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PSEUDOINVEX FUNCTIONS ON RIEMANNIAN MANIFOLDS AND

APPLICATIONS IN FRACTIONAL PROGRAMMING PROBLEMS
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In this paper, we have obtained pseudoinvex functions from the ratio of
invex and related functions to an affine and some generalized invex functions on Rie-

mannian manifolds. Further, we establish sufficient optimality conditions and duality
theorems for fractional nonlinear optimization problems under weaker assumptions on
Riemannian manifolds.
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1. Introduction

The ratio of a convex function to a positive affine function is a pseudoconvex function,
see, Cambini and Martein [2]. The concept of invex and generalized invex functions was given
by Hanson [8] and the same on Riemannian manifolds was given by Pini [14] and Barani
and Pouryayevali [1]. Now, we extend the results of Cambini and Martein [2] to Riemannian
manifolds. In our case the ratio of an invex function to a positive affine function is a
pseudoinvex function and some other similar results also.

A nonlinear fractional programming problem is an optimization problem. In the
applications of fractional programming the quotient of two functions is to be maximized or
minimized. If f is convex, g is concave and h is convex then the fractional programming
is defined as convex-concave fractional programming problem. If all the functions f, g
and h are invex then the programming is known as an invex problem. For invex fractional
programming problems, we may cited the fundamental work of Craven [4] in which the invex
function was advised first time and also the work of Reddy and Mukherjee [17], Singh and
Hanson [18], Mishra and Giorgio [13], Craven [3] and Craven and Glover [5]. We continue
this fractional programming to pseudoinvex case.

On the other hand, a manifold is not a linear space and extensions of results and
techniques from linear spaces to Riemannian manifolds are natural. The importance of the
extension is that, with the significant Riemannian metric the nonconvex optimization prob-
lems become convex optimization problems. In recent years, many important results and
techniques have been developed on various aspects of convex optimization on Riemannian
manifolds, see, [19]. We extend the results of Craven and Mond [6] on Riemannian theory
and in our case f is invex, g is positive and affine then the objective function is pseudoinvex.
Rapcsák [16] proposed optimality conditions for an optimization problem with constraints
on smooth manifold. Further, Jana and Nahak [9] have established sufficient optimality
conditions and duality results for an optimization problem on a differentiable manifold.
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Udriste [19] introduced the duality results on Riemannian manifolds for a convex program-
ming problem. Further, Ferrara and Mititelu [7] established the Mond-Weir duality results
on a smooth manifold for vector optimization problems.

Motivated by the work of Khan and Hanson [10], Udriste [19] and Jana and Nahak
[9] we extend the results of Khan and Hanson [10] under assumptions of pseudoinvexity of
objective function and of quasiinvexity of constraints on Riemannian manifolds.

This paper is organized as follows : In the next section, we present some preliminaries
definitions and concepts of Riemannian manifolds. In section 3, we consider the nonlinear
fractional programming problems and obtain pseudoinvex functions from the ratio of invex
and related functions to an affine and some generalized invex functions on Riemannian man-
ifolds. Further, we establish sufficient optimality conditions in the presence of pseudoinvex
functions. Finally, in the last section, we establish duality results for a fractional nonlinear
programming problem on Riemannian manifolds.

2. Preliminaries

In this section, we remember some known definitions and concepts of Riemannian
manifolds which will be useful for this paper. For standard material of differential geometry,
see, Klingenberg [11], Lang [12], and Prakash [15].

Definition 2.1. [9] A curve on a differentiable manifold M is a smooth map γ from some
interval (−ϵ, ϵ) of the real line to M .

Definition 2.2. [9] A tangent vector on a curve γ at a point y of M is

γ̇y : C∞(M) → R, f 7−→ γ̇y(f) ≡
d

dt
(foγ)|y

Definition 2.3. [9] The set of all tangent vectors at point y ∈ M is defined as the tangent
space at y denoted by TyM .

Definition 2.4. [7] Let M be a differentiable manifold. Let TyM denote the tangent space
to M at y. Then

TM =
∪
y∈M

TyM

be the tangent bundle of M .

Let M be a smooth manifold modelled on a Hilbert space H, either finite or infinite
dimensional, endowed with a Riemannian metric fy(., .) on the tangent space TyM ∼= H.
Then, we have a smooth inner product to each tangent space, written as

fy(u, v) = ⟨u, v⟩y, for all u, v ∈ TyM

Therefore, M is now a Riemmanian manifold.

