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INFERENCES IN A COPULA MODEL FOR
BIVARIATE SURVIVAL DATA

Mariana CRAIU, Corina CIPU, Laura PANZAR"

Obiectivul acestui articol este de a estima parametrii unui model
bidimensional de defectare pe baza unei selectii aleatoare (T, T) i-in folosind
metode parametrice si semiparametrice. Asocierea celor doua variabile T; si T, se
modeleaza prin copule si se compara rezultatele studiului de inferenta statistica.

Copula reprezinta un mod natural de masura a dependentei dintre variabilele
aleatoare.

The aim of this paper is to estimate the parameters in a bivariate lifetime
model in the light of a random sample (Ty, Ty) i by parametric or semi-
parametric methods. We model the association of the bivariate failure times by

copulas, and compare the results of statistical inference. Copulas provide a natural
way to study and measure dependence between random variables.

Keywords: Weibull distribution, bivariate distribution, copula’s family,
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Introduction

In many cases it is convenient to express a joint distribution F(X,y) as a
function of Fy (x) and Fy (y) (the individual distribution functions for variables
X, Y) by:

F(x,y) = C(Fx (x). Fy (¥)) = F(Fy 1 (Fx (X)), Fy 2 (Fy (¥))) -

In this way the mapping C (that is uniquely determined on the unit square
when Fy and R, are continuous) captures the dependence between the random
variables X and Y.

In the last years many research papers develop multivariate survival
distributions. A multivariate distribution is derived assuming that marginal
distributions are of some specified family. In studies of reliability components are
assumed to have independent lifetimes but, is more realistic to assume that there
exist some sort of dependence among components.
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A useful way to develop bivariate lifetime models is through a family of
copulas C(u,v,d) with a specification of the marginal distributions (where & is a
parameter that determines the dependence structure).

A bivariate copula C(u,v,d) is a family of distribution functions (with u, v
uniform marginals) defined in [0,1]° with C(u,1)=u, C(1,v)=v, C(u,0)=C(0,v)=0.

For any copula C there exist two copulas: the Frechet-Hoeffding upper
bound defined by M(u,v)=min(u,v) (represents the most positive dependence with
each variable being an increasing monotone transformation of any other variable)
and the Frechet lower bound W(u,v) = max{0,u+v-1} (this represents the most
negative dependence when one variable is a decreasing monotone transformation
of the other variable) for which:

W (u,v)<C(u,v) <M (u,V).

By the Sklar’s Theorem [6], for any joint distribution function F with

marginals F; and F,, there is a copula C such that for all real numbers x, y:
F(x,¥)=C(R(X),F,(y)).

And conversely, if C is a copula and F;, F, are univariate functions, then the

function F(x, y) is a joint distribution with marginals F; and F.

Between different families of copulas, a special class is that of
Archimedean copulas.

e An Archimedean copula has the next representation:

C UV, )= @5 (;(u) + 95(v))
where ¢ is a convex, decreasing function defined in (0, 1] with ¢(1) =0. Some
examples of these copulas are:

Gumbel-Barnett family given by Hutchinson and Lai (1990):
CuV,8)=u+v—-1+(1-u)@—-v)e 2"t = 5 c[01] (1)

Frank family (1979):
Yy sewpo ()

—&u 'y
C(U,V,5)=—%In(1+(e mlC

Joe’s copula (1993):
CUVv,8)=1-[0-uw)’ +@-v)’ —@-uw)’@-v?°1¥9, s>1 @)
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Fig. 1 The level curves of C(1), for 6 =0.5

The bivariate distribution in this case is:

F (6 Y) = Fi(0) + Fo () =1+ (L= F ()L~ F (y))e ™ " REDINERD,
If Fi(ay, B), F2(,, B,) are Weibull distributed, the bivariate distribution is given

by:

X < Iz X b B
F(x,y):l-exp(-[ZJ )—eXp(—(alJ )+exp(-[;] _[QLJ

4

A yirs
XY
O‘J [0‘2]

e Lu and Bhattacharyya (1990) had defined a bivariate Weibull distribution by

its survival function :

v 2

S(x, y) = exp{—[(if +[if2 +5(1—e(:1j )(1—e[“2J 3,0 e[-11]

a, a,
with marginals survival functions:
B
S,(x) =lims (x, y)=exp(—{x] ), x>0, 8,(y)=limS(x, y)=exp<—(
Y= X—>

1

v

2

P2
] ),y >0.

