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COMPARATIVE ANALYSIS OF MACROSCOPIC TRAFFIC
FLOW MODELS ON HIGHWAYS

Alin Alexandru SERBAN !*, Midilin Corneliu FRUNZETE !, Corneliu
BURILEANU!

The problem of traffic in big cities represents one of the greatest challenges of
this century because cities are becoming more and more populated with both people
and vehicles. Therefore, solutions are needed to control traffic, algorithms or models
that can model the main traffic parameters. This paper is based on speed-density
models, and within this paper, the most important speed-density models were analyzed
for the purpose of estimating travel speed based on a database containing data from
highways. Seven different traffic flow models were analyzed in order to find the most
suitable one for the highway conditions.

Keywords: traffic flow models, macroscopic models, mathematical model
1. Introduction and Related Work

As urbanization accelerates and the population continues to grow, traffic in
major cities has become one of the most critical issues of the modern era. In many
cases, the existing road infrastructure cannot cope with the increasing demands for
transport, leading to severe congestion of the traffic. These bottlenecks not only
affect the quality of life but also the environment and economic performance.
Traffic congestion manifests itself through a significant slowdown in travel speeds,
the formation of endless queues, and an exponential increase in travel times. Its
causes are multiple and interconnected, including insufficient road capacity, high
transport demand during peak hours, unforeseen road events (accidents,
roadworks), poorly synchronized traffic lights, and the lack of efficient public
transport alternatives [1]. Traffic congestion can be interpreted and compared to a
Lorenz chaotic system, as traffic can sometimes exhibit chaotic behavior depending
on the participants and external conditions that might occur [2]. Therefore,
identifying and implementing effective traffic management solutions becomes an
absolute priority.

Macroscopic traffic flow models are fundamental tools for analyzing and
managing road traffic dynamics. They provide an overview of the collective
behavior of vehicles on a road network, using parameters such as density, speed,
and flow, without detailing the individual trajectories of vehicles.
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Macroscopic traffic flow models are based on three fundamental traffic
parameters: traffic flow (the number of vehicles passing a specific point per unit of
time), traffic density (the number of vehicles per unit length of the road) and the
traffic speed (the average speed of vehicles in the traffic stream) [3].

The study in [4] proposes a new model to characterize the physiological and
psychological response of drivers to changes in traffic flow. The authors introduce
a regulation parameter that describes drivers’ reactions to the conditions ahead,
enabling a more realistic representation of traffic compared to existing models. The
study shows that, for a slow response, traffic tends to form congestion, while a rapid
response leads to a smoother flow. Additionally, it highlights that speed variations
affect pollutant emissions and fuel consumption, suggesting that adjusting the
regulation parameter for autonomous vehicles can reduce these negative effects.
The proposed model provides a foundation for analyzing the behavior of
autonomous vehicles, contributing to strategies for reducing fuel consumption and
pollution. In the study from [5] the author proposes a new macroscopic traffic flow
model that considers driver reactions and traffic stimuli. Unlike the Payne—
Whitham (PW) model, which uses a constant velocity and can lead to unrealistic
behavior in density and speed, the proposed model characterizes traffic behavior
based on the distance between vehicles. The performance of both models was
evaluated on a circular 300-meter route without active bottlenecks, with results
indicating that the proposed model provides a more realistic representation of traffic
behavior. Additionally, as highlighted in the study referenced in [6], traffic can be
examined through the lens of channel information theory.

In this paper, we evaluate several macroscopic traffic flow models, selected
after a comparative analysis of multiple approaches, and implement the most
suitable ones under highway conditions. The focus is on identifying and validating
the models that best reflect highway traffic dynamics through both theoretical
analysis and practical implementation. The paper is organized as follows. Section
2 shows the used traffic flow models; section 3 shows the data description and
model calibration and section 4 conclusions.

