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MINIMIZATION PROBLEM OF A VARIATIONAL INEQUALITY
ON A FAMILY OF SET-VALUED MAPPINGS

Mohammad Eslamian!, Kourosh Nourouzi?

In this paper we propose a new iterative scheme for a finite family of
quasi-nonexpansive set-valued mappings by the general viscosity iterative method.
We establish the strong convergence for the iterative scheme to prove the existence
of a unique solution for the variational inequality which is the optimality condition
for the minimization problem. Our results generalize and improve some results of
Xu (2003) and Marino, Xu (2006).
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1. Introduction

Let A be a strongly positive bounded linear operator on a real Hilbert space
H, that is, there exists 7 > 0 such that

(Az,z) > 7|z, (z € H).

For a nonexpansive mapping 7" from a nonempty subset C' of H into itself (||Tx —
Ty| < || — yl|, for each z,y € C), a typical problem is to minimize the quadratic
function

.1

over the set of all fixed points F(T') of T'. In 2003, Xu [1] showed that the sequence
{z,,} defined by the iterative method

Tn41 = (I - OlnA)Tl‘n + an o, (TL > 0)7 (12)

with the initial guess xg € H converges strongly to the unique solution of the mini-
mization problem (1.1) provided that the sequence {«;,} satisfies certain conditions.

The viscosity approximation method for nonexpansive mappings was given in
[2] and followed in [3] . More precisely, for a contraction f on H, starting with an
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arbitrary initial point z¢ € H, define a sequence {x,} recursively by
Tn+1 = (1 - Un)Txn + O'nf(xn)a (n > 0) (1'3)

where {0} is a sequence in (0,1). It is proved that under certain appropriate con-
ditions imposed on {o,}, the sequence {z,} generated by (1.3) strongly converges
to the unique solution z* of the variational inequality

(I-fla*,x—a) >0, (x € F(T)).

A combination of the iterative method (1.2) with the viscosity approximation (1.3)
is given in [4] via considering the general iterative method

Tnt1 = apyf(xn) + (I — anA)Txy, (n>0). (1.4)

It is shown that if the sequence {a,} of parameters satisfies appropriate conditions,
then the sequence {x,} generated by (1.4) converges strongly to the unique solution
of the variational inequality

((A=qf)z*,x —a%) >0, (z € F(T))
which is the optimality condition for the minimization problem
1
xénFl(nT) §<Ax, x) — h(x),

where h is a potential function for v f (i.e., h'(z) = vf(x), for every z € H).

Also, recently Yao and Postolache [5] presented a new iterative methods for
variational inequalities and fixed point problems. In recent years, the methods
of approximating of fixed points of set-valued nonexpansive mappings have been
studied by many authors (see, for example, [6-10] and the references therein).

In this paper we introduce a new iterative process by the general viscosity
iterative method for a finite family of quasi-nonexpansive set-valued mappings. We
prove the strong convergence for the iterative process to prove the existence of a
unique solution for the variational inequality which is the optimality condition for
the minimization problem. Our results in this paper are new even for single valued
mappings and generalize and improve some results of Xu [1], and Marino, Xu [4].

We start with some preliminaries which will be needed in this paper. Through-
out the paper H will denote a real Hilbert space and C' denote a nonempty closed,
convex subset of H, unless otherwise stated. We will write x,, — = (x,, = x,resp.)
if {x,,} converges strongly (weakly, resp.) to z. For every element x € H there exists
a unique nearest point Pox in C' such that ||z — Poz|| < ||l — y||, for each y € C.
The metric projection Po of H onto C' is a nonexpansive mapping. It is known that
H satisfies Opial’s condition, i.e., for any sequence {z,,} with z,, — x the inequality

liminf ||z, — z|| < liminf ||z, — y||
n—-—ao0 n—aoo
holds for every y € H with y # «.

Lemma 1. ([4]) Ifx € H and z € C, then z = Pox if and only if (x —z,y—z) <0,
for each y € C.
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Lemma 2. ([11]) For eachx1, -+ ,xm € H and o, -+ , a4y € [0,1] with > a; =1
the equality

m
lonzy + oo+ o =Y aillzil? = D syl — )l
i=1 1<i<j<m

holds.

