
U.P.B. Sci. Bull., Series D, Vol. 73, Iss. 3, 2011                                                  ISSN 1454-2358 

THE UNCERTAINTY ANALYSIS OF THE PIPELINE 
SYSTEM 

László POKORÁDI1 

Pe parcursul studierii modelelor matematice a unor sisteme tehnice reale ne 
putem întâlni cu o incertitudine de anumit tip şi mărime. În cazul sistemelor de 
transport al lichidelor sursele incertitudinii parametrice pot fi diferenţele dintre 
parametrii sistemului tehnic, valorile caracteristice al regimului de funcţionare, 
respectiv compoziţia, parametrii fizici ai lichidului transportat. Lucrarea prezintă 
metoda de analiză a sensibilităţii parametrice a sistemelor de transport de lichide şi 
evaluarea rezultatelor de analiză obţinute prin exemplul unui sistem simplu. Aceste 
concluzii, experienţe pot fi folosite la analiza incertitudinii parametrice a sistemelor 
de conducte geotermale, cum ar fi incertitudinea caracteristicilor lichidelor 

 
During mathematical model investigation of real technical systems we can 

meet any type and rate model uncertainty. In case of pipeline systems the sources of 
parameter uncertainties can be anomalies of technical system data, the mode of 
functioning values, composition and physical parameters of the fluid. The paper 
shows the methodology for sensitivity analysis and the discussion of its results by an 
easy pipeline system model case. These conclusions and experiences can be used to 
investigate parametrical uncertainties of geothermal pipeline systems, such as fluid 
characteristic’s indeterminations.  
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c  — average flow velocity ⎥⎦
⎤

⎢⎣
⎡

s
m
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V�  — volume flow rate ⎥
⎦

⎤
⎢
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⎡
s

m3
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d  — intern diameter ][m ; 

l  — tube length ][m ; 

Re  — Reynolds-number ][− ; 

λ  — pipe loss coefficient ][− ; 

csh′  — head loss of pipe ][m . 

cspΔ  — the pressure loss of the pipe ][Pa ; 

szh′  — the end loss of the pipe fitting ][m ; 

szpΔ  — the pressure loss of the pipe fitting ][Pa ; 

ξ  — pipe fitting loss coefficient ][− ; 

A  — the coefficient matrix of dependent variables; 

B  — the coefficient matrix of independent variables; 

D  — sensitivity coefficient matrix. 

1. Introduction 

During mathematical modeling of the real technical systems we can meet 
any type and rate model uncertainty [9]. They appear due to approximations of 
models or data inaccuracy. Classification of uncertainties, with respect to their 
sources, distinguishes between aleatory and epistemic ones. The aleatory 
uncertainty is an inherent data variation associated with the investigated system or 
the environment. Therefore it is named parametric uncertainty.  Epistemic 
uncertainty is due to the lack of the knowledge of quantities, processes of the 
system or the environment. Aleatory uncertainty is primarily associated with 
objectivity but epistemic uncertainty may be comprised of substantial amounts of 
both objectivity and subjectivity [8]. 

In case of geothermal pipeline (for example heating) systems, parametrical 
model (system) uncertainties mean the indetermination of physical parameters of 
the fluid. These characteristics influence the system parameters such as loss at the 
ends, therefore required pump power. 

Following Ferson and Tucker [2] the uncertainty analysis is a systematic 
study in which the neighborhood of alternative assumptions is selected and the 
corresponding interval of inferences is identified. According to Macdonald and 
Strachan [5], the sensitivity analysis is an important technique to determine the 
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effect that uncertainties or model variations have on the model predictions. The 
analysis can be carried out from a simple level to a comprehensive treatment. In 
practice, sensitivity analysis is used in an ad hoc way in a lot of practical 
modeling studies. 

Mahdavi studied various sources of the uncertainty in building 
performance simulation [6]. In his paper, the potential errors due to i) inaccurate 
building descriptions, ii) uncertain micro-climatic assumptions and iii) deficient 
building users' information are discussed, using original data and analysis. 

Two mathematical models both dynamic and stationary, which are useful 
in the studying hydraulic systems are presented in a paper of Prodan and Iacob, 
[11]. Bucur and Isbǎşoiu studied the influence of air pockets trapped in pipeline 
systems over the entire system pressure [1].  

