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ON ELECTROMAGNETIC WAVELETS 

Teodora Daniela CHICIOREANU1 

Semnalele sunt purtătoare de informaţie, codificată sau nu. Informaţia, ca 
şi energia, are proprietatea generică de a-şi putea modifica forma în mod repetat, 
fără a-şi pierde esenţa. Teoria seriilor Fourier şi a transformării Fourier constituie 
un subiect central în matematică şi în ştiinţele inginereşti. Prin transformata 

Fourier, un semnal în timp ( din 
21 LL ∩ ) îşi modifică doar modul de reprezentare 

( în frecvenţă), putând fi oricând recuperat. Folosind tehnicile frecvenţiale, 
informaţia este transportată cu viteza luminii şi decodificată la receptor. 
 

Signals carry codified and uncodified information. Information, as well as 
energy, has the generic property of being able to change its form repeatedly, without 
losing its essence.  Fourier’s theory of series and Fourier transformation plays a 
central role in mathematics and engineering sciences.  Through the Fourier 
transform, a time signal 21 LL ∩ changes only its means of representation in the 
frequency domain, and thus it can be retrieved at any time. Using sequential 
techniques, the information is light-speed transported  and decodified at the 
reception point.  
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1. The complex solutions of Maxwell’s equations 

Any electromagnetic wave in the free space (without any perturbations or 
genetic restrictions) can be described by a pair of vector spaces dependent upon 
the 4-vector ( )txv ,=  ;  with ( )321 ,, xxxx =  denoting  the  current  position  and 
t-the time.  

This pair of vectors is ( ) 334:, RRRBE ×→ , where ( )txE , = the electric 

field and ( )txB ,  = the magnetic field. In this respect, there are known the 
Maxwell’s equations satisfied by these two fields: 
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0rot =
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∂

− E
t

B                                                    (2) 

0div =E  , 0div =B                                                 (3) 
 

By introducing complex variables, it follows the application 
34: C→ℜZ , EiBZ += ; the equations (1) and (2) can be written concisely as  

 

ZiZ
t

rot⋅=
∂
∂                                                            (4) 

and (3) becomes 
 0div =Z                                                                  (5) 

 
Proposition 1.  

The complex electromagnetic field Z  represents the solution of the wave 
equation  
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Demonstration  
 

 According to  (4), 
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)rot(rot Z− = ZZgrad Δ+− )div(
)5(cf

= ZΔ  and hence (6) 
 
 We should remember that for any fast descendent function )(xf , 

ℜ→ℜnf :  there can be defined its n-dimensional Fourier transform  

C→nRf :
^

, ∫
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The function 
^
f  is continuous, limited and tends from 0 to the infinite on 

any direction.  In addition, there is the inversation formula 
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More specifically, the Z  field has a 4-dimensional  Fourier transform and 
we intend to find the solution of the (1)+(2)+(3) system or of its equivalent, the 
(4)+(5) one of the equation (6) as an inverse 4-dimensional Fourier transform : 
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where ( ) ( )00321 ,ˆ,,, ppppppp ==  represents the 4-vector spatial wave with the 
frequency 0p  ; and we considered  
 

xptpxpxpxptprp ⋅−=−−−= 03322110, . 

 

 We define ( ) 2
12

3
2
2

2
1 ppp ++=ω as the absolute frequency value, conse 

quently  22
0, ω−= ppp . With { }22

0
4 ,0 ω=≠∈= ppRpK ,  

also called “the light cone”, equation (6) becomes ( ) 0)(22
0 =⋅−

∧
pZp ω  and this 

equation e (within tempered distribution) results in   
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 where 3C→Kf :  denotes a function of 2L .  

But generally ))()((
2
1)( 22 btbt
b

bt ++−=− δδδ for 0>b , so 
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filter formula ( )()()( bdtbtt ϕδϕ =−∫ ) , it leads to   
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Where we noted  
),,,()( 3213,2,1 ωpppfpppf =+  

and 
),,,()( 3213,2,1 ω−=− pppfpppf . 
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 This gives raise to: 
 
Proposition  2.  

The solution of the equation 02
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where 3C→Kf :  denotes a function of  2L , defined within the light cone. 
 