Lemma 3. ([1]) Let {v.} be a sequence in (0,1) and {5,} be a sequence in R
satisfying

(i) X021 = o0,
(ii) Hmsup,,_,oo 6n <0 0or > 02 |ymdn| < .

If {an} is a sequence of nonnegative real numbers such that
An+41 < (1 - ’Vn)an + 7n5n7

for each n > 0, then lim,,__, a, = 0.

Lemma 4. ([4]) Suppose that A is a strongly positive linear bounded operator on H
with coefficient 57 > 0 and 0 < p < ||A||7Y. Then ||I — pAl| < 1 — p7.

Lemma 5. ([12]) Let {uy,} be a sequence of real numbers that does not decrease at
infinity in the sense that there exists a subsequence {un,} of {un} such that u,, <
Up,+1 for all i > 0. For every n > ng, define an integer sequence {T(n)} by

T(n) = max{k <n:up < ugy1}.
Then 7(n) — 00 as n — 00 and max{u,(n), Un} < Ur(n)41, fOT every n > no.

A subset C' C H is called proximinal if for each x € H there exists an element
y € C such that
| z—y||=dist(z,C) =inf{|z—z|: z € C}.

We denote by CB(C), K(C) and P(C) the collection of all nonempty closed bounded
subsets, nonempty compact subsets, and nonempty proximinal bounded subsets of
C, respectively. The Hausdorff metric h on CB(H) is defined by

h(A, B) := max{sup dist(x, B),sup dist(y, A)},
€A yeB
for all A, B € CB(H).

For a set-valued mapping T : H — 2" an element « € H is said to be a fixed
point of T"if z € Tx. The set of all fixed points of T" will be denoted by F(T).

Definition 1.1. A set-valued mapping 7' : H — CB(H) is called
(i) nonexpansive if
h(Tvay) < Hx_y”a (.’L‘,yEH).

(ii) quasi-nonexpansive if F(T') # 0 and h(Tz,Tp) < ||z — p|| for every x € H and
p e F(T).
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Definition 1.2. Let T : C — CB(C) be a set-valued mapping. The mapping
I — T is said to be demiclosed at zero if for any sequence {z,} in C, the conditions
xp — x and lim, o dist(xy, Txy) = 0, imply = € Tz.

2. General iterative process

Let T : C — C be a quasi-nonexpansive mapping. Itoh and Takahashi [13]
showed that the set of all fixed points F(T) is closed and convex. Now we have the
following generalization in the setting of set-valued mappings.

Lemma 6. Let T : C — P(C) be a set-valued mapping such that Pr is quasi-
nonexpansive, where Pr(z) = {y € Tz : ||z — y|| = dist(z,Tx)}. Then F(T) is
closed and convez.

Proof. Let {p,} be a sequence in F(T) such that p, — z as n — oco. Since
Prp, = {pn} and Pr is quasi-nonexpansive, we have
dist(z, Prz) <d(z,pn) + dist(py, Prz)
<d(z,pn) + b(Prpn, Prz)

<2d(z,pn) — 0, n — oo.

This implies that z is a fixed point of 7. To see that why F(T) is convex, let
z,y € F(T), « € [0,1] and z = ax + (1 — a)y. Since Prxz = {z} and Pry = {y}, if
w € Prz, then we have
lw = 2| =lle(w — @) + (1 — &) (w — y)||?

=allw—z[* + (1 - a)|w -yl - al - )|z — y|?

=a - dist(w, Prz)? + (1 — a) - dist(w, Pry)? — a(1 — a)||z — y||?

< a-h(Prz, Prz)* + (1 —a) - b(Prz, Pry)* — a(l - a)llz — y|?
<alz—z[?+ (1 - a)z -yl - al - )]z — y|?
<a(l-a)lly—z|* + (1 - a)a?|z -yl — a(l - a)llz — y|?
a(l—a)1—a+a—1)z—y|2=0.

Therefore z = w € Prz C T(z) and so z € F(T). O

Lemma 7. Let T : C — K(C) be a set-valued mapping such that Pr is nonexpan-
swe. If x, = w and lim,,__,~ dist(x,, Prz,) =0, then w € Tw.