Following Gutǎ et al. the simulating or the operating regime of systems or 
subsystems represents an important step in design process. Obtaining 
mathematical model helps in the decision making regarding the way of optimizing 
system [3]. Mirel et al. stated that, the geothermal waters are very valuable 
thermo-energetic resources [7]. The corrosive and hardness characteristics of 
geothermal waters — which are sources of geothermal water pipeline system 
uncertainties — can be eliminated by applying some specific treatment 
technologies according to water temperature, the chemical characteristics and the 
user’s requirements.  

The aim of this paper is to show the methodology of the sensitivity 
analysis and its possibility of use by an easy pipeline system model and 
discussions of results. These - basically theoretical — conclusions and 
experiences can be used to investigate parametrical uncertainties of the 
geothermal pipeline system, such as fluid characteristic’s indeterminations. 

The outline of the paper is as follows: Section 2 shows the sensitivity 
analysis. Section 3 presents an easy case study by a pipeline system model. 
Section 4 interprets the result of the sensitivity analysis. Section 5 summaries the 
paper and outlines the prospective scientific work of the author. 

2. The Sensitivity Analysis 

The essence of the sensitivity analysis is that the anomalies and variations 
of dependent system parameters are simulated by changing its independent (input 
and inner) variables. On the basis of the mathematical model of the investigated 
system one can determine how sensitive dependent system variables are to 
simulated changes. If only one independent variable is changed, the investigation 
will be called one-parameter sensitivity analysis. If the number of the changed 
independent variables is more than one, the several-parameter sensitivity analysis 
is used. 
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It is important to mention that changes of independent variables cannot be 
more than about 1 or 5 %, depending on the intensity of the original model 
nonlinearity. Depending on the nonlinearity of the original model, results of the 
sensitivity analysis can have differences from real influences of simulated 
changes. But these results show the direction and order of the magnitude of real 
simulated changes. 

To determine the sensitivity coefficient as a first step, the total differential 
of both sides of the initial equation 
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Introducing the sensitivity coefficients: 
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and considering 
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the following linear system can be achieved: 
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The equation mentioned above, shows how sensitive dependent system 
output parameters will be to uncertainties of input ones. For example, these 
uncertainties can occurr due to measurement inaccuracies. 

If the investigated system has several dependent variables, the equations 
determined above can be written in the following matrix form: 

xδByδA =    ,                                               (6) 
where A  and B  are coefficient matrices of external and internal parameters of the 
investigated system. 

Using the sensitivity coefficient matrix of investigated system,  
BAD 1−=                                                   (7) 

the equation 
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xDyδ δ=                                                       (8) 
can be used for sensitivity investigations. 

3. Creating Sensitivity Model (Case study) 

In this case study, the pressure loss and end loss of two main pipeline 
system structural elements (linear pipe and pipe fitting) will be investigated. 
Therefore, the illustrative system consists of only one linear pipe and only one 
pipe fitting. The system was modeled in case of different Reynolds-number 
intervals (that is streams). 

The kinematic viscosity of the fluid is: 

ρ
μν =   ,                                                     (9) 

the average flow velocity: 

π2
4
d

Vc
�

=    .                                               (10) 

and the Reynolds number: 

ν
cd

=Re    .                                              (11) 

The pipe loss coefficient can be determined, depending on Reynolds-
number, by empirical equations in case of different Reynolds-number intervals 
[10]. 
If 2320<Re  then 

Re
64

=aλ    ;                                             (12a) 

if 4108Re2320 ⋅<<  then 

4 Re
316,0

=bλ    ;                                            (12b) 

if 64 102Re102 ⋅<<⋅  then 
3,0Re396,00054,0 −+=cλ    ;                                (12c) 

if 85 10Re10 <<  then 
337,0Re211,00032,0 −+=dλ    .                              (12d) 

The end loss of the pipe is 

λ
d
l

g
chcs 2

2

=′    ,                                            (13) 

and its pressure loss 
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λρ
d
lcpcs

2

2
=Δ    .                                         (14) 