Definition 2.5. [9] A manifold whose tangent spaces are endowed with a smooth varying
inner product with respect to a point y of M is called a Riemannian manifold. The smoothly
varying inner product, denoted as ⟨ξy, ζy⟩ for every two elements of TyM , is called a Rie-
mannian metric. If M is a smooth manifold, then there exist always Riemannian metrices
on M .

Definition 2.6. [7] Let f : M → R be a differentiable function. The differential of f at y,
namely dfy : TyM → R, is given by

dfy(v) = df(y)v, v ∈ TyM,

and for the Riemannian manifold (M, ⟨., .⟩) by
dfy(v) = ⟨df(y), v⟩y, v ∈ TyM,

where ⟨., .⟩ is the Riemannian metric.



Pseudoinvex Functions on Riemannian Manifolds 57

Throughout this paper, let M be a Riemannian manifold and f : M → R be a
differentiable function and η : M ×M → TM be a function such that for every x, y ∈ M ,
η(x, y) ∈ TyM.

The function f is said to be invex with respect to η on M , if for all x, y ∈ M , we have

f(x)− f(y) ≥ dfy(η(x, y)).

The function f is said to be incave with respect to η on M , if for all x, y ∈ M , we have

f(x)− f(y) ≤ dfy(η(x, y)).

Moreover, the function f is affine with respect to η on M , if for all x, y ∈ M , we have

f(x)− f(y) = dfy(η(x, y)).

Further, we introduce the following classes of generalized invex functions :
The function f is said to be pseudoinvex with respect to η on M , if for all x, y ∈ M ,

we have

dfy(η(x, y)) ≥ 0 =⇒ f(x) ≥ f(y).

Again f is said to be strictly pseudoinvex with respect to η on M , if for all x, y ∈ M with
x ̸= y, we have

dfy(η(x, y)) ≥ 0 =⇒ f(x) > f(y).

The function f is said to be quasiinvex with respect to η on M , if for all x, y ∈ M , we have

f(x) ≤ f(y) =⇒ dfy(η(x, y)) ≤ 0.

3. Sufficient Optimality

Consider the nonlinear fractional programming problem on a Riemannian manifold
M :

(FP) min f(x)
g(x)

subject to h(x) ≤ 0, x ∈ M,
where f ,g and h all are defined and differentiable functions on M.
f, g : M → R be real-valued functions and h : M → Rm be an m-dimensional vector-valued
function.

We need the following interesting results for sufficient optimality conditions.

Theorem 3.1. Consider the ratio z(x) = f(x)
g(x) , where f and g are differentiable functions

defined on an open Riemannian manifold M .
(i) If f is invex, and g is positive and affine, then z is pseudoinvex;
(ii) If f is non-negative and invex, and g is positive and incave, then z is pseudoinvex;
(iii) If f is positive and strictly invex, and g is positive and incave, then z is strictly pseu-
doinvex;
(iv) If f is non-negative and invex, and g is positive and strictly incave, then z is strictly
pseudoinvex;
(v) If f is negative and strictly invex, g is positive and invex, then z is strictly pseudoinvex;
(vi) If f is negative and invex, g is positive and strictly invex, then z is strictly pseudoinvex.

Proof. (i) Since f is invex, then for all x, y ∈ M , we have

f(x)− f(y) ≥ dfy(η(x, y)). (1)

Again g is affine, then for all x, y ∈ M , we have

g(x)− g(y) = dgy(η(x, y)). (2)

To show z = f
g is pseudoinvex.
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Suppose,

d

(
f

g

)
y

(η(x, y)) ≥ 0, for all x, y ∈ M.[
g(y)dfy − f(y)dgy

(g(y))2

]
(η(x, y)) ≥ 0,[

dfy
g(y)

− f(y)dgy
(g(y))2

]
(η(x, y)) ≥ 0,

1

g(y)
dfy(η(x, y))−

f(y)

(g(y))2
dgy(η(x, y)) ≥ 0.