Proof. For each n > 1, we can choose y,, € Prw such that ||z, —y,|| = dist(z,, Prw).
Since Prw is compact, the sequence {y,} has a convergent subsequence {yy, } with
limy o0 Yn,, = v € Prw. Now
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Hxnk - UH < Hx”k - ynk” + Hy”k - UH
:diSt(l‘nkv PTw) + Hynk - UH
SdiSt(xnkv PTx”k) + b<PTxnk7 PTw) + ”ynk - UH

<dist(tny, Prn,) + [[2n, —w| + [[yn, =],

for each k. Therefore

limsup ||zy, — v|| < limsup ||z, — w|.
k— o0 k—o0

Since H satisfies the Opial property, we get w = v € Prw C Tw, i.e., w € F(T). O

Now we present an example of a set-valued mapping such that Pr is quasi-
nonexpansive, but T is not quasi-nonexpansive.

Example 1. Let [ = [0,1], H = L?>(I), and C = {f € H : f(z) > 0,Vz € I}. Let
T :C — CB(C) be defined by
T(f)={9€C: f(z) <g(z) <2 f(z)}.

Then we have

Pr(f) ={g € T(f),llg = fll2 = dist(T(f), /)} = {f}
and hence
h(Pr(fi), Pr(f2) < |fi = fall2, (f1, f2 € C).
Therefore Pr is quasi-nonexpansive. Now putting fi = 0 and fo = 1 we have
T(fi)=0and T(fz) ={g € C:1 < g(x) <2}. Hence
b(T0,T1) = |22 =2>1=0— 1|2,
which shows that T is not quasi-nonexpansive.

Now we give the main result.

Theorem 2.1. Let T; : C — K(C), i = 1,2,...,m be a finite family of set-valued
mappings such that for each 1 < i < m, Pr, is quasi-nonexpansive and I — Pr, is
demiclosed at zero. Let F = (i~ F(T;) # 0. Suppose that f is a contraction from
H into itself with constant b € (0,1) and A is a strongly positive bounded linear
operator on H with coefficient 7 and 0 < v < %. Let {x,} be a sequence generated
by an arbitrary xo € C and

{yn = bn,Oxn + bn,lzn,l + bn,2zn,2 + ...+ bn,mzn,mu (2 1)

Tl = QY f2n + (I - anA)yna
for every n > 0, where Y ;" bn; = 1, zn; € Pr(z,) and the sequences {a,} and
{bn i} satisfy the following conditions:

(i) an C (0,1), limy,—so0 an =0, D00 | an = 00,
(ii) {bni} C e, 1) C(0,1),i=0,1,...,m.
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Then, the sequence {x,} converges strongly to q € F which solves the variational
nequality

(A=~f)g,x —q) >0, (z € F). (2.2)

Proof. By Lemma 2.1 each F(T;) is closed and convex, so the projection Pr is well-
defined. Putting Q) = Pr, we show that Q( — A+ ~f) is a contraction from C into
itself. In fact, for any =,y € C' we have

1QU = A+~f)(x) = QU = A+~1f) W) <[ = A+~f)(2) = (I = A+ /)yl
<[ = Az — (I = Dyl +~llfz = fyl
<=z =yl +bllz -y
<A -=@F =)z =yl

So there exists a unique element ¢ € C such that ¢ = Pr(I — A + ~vf)q, which by
Lemma 1.1 is equivalent to

(I=A+~f)g—q,q—p) >0 (p € F).

Since lim, ;oo a, = 0, we can assume that a, € (0, | A4]~!), for all n > 0. By
Lemma 1.4 we have || — a,A|| < 1 — a,7. Now we show that {x,} is bounded.
Choose p € F. Since for each 1 <1i <m, Pr, is quasi-nonexpansive we have

Hyn - pH #bn,oxn + bn,lzn,l + bn,QZn,Q + ... + bn,mzn,m - pH
22 = Pl + o+ bnml[Znm — Pl

:bn,OHxn - pH + bn,len,l - pH + bn,2

<bpollzn — pll + bn,1 dist(zn,1, Pryp) + bn2 dist(zn2, Pr,p) + .... (2.3)
+  bnm dist(zn,m, Pr,,p)
S bn,OHxn - p” + bn,lh(PTlxna PTlp) + bn,2b(PT2xn7 PTgp) + ... (24)

+  bnmb(Pr,,xn, Pr,,p)