2. Traffic flow models

In this section the traffic flow models used and the boundary conditions for
each one will be explained. The traffic models described in the following sections
stand out due to their distinct characteristics, ranging from simple linear relations
between speed and density to more sophisticated forms, including exponential,
logarithmic, or combined approaches. These models provide a deeper
understanding of traffic flow mechanisms, highlighting their importance in
addressing congestion, improving efficiency, and designing effective transportation
systems. The first one that will be described is the Greenshields model:
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2.1 The Greenshields model

This model has been created and proposed by Greenshields in 1935, and it
is a linear approach designed to examine the relation between speed, flow, and
density [7]. While the model is straightforward and adheres to all boundary
conditions (u = 0 when k = kjand u = u; when k = 0), its overall fit tends to
be low, particularly when applied to freeway data. The formula for the Greenshields
model is the following [8]:

u=uf(1-%). (M)
kj
where there are the following meanings: u is the speed, uf is the free flow speed,
k represents the density and the k; represents the jam density.

2.2 The Underwood model

Introduced in 1961, the Underwood model uses an exponential approach to
describe the interaction between speed, flow, and density. It assumes that speed
decreases exponentially as density rises, making it well-suited for traffic conditions
with low to moderate densities [9]. However, its performance is less reliable in

heavily congested situations. The Underwood model is as follows [8]:
k

U= u xe ke, (2)

where u and u; represents the speed and the free flow speed, k is the density and
k. is the critical density, the density at which the maximum flow occurs.

2.3 The Greenberg model

The Greenberg model, developed in 1959, uses a logarithmic equation to
represent the interaction between speed, flow, and density [9]. It assumes that speed
decreases logarithmically as density increases, making it particularly useful for
describing traffic behavior in high-density conditions. The model adheres to the
boundary condition u = 0 when k = k; (jam density). However, it struggles to
represent free-flow conditions accurately, as it predicts infinitely high speeds at
very low densities, limiting its effectiveness in such scenarios. The formula of the
model is the following [8]:

u=uc*ln%, (3)

where u, is the speed at capacity, which is the speed corresponding to the
maximum flow of traffic and the other terms have the same meanings.
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2.4 The Drake model

The Drake model builds upon traffic flow theory by utilizing a combined
exponential-logarithmic relation to describe the interaction between speed, flow,
and density [10]. It captures the behavior of traffic by assuming a logarithmic
decrease in speed at high densities and an exponential decrease at low densities.
The model adheres to the boundary conditions u = 0 at k = k; (jam density) and
u = uy at k = 0 (free-flow density), ensuring it is applicable across a wide range
of conditions. This adaptability makes the Drake model effective for analyzing both
free-flow traffic at low densities and congested traffic at higher densities. The
equation of the Drake model is the following [11]:

- k 2 |
()
where all the terms have the same meaning as for the previous models.

2.5 The Robertson model

U= U *exp

(4)

The Robertson traffic flow model aims to describe the relation between
speed, flow, and density through an empirical approach designed for urban
environments and traffic signal analysis [12]. It is particularly effective for
capturing traffic behavior at intersections or within road networks where signal
timing plays a critical role. The model highlights stop-and-go traffic dynamics,
accounting for vehicle platooning and delays caused by traffic signals.

The boundary conditions of the model are as follows: u =0 at k = k;
(Jam density), representing a complete halt in traffic, and u = uy at k = 0 (free-
flow density), reflecting ideal conditions with no obstructions to traffic movement.

This model is most suitable for urban traffic systems where signal timings,
congestion, and vehicle interactions significantly influence traffic patterns. Its
ability to represent non-uniform traffic flow makes it highly effective in such
contexts. However, for freeway or high-speed traffic, the model may require
additional calibration to ensure accuracy. The equation associated with this model

is as follows:
k n
u—uf*(l—(k—j) ), (5)

where n is empirical exponent, typically ranging from 2 to 4, defining the shape of
the speed-flow curve (its value determines the rate at which speed decreases with
increasing flow).

2.6 The Van Aerde model

The Van Aerde traffic flow model offers a comprehensive mathematical
framework to describe the relation between speed, flow, and density. Developed as
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aunified model, it is capable of capturing traffic behavior across the entire spectrum
of traffic conditions, from free-flow to congested states [7]. The model combines
both exponential and hyperbolic components to represent speed changes as density
varies, ensuring accuracy under diverse traffic scenarios. This model is particularly
well-suited for analyzing both freeway and urban traffic flows. Its versatility makes
it a valuable tool for evaluating uninterrupted traffic, as well as congested scenarios
where interactions between vehicles are significant. This model is defined by the

following equation [14]:
1_1 L3 Yt
u us + (kj) * (uf* u0>’ (6)

where u, represents the minimum speed, the speed of vehicles at very high density,
just before reaching complete congestion and the other terms have the same
meaning as in the other models.

