless” friction 

coefficient, fF
F

 

1. General assumptions 

A uniform textured surface is considered so that a single dimple can be 
isolated with the associated neighboring lands, forming a square cell, of 
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characteristic length, L. Neglecting the interactions between dimples, the analysis 
can be restricted at a single dimple. The dimple surface is assumed square and its 
depth s, uniform, (Fig. 2). The area covered by the dimple reported to the area of 
the cell defines the dimple area density, ρt. The mating surface is assumed plane, 
perfectly smooth and parallel to the textured surface. 

 

 
Fig. 2 Pressure distribution for the analytical model 

The present analysis is based on the typical assumptions of fluid film 
lubrication, as follows: 
(1) The fluid is Newtonian, incompressible, in laminar and isothermal flow, 

without slip at solid boundaries; 
(2) Constant pressure across the film thickness; 
(3) Neglected inertia effects; 
(4) Zero pressure at the boundaries of the cell. 

2. Analytical model 

A simple analytical model to calculate hydrodynamic pressure generated 
by a single dimple can be obtained using a simplified pressure distribution.  

Each dimple is assumed to be antisymmetric, that is, the pressure is 
negative in the entrance zone and positive in the exit zone (Fig. 3). Assuming a 
cavitation pressure equal to zero, the pressure on the entrance zone does not 
generate load capacity and consequently the leading half of the dimple can be 
considered as a classical Rayleigh pocket-step bearing. A linear pressure 
distribution can be assumed on both longitudinal and lateral directions (Fig. 2). 
Consequently, the load capacity can be written in terms of maximum pressure, 
generated at step border: 

Linearised 
pressure 

distribution 

U 

s 

x 

z 
A 

hm 

L 
Entrance zone Exit zone 



Analytical and numerical approach for load capacity of a single square cell 19

 max max
2

2 3 2 2
L L LF p p −

= +
AA   (1) 

The maximum pressure yields equating the flow rate in the dimple with 
the flow rate on the land. After some algebra calculi there results: 

 max
3 3

3
2( )m m

Usp
L Lh s h

L

η
=

− ⋅⎛ ⎞+ + +⎜ ⎟−⎝ ⎠

A
A

A A

  (2) 

In dimensionless form, the maximum pressure is  

 max
3

3  

1 2( 1)
1

t

t

t t

s
p

s

ρ

ρ
ρ ρ

=
⎛ ⎞−

+ + +⎜ ⎟⎜ ⎟−⎝ ⎠

 (3) 

By substituting Eq. (2) in (1) one can obtain the load capacity: 

 2 max 1
6 2

pF L
L

⎛ ⎞= +⎜ ⎟
⎝ ⎠

A   (4) 

or in dimensionless form: 

 max 1
6 2

tpF
ρ⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

  (5) 

In Fig. 3 the load capacity is plotted as function of two geometric 
dimensionless parameters: s  and ρt. 
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Fig. 3 Dimensionless force distribution  
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From Fig. 3 one can see that the load capacity has a maximum which can 
be easily obtained by solving, for s  and ρt, the system of equations: 

 0
t

F
ρ
∂

=
∂

  (6) 

 0F
s
∂

=
∂

  (7) 

Using a simple numerical procedure there results ρt*=0.6, *s =1.33 and 
correspondingly, the maximum dimensionless load maxF  = 0.033.  

Considering that there is no friction in the negative pressure zone, the 
friction force is: 

 
2 2 2

max( )
2 2( ) 2f

m m

p sU L UF
h h s

η η−
= + +

+
AA A  (8) 

or in dimensionless coordinates: 

 max
2

1
2 2(1 ) 2

f m t
f t

F h s pF s
UL s

ρ ρ
η

= = − +
+

 (9) 

The “dimensionless” friction coefficient is: 

 f

m

F L
F h

μμ = =  (10) 

The distribution of the friction coefficient function of the main parameters 
of the cell is presented in Fig. 4. 
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Fig. 4 Dimensionless friction coefficient distribution 
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From Fig. 4 one can see that the friction has a minimum which can be 
easily obtained  solving, for s  and ρt, the system of equations: 

 0
t

μ
ρ
∂

=
∂

  (11) 

 0
s
μ∂
=

∂
  (12) 

Using also a simple numerical procedure there results ρt*=0.74, s *=1.58 
and correspondingly, the dimensionless friction coefficient μ min = 11.75.  