Since g is positive, therefore

dfy(η(x, y)) ≥
f(y)

g(y)
dgy(η(x, y)),

f(x)− f(y) ≥ dfy(η(x, y)) ≥
f(y)

g(y)
(g(x)− g(y)), (by (1) and (2))

f(x)− f(y) ≥ f(y)

g(y)
(g(x)− g(y)),

f(x)g(y)− f(y)g(y) ≥ f(y)g(x)− f(y)g(y),

f(x)g(y) ≥ f(y)g(x),

f(x)

g(x)
≥ f(y)

g(y)
.

Therefore, f
g is pseudoinvex on M .

(v) Since f is negative, let f = −k.
Again f is strictly invex, then for all x, y ∈ M , we have

f(x)− f(y) > dfy(η(x, y)),

−k(x) + k(y) > d(−k)y(η(x, y)),

−k(x) + k(y) > −dky(η(x, y)),

k(x)− k(y) < dky(η(x, y)). (3)

Now g is invex, then for all x, y ∈ M , we have

g(x)− g(y) ≥ dgy(η(x, y)). (4)

To show z = f
g is strictly pseudoinvex.

Suppose,

d

(
f

g

)
y

(η(x, y)) ≥ 0, for all x, y ∈ M with x ̸= y.

d

(
−k

g

)
y

(η(x, y)) ≥ 0,[
−g(y)dky + k(y)dgy

(g(y))2

]
(η(x, y)) ≥ 0,[

−dky
g(y)

+
k(y)dgy
(g(y))2

]
(η(x, y)) ≥ 0,

− 1

g(y)
dky(η(x, y)) +

k(y)

(g(y))2
dgy(η(x, y)) ≥ 0.
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Since g is positive, therefore

k(y)

g(y)
dgy(η(x, y)) ≥ dky(η(x, y)),

k(y)

g(y)
(g(x)− g(y)) ≥ k(y)

g(y)
dgy(η(x, y)) ≥ dky(η(x, y)) > (k(x)− k(y)), (by (3) and (4))

k(y)

g(y)
(g(x)− g(y)) > (k(x)− k(y)),

k(y)g(x)− k(y)g(y) > k(x)g(y)− k(y)g(y),

k(y)g(x) > k(x)g(y).

Put k = −f in above we get,

−f(y)g(x) > −f(x)g(y),

f(x)g(y) > f(y)g(x),

f(x)

g(x)
>

f(y)

g(y)
.

Therefore, f
g is strictly pseudoinvex on M . �

Remaining parts can be proved on the lines of similar arguments.

Remark 3.1. A particular case of the above results given by Cambini and Martein [2] is
as follows :

Theorem 3.2. Consider the ratio z(x) = f(x)
g(x) , where f and g are differentiable functions

defined on an open convex set X ⊆ Rn.
(i) If f is convex, and g is positive and affine, then z is pseudoconvex;
(ii) If f is non-negative and convex, and g is positive and concave, then z is pseudoconvex;
(iii) If f is positive and strictly convex, and g is positive and concave, then z is strictly
pseudoconvex;
(iv) If f is non-negative and convex, and g is positive and strictly concave, then z is strictly
pseudoconvex;
(v) If f is negative and strictly convex, g is positive and convex, then z is strictly pseudo-
convex;
(vi) If f is negative and convex, g is positive and strictly convex, then z is strictly pseudo-
convex.

Example 3.1. Define z(x) : M → R, by

z(x) =
x2 + x+ 4

x+ 5
, x+ 5 > 0, x ∈ M.

To show z is pseudoinvex with respect to η(x, y) = x− y.
Let f(x) = x2 + x+ 4. Then for all x, y ∈ M , we have

f(x)− f(y)− ⟨dfy, η(x, y)⟩y = (x2 − y2) + (x− y)− ⟨2y + 1, x− y⟩
= (x− y)(x+ y + 1− 2y − 1)

= (x− y)2 ≥ 0,

which is always true.
Therefore,
f(x)− f(y)− ⟨dfy, η(x, y)⟩y ≥ 0.
Therefore, f(x) is invex with respect to η(x, y) on M.
Let g(x) = x+ 5, x+ 5 > 0.
Since g(x) is composition of a linear function and a constant so g(x) is an affine function.
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Now g(x) is positive and affine function with respect to η(x, y) on M .

Therefore, z = f
g is pseudoinvex function with respect to η(x, y) = x− y on M .