2.7 The Northwestern model

The Northwestern traffic flow model aims to describe the interplay between
speed, density, and flow, focusing on the gradual reduction in speed as density rises
[13]. It is especially effective for examining traffic scenarios involving a critical
density (kq)where maximum flow is achieved, while also accounting for stop-and-
go traffic patterns in light to moderate congestion. In terms of boundary conditions,
u = uy if the k = 0 and that means at zero density, traffic operates at free-flow
speed, as there are no interactions between vehicles. Also, u = 0 as k — oo and
that means at very high densities approaching jam density (k;), traffic speed
gradually drops to zero due to congestion.

This model employs a Gaussian-inspired exponential decay function to
represent speed, making it particularly useful for analyzing traffic behavior on
freeways and highways. The Northwestern traffic model demonstrates strong
efficiency in scenarios requiring a deep understanding of vehicle flow patterns and
driver responses across different density conditions. This model is expressed as:

1 2
U= usx e_E*(kio) , (7
where k is the critical density, the density at which traffic achieves its maximum
flow. It represents the optimal balance between speed and density.

3. Data description and model calibration

The data used for this study comes from the National Highways of England
website and the data related to A2 was used from the year 2014. This database
contains logs about the date and time, the value of traffic flow (in vehicles per hour)
and the speed value (in miles per hour, mph) [16]. The present data is for each day
of the year and from 15 to 15 minutes. Because the data contains values about traffic
flow and in the above models, we are using the density and the speed values, in the
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preparation part of the data, the values of the density were obtained based on the
fundamental equation in traffic [17], [18]:

q=uxk, (8)
where q represents the traffic flow, u is the speed and k is the density of the traffic.
The results after running the traffic flow models can be seen in Table 1:

Table 1
Comparison of traffic flow models parameters

Model j u ke R®

U,f k ¢
Km/h | Veh/km | Km/h | Veh/km
Greenshields | 119.2 150.4 59.6 75.2 0.76

Underwood | 122.4 - 61.2 73.4 0.80

Greenberg - 180.4 28.7 55.11 ] 0.61

Drake 123.4 - 73.9 106.23 | 0.91

Robertson 120.5 140.3 64.2 84.5 0.74

Van Aerde 121.8 138.2 62.3 83.2 0.70
Northwestern | 122.8 - 71.4 85.6 0.88

In the following figures, it can be seen model fit, showcasing how well each
model aligns with the study data, through an analysis of how speed and density
interact within each model.

In Fig. 1 the relation between speed and traffic density according to the
Greenshields model can be seen. The coefficient of determination obtained is R? =
0. 76, indicating a strong correlation between the observed data and the proposed
model, with a particularly good fit for medium and high densities. However, slight
discrepancies from the regression line become noticeable at very low densities.
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Fig. 1. Model fit for Greenshields model

For the Underwood model, in Fig. 2, the interaction between speed and
density can be noticed. It is observed that at low densities, the speed remains almost
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constant; however,

as the density increases, the speed decreases exponentially,

reflecting the transition to congested traffic conditions.
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Fig. 2. Model fit for Underwood model

In the Fig. 3 it can be seen that the model Greenberg, with a low value for
the coefficient of determination, R?> = 0. 61, indicating a weak correlation between
the observed data and the proposed model. The Greenberg model shows a tendency
to overestimate speeds at higher densities, likely due to its core assumption that
speed decreases following a logarithmic trend as density increases.