The end loss of the pipe fitting is 

ξ
g

chsz 2

2

=′    ,                                                (15) 

and its pressure loss 

ξρ 2

2
cpsz =Δ    .                                          (16) 

Taking into account the main aim of the investigation, equations (9) — 
(16) form a system of equations, which is the nonlinear mathematical model of the 
investigated easy pipeline system. For getting sensitivity coefficient matrix, these 
equations should be linearized. 
In case of the equation (9): 

δρδμδν −=    .                                           (17) 
In case of the equation (10): 

dVc δδδ 2−= �    .                                          (18) 
In case of the equation (11): 

δνδδδ −+= dcRe    .                                    (19) 
In case of equations (12a) — (12d): 

Reδδλ K=    .                                           (20) 
If 2320Re <  then 

1−=aK ;                                                (20a) 
if 4108Re2320 ⋅<<  then 

       25,0−=bK    ;                                          (20b) 
if 64 102Re102 ⋅<<⋅  then 

       
396,0Re0054,0

1188,0
3,0 +

−= −cK   ;                                (20c) 

if 85 10Re10 <<  then 

       
221,0Re0032,0

074477,0
337,0 +

−= −dK  .                               (20d) 

In case of the equation (13): 
dlchcs δδλδδδ −++=′ 2    .                                  (21) 

In case of the equation (14): 
δλδδδδρδ +−++=Δ dlcpcs 2     .                            (22) 

In case of the equation (15): 
δξδδ +=′ chsz 2    .                                         (23) 

In case of the equation (16): 
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δξδδρδ ++=Δ cpsz 2    .                                    (24) 
Introducing the vector of dependent parameters 

[ ]ξρμ ldVTx �=    ,                             (25) 
and the vector of independent parameters 

[ ]szszcscs
T phphRecy Δ′Δ′= λν    ,                 (26) 

their coefficient matrices are: 
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Because the system is investigated in different Reynolds-number intervals 
— using equations (7), (20), (27) and (28) the sensitivity coefficient matrices were 
determined. In last two intervals, the coefficient K  depends on Reynolds-number. 
They are calculated by given Reynolds-numbers — see equations (29c) and (29d). 
If  2320Re <  → 1−=aK : 
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if 64 102Re102 ⋅<<⋅   ( 6101Re ⋅= ) → 775-0,2999351=cK : 
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if 85 10Re10 <<   ( 6105Re ⋅= ) → 350-0,3369730=dK : 
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4. The result of the sensitivity analysis 

Knowing the sensitivity coefficient matrix D , sensitivity of the system can 
be investigated by modification of independent variables vector xδ . Results of 
sensitivity analysis can be used for conclusions to come about features of the 
given system and its behavior in case of simulated failures or parameter 
uncertainty (for example instability of geothermal water viscosity). It is important 
to mention that changes of independent variables cannot be higher than about 1 or 
5 %, depending on the intensity of the original model nonlinearity. 

In case of pipeline systems, the independent variables can be classified to 
three categories: 

The mode of functioning values determines the work of the system at the 
investigated time. 

The technical system data characterize system structure and geometrical 
and other system parameters. These data have manufacturing anomalies and they 
can change during the system operation too. In our study, the investigated 
technical data are: 
− the internal diameter of the tube, 
− pipe fitting loss coefficient. 

 
The physical parameters define the quality of the fluid. They are very 

interesting in case of the geothermal pipeline system when water parameters (for 
example salinity) — thereby the required pump power — can change easily. 
These variables are: 
− dynamic viscosity, 
− fluid density. 
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4.1. The investigation of the mode of functioning values uncertainties’ 
                    effects 

Fig. 1. shows the effects of 1% increase of the volume flow rate in case of 
different Reynolds-number intervals. The diagram demonstrates that constant 
cross-section, volume flow rate can be increased only by greater flow velocity, 
which generates greater Reynolds-number. Therefore, pipe loss coefficients will 
decrease by different degrees. In case of the stable laminar flow ( 2320Re < ), it is 
observable that the pipe loss coefficient is more sensitive than in other Reynolds-
number intervals. The relative increase of losses of the pipe (by Reynolds-number 
domains) is equal. It is worth to note that, these parameters are less affective in 
case of the stable laminar flow ( 2320Re < ). Losses of the pipe fitting have the 
greatest sensitivity; they depend on the volume flow rate fluctuation. 
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Fig.1. The sensitivity of the System Depending on the Volume Flow Rate ( %1+=V�δ ) 