The associated copula for the joint distribution function F(X, y) =S(x, y)-

S1(X)-Sa(y) +1is:
C(u,v) =(1-u)@-v)e™™ —1+u+v.

)

~—
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Fig. 2 The level curves of C(1), for 6 = 0.2
1. The dependence coefficients
For a copula, the correlation coefficients as Kendall-tau defined by:

a°C
=4 ” C(u,v)——dudv -1
5 ouov
[0.1]
and Spearman-ro
p=12 HC(u,v)dudv—3

[01]?

are constant.
The linear correlation coefficient r based on the covariance of two

variables is not preserved by copulas:
C_M(XY) =M (X)M(Y)

1/Var( X)Var(Y)

where M is the theoretical mean and Var is the theoretical variance.

The tail concentration functions

Right (R) and left (L) tail concentration function can be defined with
reference to how much probability is the region near (1, 1) and (0, 0).
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These are an intermediate step between correlation coefficients as Kendal,
Spearman and copula function itself:

L(x) = C(x,x) R(X) = 1-2x+C(x,x)
X 1-x
A, = lim R(x) And A4; = lim L(x) are the Tail dependence coefficients. These
x—1 x—0

gave asymptotic measures of the dependence in the tails of bivariate distributions.
For copula (1):A, =0=7A,.A; =0 indicates asymptotic independence in
the lower tail. For copula (2): A, =0=24,.

2. The concordance function

Let F be a joint bivariate distribution and G an other joint bivariate
distribution.

The concordance function Q is the difference of the probabilities of
concordance and discordance between two vectors (Xi,Y:) and (XzY2) of
continuous random variables with different joint distributions F and G, but with
common margins F; and F.

The function depends on the distributions of (X1,Y1) and (X2,Y2) only
through their copulas.

Let C; and C; the copulas associated of the vectors (X1,Y1) and (X,Y>),
so that: F(X,y)=C1(F1(X),F2(y)); G(X,y)=Ca(F1(x),F2(y)). In this case:

Q = P[(X1-X2)(Y1-Y2) > 0]- P[(X1-X2)(Y1-Y2) < 0] =4 j j C,dC, —1.

(0.7
3. Parametric and semi-parametric estimation procedure

Copula models are used when the association between variables is
important. In this case, the effect of the dependence structure is separated from
that of the marginals. Two strategies could be envisaged.

Let (Ty;, Ty) j<in be a sample of the failure times for the variables T; and

T, where:
T, ~ Weibull(ay,B1), T, ~ Weibull(ay,B5) With probability density f; and .
The probability density considered for Weibull(« , g) is:

=
f(x):ix/”_le @/ x>0.
aP
The first method is a two stage estimation method. The 1-st stage involves
maximum likelihood for univariate marginals parameters. This procedure is
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computationally simpler than estimating all parameters. So, the equations that

n oln f; (L, @i, Gi N oInfi (ti ai, S
must be solved are: > i (i, i 'B'):()’ i (Gij, @i, i)
j=1 oa; =) op;

=0 i=1, 2

with solution:

n
o [n/ th”'J i=1, 2
j=1

n Bi n n
2 nin(e;)+In ]"[t{”i +(ij In(ai)thﬁi —Zt{’i In(tj) |=0;i=1,2
Ai j=1 i j=1 j=1

2

L0 Ao Ao 0°F .
and » —Inf(t;i,tri,a1,a9,p1, F2) =0 where = f isthe p.d.f.
Eaé‘ J J 6’[18'[2

The second method is a semi-parametric one. The procedure consist of
selecting the parameter value that maximize the pseudo-likelihood

n
L(6) = Z'”[Ca(ﬁn (t1), Fon(t2; ))]
j=1
where Fi, is the empirical distribution function of i-th variable, i=1,2.