The following constraint qualification [9] will be needed in the sequel :
Let D be the set of all feasible solutions of (FP). Let x̄ ∈ D be an optimal solution of (FP)
and we define the set

J0 = {j ∈ 1, ...,m : hj(x̄) = 0}.
Suppose that the domain D satisfies the following constraint qualification at x̄ :

R(x̄) : ∃v ∈ TM : d(hJ0)x̄(v) ≤ 0,

where d(hJ0)x̄(v) is the vector components of d(hj)x̄(v), ∀j ∈ J0, taken in increasing order
of j.

Remark 3.2. If a feasible point x0 ∈ M be an optimal solution of the problem (FP) and
satisfies the constraint qualification R(x̄), then the following Kuhn-Tucker conditions are
necessary for (FP) :

d

(
f

g

)
x0

(η(x, x0)) + λ0T dhx0(η(x, x0)) = 0, (5)

λ0T h(x0) = 0, (6)

λ0 ≥ 0. (7)

Further, the next theorem proves that if the functions in (FP) are under suitable invexity,
then the conditions (5)-(7) are sufficient for optimality.

Theorem 3.3. Suppose that x0∈M be feasible for (FP), and that the Kuhn-Tucker condi-
tions (5)-(7) are satisfied at x0. Let f be invex, g be positive and affine and h be quasiinvex
with respect to η on M. Then x0 is a minimum for (FP).

Proof. Let x0 be a feasible point for problem (FP).
Since f be invex, g be positive and affine with respect to η on M, then by Theorem (3.1),
f
g be pseudoinvex with respect to η on M .

Since h be quasiinvex with respect to η on M , then for all x, x0 ∈ M , we have

h(x)− h(x0) ≤ 0 =⇒ dhx0(η(x, x0)) ≤ 0,

=⇒ λ0T dhx0(η(x, x0)) ≤ 0, (since λ0 ≥ 0)

=⇒ −d
(
f
g

)
x0(η(x, x

0)) ≤ 0, (by (5))

=⇒ d
(
f
g

)
x0(η(x, x

0)) ≥ 0.

Using pseudoinvexity of f
g with respect to η on M, we have

f(x)

g(x)
≥ f(x0)

g(x0)
.

Therefore, x0 is a global minimum. �
Remark 3.3. It should be observed that Khan and Hanson [10] noticed that the frac-
tional programming problem is an invex problem but under weaker assumptions our above
results show that (FP) is also a pseudoinvex problem on Riemannian manifolds under ap-
propriate assumptions of pseudoinvexity of the objective function and of quasiinvexity of
the constraints. Therefore our result is stronger than that of Khan and Hanson [10].
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4. Duality Results

Consider the following Mond-Weir dual model for (FP) :

(FD) max f(v)
g(v)

subject to d

(
f

g

)
v

(η(x0, v)) + λT dhv(η(x
0, v)) = 0, (8)

λTh(v) = 0, (9)

λ ≥ 0. (10)

Theorem 4.1. (Weak duality) Let x0 be feasible for primal problem (FP) and v be feasible
for dual problem (FD) then

f(x0)

g(x0)
≥ f(v)

g(v)
.

Proof. Since x0 be feasible for (FP) and (v, λ) be feasible for (FD), then the above Kuhn-
Tucker conditions (8)-(10) hold.
Since h be quasiinvex with respect to η on M , then for all x0, v ∈ M , we have

h(x0)− h(v) ≤ 0 =⇒ dhv(η(x
0, v)) ≤ 0,

=⇒ λT dhv(η(x
0, v)) ≤ 0, (since λ ≥ 0)

=⇒ −d
(
f
g

)
v
(η(x0, v)) ≤ 0, (by (8))

=⇒ d
(
f
g

)
v
(η(x0, v)) ≥ 0.

By the pseudoinvexity of f
g with respect to η on M, we have

f(x0)

g(x0)
≥ f(v)

g(v)
.

�

Remark 4.1. In the following, suppose the functions f be invex, g be positive and affine
with respect to η(x0, v) on M , then f

g be pseudoinvex (according to Theorem 3.1) with

respect to η(x0, v) on M , so λTh(.);λ ≥ 0 is pseudoinvex with respect to η(x0, v) on M .

Theorem 4.2. (Strong duality) Under the Kuhn-Tucker conditions, suppose x0 be mini-
mal for (FP) then there exists 0 ≤ λ0 ∈ Rn such that (x0, λ0) be maximal for (FD) and the
optimal values of (FP) and (FD) are equal.