<bnollzn —pll + bnallzn — pll + bn2llzn — pll + .. 4+ bogm|lzn — Dl

<llzn —pll, (2.5)

and
lTni1 —pll = llan(vfrn — Ap) + (I — anA)(yn — p)||

<an|yfon = Apll + 1 — anAll[[yn — pll
<ap|vfen — Apll + (1 — an¥)|lzn — p|
<any|[fon — ol + anllvfp — Apll + (1 = @) ||z — pl|
<apybl|zn — pll + anllvfp — Apll + (1 — an?¥)|lzn — pl|
<1 = an(¥ =) ||lzn — pll + anllvfp — Apl|

= (1= an(7 = ) wn — pll + an (5 — yb) 1252
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It follows, by induction, that

| |v.fp— APH}
b) 7—"}/[) .

Next, we show that for i = 1,2,...,m, lim,_,o dist(xy,, Pr,x,) = 0. Indeed, using

[2n = pll < max{|[zo — p|

Lemma 1.2, for p € F we have
lyn — p|*> = br,0%n + bp 1201 + bu2zna + ... + bpmZn,m — p||?

<bnollzn = plI* + buillzng = plI* + baallzn2 = plI?
+ oo+ bl znm — PII2 = Yoy bnobnil|Tn — 20l
<bpollzn — pl|* + b dist(zn1, Pryp)* + bn2 dist(zn2, Pr,p)?
+ oo+ by dist(zn,m, Pr.p)? — ot bpobnillzn — Zn,i||2
<bnollzn — plI> + b1 b(Pry 20, Pryp)? + bp2b(Pry2n, Pryp)?
+ oo + b (Pr, T, P, p)? — S0 bpobnillzn — 20|
<bnollzn = plI? + b llzn — plI* + bnllzn — pl?
+ oot bl @n = plI? = Y20 bobn

<lwn = pI* = 3231 boobnillzn — 2nil

|20 = zni®

2

Hence for i = 1,2, ..., m, we have

[2ni1 = pl* = llan(vf2zn — Ap) + (I — anA)(yn — p)|?
<apllvfen — Apll* + (1 = an¥)*lyn — plI* + 2an(1 — an¥) |7 f20 — Apll||yn — pll
<apllyfen — Apll? + (1 = an¥)?|lzn — plI* + 200 (1 — an¥) |y f2n — Apllllzn — pl|
— (1 = an¥)bn,0bn,i

T _Zn,iH2-

Therefore
(1 = anM)bn,obnillen = znil®  <llzn —plI? = 204 — pll?
+2an(1 = ap¥) |V f2n — Ap|||n — pll + a3 |1y frn — Apl*.
(2.6)
In order to prove that x,, — ¢ as n — oo, we consider two possible cases.
Case 1. Assume that {||z, — ¢||} is a monotone sequence. In other words,
for ng large enough, {||z,, — q||}n>n, is either nondecreasing or nonincreasing. Since

{||zn, — ¢l||} is bounded, it is convergent. Since lim, o a, = 0 and {fz,}, {z,} are
bounded, from (2.6) we have

lim (1 - anﬁ)bn,obn,i”xn - ZTMHQ =0,
n—m-—ao0
and by the assumption we get

lim ||z, — 2p4|| = 0.
n——~oo
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Hence for i = 1,2, ..., m, we have
lim dist(xy, Pryxy) < ||2n — 2nil| — 0, n — oo.
Next, we show that
lim supn—so0((A —7f)¢, g — 25) < 0.
To show this inequality, we choose a subsequence {zy,} of {z,} such that
Jim (A =7f)g, g = @n,) = limsupn—oo((A = 7f)a, 4 = @n).