 
4.2. The investigation of technical system data uncertainties’ effects 
 
Fig. 2. shows the effects of 1% increase of the internal diameter of the 

tube. It can be seen that, diameter increase (which is cross section in Fig. 2.) adds 
up to the decreasing of the Reynolds-number. It can be noticed that, pipe loss 
coefficients will increase (in case of 2320Re <  by most large measure) and tube 
losses will decrease by different degrees. 
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Fig. 2. The Sensitivity of the System Depending on the Internal Diameter ( %1+=dδ ) 

 
Results of 1% increase of the pipe fitting loss coefficient can be seen in 

Fig. 3. The diagram shows, that the uncertainty of the pipe fitting loss coefficient 
generates only losses of the pipe fitting. 
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Fig. 3. The Sensitivity of the System, Depending on the Pipe Fitting Loss Coefficient 

( %1+=δξ ) 
4.3. The investigation of physical parameters of fluid uncertainties                    

effects 
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Fig. 4. The Sensitivity of the System Depending on the Dynamical Viscosity ( %1+=δμ ) 
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The effects of 1% dynamical viscosity increase are shown in Fig. 4. The 
diagram shows that dynamic viscosity increasing (in case of the constant fluid 
density) accrues kinematical viscosity and decreases the Reynolds-number. In this 
case, the pipe loss coefficient and losses of the pipe have similar sensitivities in 
each Reynolds-number interval. It is perceptible, that the uncertainty of the 
dynamical viscosity has not effect on pipe fitting losses. 

It can be established in Fig. 5, that effects of the fluid density are in 
contradiction with results of the dynamic viscosity anomaly. In 2320Re <  
Reynolds-number interval, the pipe loss coefficient and head loss of the pipe have 
the greatest sensitivity.  
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Fig. 5.The Sensitivity of the System Depending on the Fluid Density ( %1+=δρ ) 

 
During the investigation of physical fluid parameters’ effects, the several-

parameter sensitivity analysis is worth to be performed. It is probable that the 
change of the feature (for example salinity) of the fluid can produce the change of 
its density and dynamical viscosity. Therefore, %1+=δμ  and %1+=δρ  
situation will be investigated as the modeling of the increase of the salinity. Its 
results are shown in Fig. 6. The graph shows that, the increase of the water 
salinity has not influence on system parameters excluding the pressure losses. 

The statement mentioned above is misleading. Because the density and 
dynamical viscosity of the fluid will not change equally: they depend on water 
salinity. In case of 1% water salinity increase, the density increases with 0,21 % 
and the dynamical viscosity of the fluid increases with 4,885 % [4].  Therefore the 
vector of the relative change of independent variables will modified to: 

[ ]00002108854 ,,Tx =δ                                   (30) 
Results of the modeling are shown in Fig. 7. 
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Fig. 6. The Sensitivity of the System ( %1+=δμ  and %1+=δρ ) 
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Fig. 7. The Sensitivity of the System ( %885,4+=δμ  and %21,0+=δρ ) 

The first conspicuous conclusion is: the dependent system variables have 
the highest sensitivities depending on the salinity of the water. Correspondingly 
with the result of the one parameter sensitivity analysis, the system is most 
sensible in case of the stable laminar flow ( 2320Re < ). 

5. Conclusions, future works 

The author of this paper would like to point out the importance and 
possibilities of use of the mathematical model uncertainty analysis. This basically 
theoretical paper has shown the sensitivity analysis. Then the methodology of 
sensitivity test, which is based on uncertainty analysis, has been shown by the 
case study of an easy pipeline system. 

During prospective scientific research related to this field of applied 
mathematics and technical system modeling, the author would like to complete 
following tasks: 
− the sensitivity analysis of complex pipeline system and pipe-network; 
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− data collection for depicting correctly the influence of the salinity to water 
physical parameters and required pump power; 

− to investigate possibilities of the adaptation of linear interval equations for 
parametric pipeline system uncertainty analysis. 
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