Proof. Let any vector (v, λ) also satisfies the constraints of (FD), then (v, λ) satisfies the
Kuhn-Tucker conditions as follows :

d

(
f

g

)
v

(η(x0, v)) + λT dhv(η(x
0, v)) = 0, (11)

λTh(v) = 0, (12)

λ ≥ 0. (13)

To prove (x0, λ0) is maximal for (FD), we have to show

f(x0)

g(x0)
− f(v)

g(v)
≥ 0.

Since h be quasiinvex with respect to η(x0, v) on M, then we have

h(x0)− h(v) ≤ 0 =⇒ dhv(η(x
0, v)) ≤ 0,
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=⇒ λT dhv(η(x
0, v)) ≤ 0, (by (13))

=⇒ −λT dhv(η(x
0, v)) ≥ 0. (14)

From the constraint (12), we have

d
(
f
g

)
v
(η(x0, v)) ≥ d

(
f
g

)
v
(η(x0, v))− λTh(v),

≥ −λT dhv(η(x
0, v))− λTh(v), (from (11))

≥ −λTh(v), (from (14))

≥ −λTh(x0),

(since λTh(.) is pseudoinvex with respect to η(x0, v) on M)
Therefore,

d

(
f

g

)
v

(η(x0, v)) ≥ 0,

since h(x0) ≤ 0 and by using (13).

By the pseudoinvexity of f
g with respect to η(x0, v) on M, we have

f(x0)

g(x0)
− f(v)

g(v)
≥ 0.

Therefore, (x0, λ0) is maximal for (FD) and objective values are equal in both problems. �

Theorem 4.3. (Converse duality) If (x0, λ0) be maximal for (FD) and a dual constraint
qualification R(x̄) be satisfied at (x0, λ0), then x0 be minimal for (FP).

Proof. Since a constraint qualification R(x̄) be satisfied at x0, then the following Kuhn-
Tucker conditions hold at (x0, λ0), i.e.

d

(
f

g

)
x0

(η(x, x0)) + λ0T dhx0(η(x, x0)) = 0, (15)

λ0T h(x0) = 0, (16)

λ0 ≥ 0. (17)

Since h be quasiinvex with respect to η(x, x0) on M, therefore

h(x)− h(x0) ≤ 0 =⇒ dhx0(η(x, x0)) ≤ 0,

=⇒ λ0T dhx0(η(x, x0)) ≤ 0, (by (17))

=⇒ −λ0T dhx0(η(x, x0)) ≥ 0. (18)

Since λ0T h(.) be pseudoinvex with respect to η(x, x0) on M , therefore

λ0T dhx0(η(x, x0)) ≥ 0 =⇒ λ0T h(x) ≥ λ0T h(x0),

=⇒ λ0T h(x0)− λ0T h(x) ≤ 0. (19)

For any x ∈ M, satisfying the constraints of (FP), we have

d

(
f

g

)
x0

(η(x, x0)) = −λ0T dhx0(η(x, x0)), (by (15))

≥ −λ0T dhx0(η(x, x0)) + λ0T h(x0)− λ0T h(x),
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(using (19))

≥ −λ0T h(x), (by (16) and (18)).

Therefore,

d

(
f

g

)
x0

(η(x, x0)) ≥ 0, being h(x) ≤ 0 and by (17).

Since f
g be pseudoinvex with respect to η(x, x0) on M, then we have

f(x)

g(x)
− f(x0)

g(x0)
≥ 0.

Hence, x0 is minimum for (FP). �

Remark 4.2. Khan and Hanson [10] gave similar results assuming that f is invex, g is
positive and incave but under weaker assumptions on Riemannian manifolds that f is invex,
g is positive and affine our objective function is a generalization of objective function of
Khan and Hanson [10]. Therefore our duality results are more general than that of Khan
and Hanson [10].

5. Conclusions

We obtained pseudoinvex functions from the ratio of invex and related functions to
an affine and some other generalized invex functions on Riemannian manifolds. Again,
we consider the nonlinear fractional programming problems and established the sufficient
optimality conditions and duality theorems under appropriate assumptions of pseudoinvexity
of the objective function and of quasiinvexity of the constraints on Riemannian manifolds.
In this way under weaker assumptions our optimality and duality results are more general.
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