Since {x,,} is bounded, there exists a subsequence {fmj} of {zp,} which converges
weakly to w. Without loss of generality, we can assume that x,, — w. Since I — Pr,
is demiclosed at zero, we have w € F. Since ¢ = Pr(I — A+ ~f)q and w € F, by
Lemma 1.1 it follows that
lim supn—oo{(A=7f)q, g —ap) = lim (A=7f)q,¢—zn;) = (A=7f)q,¢—w) < 0.
From

Tn1 — q = an(vfrn — Agq) + (I — anA)(yn — q),
and (2.3), we have

[znt1 =l < = and)(yn — QI + 2an(yfrn — Ag, 2ny1 — q)
< (1= ap7)?||zn — ql* + 2007 (frn — fq, 21 — @) + 2a0(yfq — A, Tnt1 — q)

IN

1= any)?[lzn — ql* + 2anbyl|zn — qll|zns1 — all + 2an(vfq — Ag, 2ns1 — q)

IN

(
(1= an¥)?llzn — all* + anby(|2n — q|l* + [|2n41 — all®) + 2an(vfq — Aq, Tni1 — q)
(

IN

(1 = an¥)? + anby) |20 — ql* + anVbl2ns1 — qll* + 2an(vfq — Aq, 2ns1 — ).

This implies that

1—2an5+(an7)% +anvyb -
|2n i1 — g2 < A2eTHGTRO 0 g2 4 20 (y fg — A, ani1 — q)
b n n n
=(1— A g, — g2+ 1“ajﬁbllwn —all? + 2 (vfa — Ad,2pp — q)
b n b n n M
<(1 - 2200 ||y, — g2 + 220 (G 4 L)y fg — Ag, s — )
=(1 =)z _qH + Yn0n,
where ( )
2 Y- '7b Qn
M = —q|?:n >0}, =20
sup{||lzn — ql|* : n > 0} = ab
and )
(an7?)M 1
On = 57— = (vfq— Ag,zni1 —q).
"2y —b) A —Ab "

It is easily seen that v, — 0, 02, v, = oo and limsup,__,. 6, < 0. Hence, by
Lemma 1.3 the sequence {z,} converges strongly to q.
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Case 2. Assume that {||z,, — ¢||} is not a monotone sequence. Then, we can
define an integer sequence {7(n)} for all n > ny (for some ng large enough) by
7(n) =max{k € N;k <n:|xp —q| < ||lzxg+1 — ql|}-
Clearly, 7 is a nondecreasing sequence such that 7(n) — oo as n — oo and for all
n > no,
ey = all < %7 my+1 —all-
From (2.6) we obtain that

nh—>rn<>o ||x7'(n) - ZT(n),iH = 0.

Following an argument similar to that in Case 1 we have
limsup(f(q) = ¢ T7(ny+1 — q) < 0.
n——ao0

And by similar argument we have

||x7'(n)+1 - qH2 < (1 - nT(n))HxT(n) - q”2 + nT(n)(ST(n)v
where 7., — 0, Sy Nr(n) = 00 and limsup,,_,,, 6,y < 0. Hence, by Lemma
1.3, we obtain lim,, e [|27() —¢|| = 0 and limy, o |2 (5)41 —¢[| = 0. Now Lemma
1.5 implies

0 < flzn — gl < max{{|lz-) —gll, lzn —gqll} < 27011 —all
Therefore {x,} converges strongly to ¢ = Pr(I — A+ ~f)q. O
A mapping T : C — CB(C) is *-nonexpansive [14] if for every z,y € C
and u, € Tx with d(z,u,) = inf{d(x,2) : 2 € Tz}, there exists u, € Ty with
d(y,uy) = inf{d(y,w) : w € Ty} such that
d(uxvuy) < d(l‘,y)

It is not hard to see that if T is x-nonexpansive, then Pr is nonexpansive. It should
be mentioned that the x-nonexpansiveness is different from the nonexpansiveness
for set-valued mappings, (see [15, 16, 17] for details).

Corollary 1. LetT; : C — K(C), i =1,2,...,m, be a finite family of x-nonexpansive
set-valued mappings. Let F = (-, F(T;) # 0. Assume that f is a contraction from
H into itself with constant b € (0,1) and A is a strongly positive bounded linear
operator on H with coefficient 7 and 0 < v < % Let {x,} be a sequence generated
by an arbitrary element xo € C' and

{yn = bno0Tn + bn12n1 + bp22n2 + ..o + by mznm,
Tpt1 = anVfTn + (I — anA)yn,
for all n > 0, where Y " bp; = 1, zn; € Pr,(xn) and {an},{bn;} satisfy the
following conditions:

(i) an C (0,1), limy,—so0 an =0, D07 | apn = 00,

(i) {bni} Cle,1) € (0,1),i=0,1,...,m.
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Then, the sequence {x,} converges strongly to q € F which solves the variational
inequality (2.2).