A~

In [5] is proved that the semi-parametric estimator &, is consistent
and: \/ﬁ(én - 5) is asymptotically normal.
The estimation Sn is given by the equation:

S % Infey (Fun (). Fon (t2 )] = 0 where ¢ (u 0=2"C 0y
j:165 o\Mn\1j /i 2n\t2] oM duav
In our case for copula (1) this is:
n
YIn-uj)Ind-vj) =
j=1
N 25In(L-u;)In(L-vj)-1-Ind-u;) - In(L-v;)
iZi1-5In@L-u;j)-5In@-vj) -5 +8%In@L-u;)In(-v;)
with uj =InFy, (tgj),vj =InFp, (tyj) -
For the copula (2) C(u,V,8) = (1—u)L—v)e " +u+v—1 associated to

the bivariate Weibull distribution the equation that gives the dependence
parameter is:
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n 2Uj+2Vj —3UjVj—1+2anVj(1—Uj)(l—Vj)

n
_Zlujvj +
J:

j:11+5(2Uj +2Vj —3UjVj —1)+52UjVj(1—Uj)(1—Vj)

4. Application
We use the recurrent data found at the address http://www-unix.oit.
umass.edu/~statdata/statdata/data/recur.dat

Table 1
ID AGE TREAT T1 T2 CENSOR | EVENT
1 43 0 9 56 1 3
1 43 0 56 88 1 4
1 43 0 0 6 1 1
1 43 0 6 9 1 2
2 43 0 0 42 1 1
2 43 0 87 91 0 3
2 43 0 42 87 1 2
3 41 0 0 15 1 1
3 41 0 15 17 1 2
3 41 0 17 36 1 3
3 41 0 36 112 0 4

The sample consists in 386 pacients registered with the first time when the
disease occurred and the next recurrence of it. These times are T; and T,. From
all data, we selected only these that have event = 2.

The concordance with Weibull distribution is established by the
linearization method . The values of the parameters are:

ap =1.0109524, p; = 29.222882, ap =1.459987, f, =59.11479

Weibull linearization of T1

e o o
= B o
1 1 1

Expected Cum Prob

o
i
1

00 T T T T
0.0 0z 04 06 [aR:] 1.0

Observed Cum Prob

The figure of linearization are:
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Weibull Linearization of T2
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The estimated correlation coefficients are:
Correlations
| T1 T2

Tl Pearson Correlation 1| .780(**)

Sig. (2-tailed) . .000

N 386 386

T2 Pearson Correlation | .780(**) 1

Sig. (2-tailed) .000 .

N 386 386

Correlations
T1 T2

Kendall'stau_b T1 gggﬁzggr; 1.000 588(**)
Sig. (2-tailed) . .000
N 386 386
T e st | o
Sig. (2-tailed) .000 .
N 386 386
Spearman'srho  T1 gggﬁ:zg{t\ 1.000 743(+%)
Sig. (2-tailed) . .000
N 386 386
T G 7 Lo
Sig. (2-tailed) .000 .
N 386 386

** Correlation is significant at the 0.01 level (2-tailed).

Table 2

Table 3
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For copula (1) we define the function:
n
f(9) = Zln(l—uj)ln(l—vj)—
j=1
26In@-uj)In@-vj)-1-In@-uj)-In-v; )
1-5In(L-u;j)-8In@A-vj) -5 +8%InL-u;j)In@-v;)

and for copula (2) we define the function
n 2Uj+2Vj—3UjVj —1+2anVj(l—Uj)(l—Vj)

f(6)=>ujvj+,
j=1

j:11+5(2Uj +2Vj —3UjVj —1)+52UjVj (1—Uj)(1—Vj) .
and we search for the function f (&) the root & €[0,1] . We present the graphs of
f(9) in the two cases.
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Fig. 3 The function f(5) for the two copulas
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In the first case one observe that & ¢ [0,1]. This shows to us that for this
copula the number of data must be much more. In the second case we find two
solutions &; €[0,0.5] and 5, €[0.51]. Knowing that the parameter of
dependence ¢ for a such copula is in the interval [-0,20 ; 0,32] we find the value
& =0.1706 with an error or order 10,

Conclusions

The semiparametric method for estimating the dependence parameter of a
pair of random variables applied for two different bivariate distributions with the
same marginals ask different values for the volume of selection. For the first
copula that is an Archimedian one the volume of selection must be bigger then for
the second copula, that is associated to a bivariate Weibull. This is a reason for
which we can not find a value of 6 €[0,1] for the copula (1).
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