3. Numerical Model 

A more accurate analysis of performance characteristics of a single cell 
with a square dimple can be done solving numerically the Reynolds equation on 
each part of the cell and using a flow rate conservation law at the borders of the 
dimple. As the surfaces are nominally parallel, the Reynolds equation takes the 
simple form of Laplace Equation  

 
2 2

2 2 0p p
x y

∂ ∂
+ =

∂ ∂
  (13) 

As for the analytical model the boundary conditions are zero pressure on 
each limit of a cell. A classical finite differences scheme is used. The equations of 
fluid flow are: 

 
3

, , ,1
, , ,

( )1 1
2 2 12

i j i k j i k j
i j k i j

h p p
Qx U h

η
+ + +⎛ ⎞−

= Δ +⎜ ⎟⎜ ⎟
⎝ ⎠

  (14) 

 
3

, , 1,
, ,

( )1
2 12

i j i j k i j k
i j k

h p p
Qy

η
+ + +⎛ ⎞−

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (15) 

where Qxi,j,k is the flow on a half of the finite volume side in x direction (k=0-
upper side, k=1-lower side), Qyi,j,k is the flow on a half of the finite volume side in 
y direction (k=0-left, k=1-right side), hi,j is the fluid film thickness of a finite 
volume having the nodes coordinate (i,j), (i,j+1), (i+1,j+1), (i+1,j). 

The Laplace equation on the parallel surfaces is: 

 , 1, , 1 , 1 1,
1 ( )
4i j i j i j i j i jp p p p p− − + += + + +  (16) 
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For the discontinuity points the flow conservation is used (Fig. 5). 
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Fig. 5 Finite difference model 

The shear tension on a grid element is: 

 , ,
, , 1 , 1, 1 1,

,

1 ( )
2

i j m i j
i j i j i j i j i j

i j

h Nh
p p p p

U h
τ

τ
η + + + += = − − − + −  (17) 

The dimensionless friction force becomes: 

 
1 1

2
0 0

f m
f

F h
F dxdy

UL
τ

η
= = ∫ ∫  (18) 

A Gauss-Seidel algorithm with over-relaxation has been implemented in a 
FORTRAN code. 

4. Results and discussion 

A first step of the numerical analysis was dedicated to the study of the 
convergence and consistency of the finite differences scheme. A standard 
procedure consisting of performing the numerical analysis on several successively 
finer grids has been used to define the discretization error. Five successive grids 
have been used and the error has been defined in terms of load capacity: 

100 exact

exact

F F
F

ε −
= ⋅  
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where the “exact” solution was considered the value corresponding to the 
finest grid. A typical result is plotted in Fig. 6. 
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Fig. 6 Relative error evolution function of grid density 

It is shown that the solution presents an asymptotic convergence to a 
“theoretical” value. The number of nodes chosen for the further simulations is 64, 
producing a relative error of 1.45%.  

 

Fig. 7 Dimensionless pressure distribution on a square cell 
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In Fig. 7 the dimensionless pressure distribution is presented on a square 
dimple with the following characteristics: s =1, ρt=0.25.  In the zones where the 
pressure distribution is negative, the cavitation phenomenon appears. Therefore, 
in the calculation of the load carrying capacity only the positive values of the 
pressure distribution are considered. 

A comparison between the results obtained by the analytical and numerical 
method is considered in Fig. 8 and Fig. 9 by varying the texture density and the 
dimensionless depth of the dimple. In both cases only the positive pressures are 
considered to contribute to the load carrying capacity. The variation intervals of 
the two parameters were chosen to cover the cases encountered in practice. The 
values of the fixed parameters are the optimal values obtained for the analytical 
solution ( s =1.33 and ρt=0.6 for load capacity and s =1.58 and ρt=0.74 for friction 
coefficient). 
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Fig. 8 Load capacity distribution function of cell parameters 
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Fig. 9 Friction coefficient distribution function of cell parameters 
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It can be observed that there is a good correlation between the values of 
the analytical solution and the values of the numerical one. However, the 
analytical solution can be used to provide an approximate value of the load 
capacity while the numerical solution can be utilized to obtain a closer value of 
the real load capacity.  

For a dimensionless dimple depth of 1.33, the analytical and numerical 
curves present a maximum dimensionless load for ρt=0.56 (Fig. 8, (a)). For a 
constant ρt=0.56, the analytical curve presents a maximum at s =1.3 while the 
numerical solution at s =1.1 (Fig. 8 (b)). 

Both numerical and analytical solutions present the same optimal values to 
achieve a minimal friction coefficient (ρt=0.74, s =1.58). 

It can also be remarked that the optimal values in terms of load capacity 
are not the same as the optimal values of friction coefficient. 

 
Conclusions 

 
The theoretical modeling of a textured cell represents the first step in 

understanding the phenomena involved in the lubrication of textured surfaces, 
creating the premises of modeling a textured surface pair. The present paper 
analyses the load capacity and friction loss for a single, square dimple, using two 
models: a simplified analytical one and a more complex numerical model. 
Parametric analyses have revealed optimal load capacity and friction coefficient 
function for two important dimple parameters: area density and dimple depth. It is 
found that the textured density which maximizes the load carrying capacity of the 
cell is 0.6 while the dimensionless height of the dimple is 1.33. The parameters 
which minimize the friction coefficient are s *=1.58 and ρt*=0.74. 

Comparisons between predicted analytical and numerical performance 
characteristics have shown good correlation, with differences within 10%. 
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