Speed(u)[km/h]

. .i ® % e Initial data

‘oo 8 —— Greenberg estimation
‘. L ]

100 o o8 LY TP S

75

50

25 L

20 40 60 80 100
Density(k)[velvh]

Fig. 3. Model fit for Greenberg model

Fig. 4 illustrates the dependency between speed and traffic density using the
traffic model proposed by Drake, where an exponential relation is between the
speed and density. The coefficient of determination, R? = 0.91, indicates a good
correlation between the model and the observed data, making it one of the best-
fitting models in this context. Compared with the other traffic flow models, the
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Drake model shows the transition from free-flow conditions to the extreme
conditions [19].
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Fig. 4. Model fit for Drake model

In the case of the Robertson model, the graph in Fig. 5 illustrates the
correlation between speed and density. Based on the coefficient of determination,
R? = 0.74, the model does not adequately fit the analyzed situation.
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Fig. 5. Model fit for Robertson model

Similar to the Robertson model, Fig. 6 shows that the model proposed by
Van Aerde exhibits a weak fit for the analyzed situation. This conclusion is
supported by the coefficient of determination R? = 0. 70.



Comparative analysis of macroscopic traffic flow models on highways 353

': ® Initial data
—— Van Aerde estimation

75

Speed(u)[km/h]

25

20 40 60 80 100
Density(k)[velvh]

Fig. 6. Model fit for Van Aerde model

In the case of the last model that was analyzed, Northwestern model, in Fig.
7, a strong correlation can be seen between the data analyzed and the proposed
model, this fact being confirmed by the coefficient of determination, R? = 0. 88.
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Fig. 7. Model fit for Northwestern model

The obtained results from all the traffic flow models were compared(and the
results can be seen in the Table 1) in terms of values for the free flow speed(uy),
speed at density(u,), density at capacity(k.), jam density(k;) and the value of the
R? parameter(this is a statistical measure used to assess how well a regression
model explains the variation in the data and it can have values between 0 and 1,
where 0 means no correlation between model and data and 1 means a perfect match
for the variation of the data) [15]. Based on the values for R? parameter, it can be
seen that the Drake model obtained the best result, with R?> = 0.91. Based on these
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results, the Drake model can be recommended as the best macroscopic model that
can be used for the freeway situation. The Drake model consistently achieves the
highest observed R? value among the traffic models for the study while also
providing realistic estimates for free-flow speed, as well as speed and density at
capacity [20].

4. Conclusions

In the modern era, managing and monitoring traffic has become a crucial
issue, as congestion impacts everyone by wasting valuable time. The quality of road
infrastructure is a key factor in addressing this problem, as it can help streamline
traffic flow. However, equally important are intelligent and adaptive traffic control
systems that can analyze real-time traffic conditions and adjust traffic signals
accordingly to enhance efficiency.

Based on the study and analysis conducted, it can be observed that the
presented traffic flow models can be used to characterize a road, allowing for the
determination of speed or density. Among all the analyzed traffic flow models
(Greenshields, Underwood, Greenberg, Drake, Robertson, Van Aerde,
Northwestern), the best fit for the analysis performed on data from the National
Highways of England was achieved using the Drake model because it is applicable
to scenarios involving both jam density and free-flow density conditions. It is
important to consider that, as demonstrated, each traffic model has distinct
characteristics and is best suited for specific road conditions. Speed and density
dynamics in a highly congested metropolitan area differ significantly from those in
a smaller city or highways [21]. This type of comparison highlights that
macroscopic traffic flow models involve lower infrastructure and computational
costs, as they require fewer sensors, less granular data, and simpler algorithms
compared to video-based approaches. Furthermore, their reliance on aggregated
flow trends increases robustness to data loss and sensor failures.

The future development of this project will focus on exploring advanced
traffic flow models to identify the most suitable model for the specific scenarios
from which the analyzed data originates. Machine learning algorithms are widely
applied in domains such as healthcare, finance, and cybersecurity, and have shown
significant impact in the traffic sector for tasks like traffic flow prediction,
congestion detection, and anomaly identification [23]. Various machine learning
algorithms can be applied to the analyzed scenarios, enabling both the prediction
and optimization of critical traffic parameters, such as average speed and
congestion levels for specific areas or road segments [22]. By leveraging historical
data and real-time inputs, these algorithms provide accurate forecasts, offering
valuable insights for optimizing traffic flow and improving urban mobility
planning.
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