Proof. Since each T; is x-nonexpansive, so Pr, is nonexpansive, for every ¢, 1 <i <
m. By Lemma 2.2, each mapping I — Pr, is demiclosed at zero. Now by using
Theorem 2.4, we easily obtain the desired result. O

In Theorem 2.4, if we assume that each T;, for i = 1,2, ...,m is single-valued
and put v =1, A = I, we obtain the following corollary.

Corollary 2. LetT; : C — C,1=1,2,...,m, be a finite family of quasi-nonexpansive
mappings such that each I —T; is demiclosed at zero. Let F = ()" F(T;) # 0. As-
sume that f is a contraction from H into itself with constant b € (0,1). Let {x,} be
a sequence generated by an arbitrary element xg € C and

{yn = bn,Oxn + bn,1T1$n + bn,2T2$n + ...+ bn,me$n7

Tpy1 = A foy + (1 - an)yna
for alln >0, where Y ;" by =1, and {an}, {bn,;} satisfy the following conditions:

(i) an C (0,1), limy,— oo an =0, D07 | an = 00,

(i) {bni} Cle,1) € (0,1),i=0,1,...,m.
Then, the sequence {x,} converges strongly to q € F which solves the variational
mequality:

(¢— fg,x—q) >0, (z € F).

Remark 2.2. All the results above hold, if we assume that 1" is quasi-nonexpansive
and for all p € F(T'),T(p) = {p}.

2.1. Application

Recently, Kohsaka and Takahashi [18, 19] introduced an important class of
mappings which they called the class of nonspreading mappings. More precisely, a
mapping T : C — C' is called nonspreading if

2|Tx = Ty|? < |ITo —y|* + |Ty —2|?, (2,5 €0O).

Note that if 7" is nonespreading and F(T) # (), then T is quasi-nonexpansive and
I — T is demiclosed at zero (see [20] for details). Recently, Iemoto and Takahashi
[20] obtained some fundamental properties for nonspreading mappings in Hilbert
spaces. Now, as a conclusion of Theorem 2.4, we give the following corollary for a
finite family of nonspreading mappings and a finite family of nonexpansive mappings.

Corollary 3. LetT; : C — C, i = 1,2,...,m, be a finite family of nonexpansive
mappings and S; : C — C, i = 1,2,...,m, be a finite family of nonspreading
mappings such that F = (2, (F(T;) N F(S;)) # 0. Assume that f is a contraction
from H into itself with constant b € (0,1) and A is a strongly positive bounded linear
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operator on H with coefficient 7 and 0 < v < %. Let {x,,} be a sequence generated
by an arbitrary element xg € C' and

Yn = QnTp + 2211 Bn,iTizn + 221 Tn,iSiTn,
Tnt1 = an V[T + (I — anA)yn,

for all n > 0, where o, + Y i Bri + 2 oieyYni = 1, and {an}, {an}, {Bni} and
{Vn,i} satisfy the following conditions:

(i) an C (0,1), limy—yooan =0, > 07, ap = 00,

(i) {an}, {Bn;it {mi} C e, 1) € (0,1) fori=1,2,...,m.
Then, the sequence {x,} converges strongly to q € F which solves the variational
inequality (2.2).

Now, we supply an example to illustrate the main result of this paper.

Example 2. We consider the nonempty closed convex subset C' = [0, 3] of the
Hilbert space R. Define multivalued mappings 71,75 : C — K(C) as follows:

Ti@)=[z.5.  T)=[3

,x].

Observe that
x
Pr(z)={5}  Pn()={z}
Hence Pr, and Pr, are nonexpansive mappings. Define the contractive mapping

z) = 22 Also we define operator A(z) = Z. We see that A is a strongly positive
3 p 3 gly p
bounded linear operator on H with coefficient % We choose v = %, bni = %, (1 =

1,2,3) and a, = % Now, we have the following algorithm:
1 € C
Yn = %,
g1 = 2 B2y >

Hence we have
2z, (Bn—-1)5z, (15n—1)
x =—— 4 ——— =",
" 3n 6 18, "
We observe that for an arbitrary x; € C, z, is convergent to zero. We note that

F=F(T)NF(T) = {0}
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