2. The connection to the electromagnetic wavelets  

By convention 3C→ℜ4:Z  denotes the previously defined complex 
electromagnetic field. To measure it with a punctual meands in the Minkonski 
space-time 4M  we assume that the impulse response of the instrument is a 

C→ℜ:ψ , and the trajectory of the instrument finds its parameters in 4M  as 
follows: 

111 )( uvaux += ,   

222 )( uvaux += , 
 333 )( uvaux +=   

and 
 00)( uvtut +=   

where ℜ∈u  denotes the parameter, ),,( 321 aaaa = the initial position, 0t  the 

initial moment, and ),,,( 0321 vvvvv =  the speed of the instrument. The value 

resulting from measuring the Z  field with the specified instrument will be  

∫ℜ ⋅++++= duuuvtuvauvauvaZtaZ )(),,,(),( 003322110 ψψ  

Retaining only the temporal component, we produce  

∫ℜ ⋅+= duuuvtZtZ )()()( 000 ψψ  and by changing the variable tuvt =+ 00  we 

come to 
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Let us remember that a 1D wavelet is a function C→R:ψ  of 21 LL ∩  
with energy 1, and so its Fourier transform  ψ̂ satisfies the relations 0)0(ˆ =ψ  and 

∫ℜ ∞<ω
ω
ωψ

d
2)(ˆ

.  

Establishing such a wavelet for any signal 2Lf ∈ and any real parameters 
a, b )0( ≠a there can be associated the coefficients of f  in relation to ψ  as 

resulting from ∫
−

⋅=
Rf dt

a
bttf

a
bac .)(ˆ)(1),( ψ  Once this family of complex 

numbers ),( bac f , also called the integral transform of f  by the wavelet ψ , we 
can retrieve f . 

The (9) relation can be then rewritten as : 

               ∫ℜ= ),(1)( 00
0

0 vtc
v

tZ Zψ ,                                             (10) 

where Zc  denotes the vector of the coefficients of Z  in relation to the wavelet ψ . 
 By using the reverse formula and with the knowledge of the coefficients 

),( 00 vtc
Z

, we can retrieve )( 0tZ . 
Note. The above mentioned findings apply to the acoustic wavelets as 

well, which unlike the electromagnetic wavelets are scalar (not vector fields) and 
moreover propagate in a real physical medium (and not in a vacuum).  
  

3. An application of the wavelets to the radar (or sonar) signals  

The purpose of radar/sonar is to obtain information about moving objects, 
related to velocity and location.  

Radar and sonar technology respectively allow for obtaining this kind of 
information about flying objects as well as submarines by analysing the 
electromagnetic or acoustic wavelets reflected by the specific objects.  

Object positioning results from measuring the delay time between the sent 
signal and its echo, taking into account the Doppler effect due to the movement of 
objects; the comparison between the sent signal and its echo leads to an 
approximate estimation of the D distance between the object and the location of 
the radar station and of the radial speed v  along the view line.  
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Fig 1. illustration  radar 

 
The radar signal represents a time function )(tψ , where ℜ→ℜ:ψ  to 

signify  the electric tension in the transmission antenna. 

 
 

Fig 2. illustration  sonar 
 
The antenna converts )(tψ  into an electromagnetic radar 

wave ),(),(),( txEitxBtxZ += , thus satisfying relation (6), that equals Maxwell’s 

equations. The explicit connection between ),( txZ  and )(tψ  does not constitute 
the purpose of this study.  

After the object reflexion, the echo-electromagnetic wave is translated by 
the same antenna into a real signal )(tf . The next statement will establish the 
connection between )(tf  and )(tψ . 
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Electromagnetic waves travel at the speed of light. If the followed flying 
object is in a state of spell  ( 0=v ) at a D distance from the radar station, then  

)2()(
c
Dttf −⋅= ψα                                            (11) 

where α denotes a constant – positive - real which depends on the object’s 
reflectivity and the diminishing of the signal ( s

mc 000.000.300≅ ).  

If the object is relatively small and travels at a radial speed v , then the 
distance between the object and the station at the moment t  is vtDtD += 0)( , 
where )0(0 DD = . If  0>v  then the object moves away and if 0<v  then it draws 
near. 

If )(tτ  denotes the delay of the echo that arrives at the moment t, then  

)
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 which means 
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and so  
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       Relations (11) and (12) show that 
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       Now we can determine the real parameters a and b so as  
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for any t.   The identification of the coefficients of t and the free terms show that  
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       As cv <  it follows 0>a . If 0>v  then 1>a  so if the object is moving 
away, we obtain the relation: 
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)()()( , ta
a
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For energy it writes   

)()()( , ψαψα EaEafE ba ⋅=⋅=  
 
Proposition 3.  
 The signal )(tf  transformed after reflexion from the radon signal )(tψ  

satisfies the relation )()()( , ta
a

bttf baψααψ ⋅=
−

=  where 
vc
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−
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= , 

vc
aDb
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= 02 , where v  denotes the radial speed of the object, 0D denotes the initial 

distance from the station and  c  denotes light speed. 
   

The parameters a and b can be approximately determined by comparing 
the sent )(tψ signal to the received echo-signal. As soon as a and b are known the 
parameters v, D0 can be determined in accordance with the relations (13). 

Therefore all desired characteristics can be measured (object’s speed and 
location) and the trajectory of the object (traced via radar/sonar) can be 
determined.  
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