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BENCHMARKING OPEN-SOURCE IMPLEMENTATIONS 

FOR ENERGY TIME SERIES FEATURE EXTRACTION 

METHOD 

Cristina NICHIFOROV1, Grigore STAMATESCU2, Stelian – Sergiu ILIESCU3 

The paper focuses on time series feature extraction technique benchmarking 

for consumer-side energy applications which can be used to build robust learning 

models for consumption forecasting and anomaly detection. More specifically we 

analyze various open-source implementations of the Matrix Profile algorithm for 

time series data mining available as software libraries written in the Python 

programming language. Several replicable benchmarking results are carried out on 

a reference large commercial building energy measurements data set while 

reporting aggregate run times in conjunction with the particularities of each 

algorithm. The work can serve as a practical guide for choosing appropriate 

algorithm implementations for new intelligent data-driven systems for smart 

building energy management. 
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1. Introduction 

Data-driven Internet of Things (IoT) systems are increasingly being 

deployed in energy systems for monitoring and control purposes [1]. Several 

reference case studies are discussed in [2] for energy-efficient scheduling in smart 

homes and wireless power transfer for IoT devices in smart cities. These systems 

have the ability of gathering large quantities of process data, both producer and 

consumer side, and performing in situ analytics to extract meaningful patterns and 

build prediction and anomaly detection models. In typical data science projects, 

the majority of the time is spent on preliminary tasks such as data cleaning and 

feature extraction/engineering, before the actual model selection, training and 

evaluation, in accordance with the business logic. To this extent any improvement 

in these early stages of a data-intensive research and development project can 

have a high impact on the quality and timeliness of the results.  

 
1 PhD Candidate and Teaching Assistant, Dept. of Automation and Industrial Informatics, 

University POLITEHNICA of Bucharest, Romania, e-mail: cristina.nichiforov@upb.ro 
2 Assoc. Prof., Dept. of Automation and Industrial Informatics, University POLITEHNICA of 

Bucharest, Romania, e-mail: grigore.stamatescu@upb.ro 
3 Prof., Dept. of Automation and Industrial Informatics, University POLITEHNICA of Bucharest, 

Romania, e-mail: iliescu.shiva@gmail.com  

mailto:iliescu.shiva@gmail.com


86                         Cristina Nichiforov, Grigore Stamatescu, Stelian – Sergiu Iliescu 

In previous work [3,4] we have focused on building machine learning 

models that leverage temporal dependencies for improving short-term load 

forecasting in large commercial buildings. For our current case study, we focus on 

benchmarking various publicly available implementations of a time series data 

mining technique, the Matrix Profile (MP) [5], for energy applications. This can 

provide useful features such as time series motifs and discords that are used in the 

early modelling stages for more robust results. In [6] we have illustrated several 

features of the MP to extract information from active power measurements of 

large commercial buildings which are prone to significant energy efficiency gains 

using intelligent IoT based systems for energy management. 

The main contribution of the current work lays in the experimental 

evaluation of the computational performance of the Matrix Profile (MP) algorithm 

as feature extraction primitive on reference commercial building energy datasets 

under the Python programming language and associated development 

environments. 

2. Methodology 

Figure 1 illustrates the steps thar are needed to compute MP for a time 

series and how MP time series can help in an energy management system. MP 

data mining technique is involved in the data analytics stage where the 

preprocessed input data is used to compute de MP which helps in data analysis by 

giving some important information about similar and unusual sequences within 

the original timeseries and by eliminating most of the redundant information 

contained in the input data. 

When it comes to consumer-side applications of energy saving and energy 

efficiency, energy management is the process of monitoring, controlling, and 

optimizing the energy consumption in a building [7]. According to the literature, 

this involves four important steps:  

1. Energy consumption metering and data collecting. 

2. Identifying opportunities to save energy and estimating how 

much energy each opportunity could save; this can be automated 

using current computational intelligence algorithms and tools. 

3. Taking action to target the opportunities to save energy; this can be 

implemented through smart building control systems that operate 

in a predictive and optimal manner. 

4. Tracking the progress by re-analyzing the data to see how well the 

energy-saving efforts have worked at the building management 

system (BMS) level. 

We can discuss the MP efficiency in terms of the significant dimension 

reduction achieved by labelling the relevant components of the energy time series 
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while avoiding full processing of the original timeseries. Considering this aspect, 

MP can be used in pattern extraction and learning for timeseries classification 

models [8] and load forecasting using different techniques. These applications can 

help in step 2 when it comes to analyzing the data to find and quantify routine 

energy waste. Looking at detailed interval load data is a good way to find patterns 

in energy waste which are inevitably found. Also, can help in investigating the 

return of investment that can be achieved by replacing wasteful building 

equipment.              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Data mining steps using energy time-series 

2.1. Matrix Profile data mining approach 

Time series are a particular type of input data since the points 

measured are related by time and analyzing them using traditional approaches 
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such as ARIMA or machine learning can often become quite difficult and 

computationally inefficient as the amount of data increase. This also requires 

specialized knowledge for identifying the appropriate model structure and 

performing adjustments. 

Lately, in the literature has been introduced a near universal time series 

data mining tool called Matrix Profile (MP) [5]. According to the authors, this 

novel approach has some important features that makes the MP algorithms 

suitable for many time series data mining tasks. The most significative features 

would be scalability, the reduced dimension of the approach, the less training 

time, data and parameter tuning required compared to other data mining 

techniques. Among the many different applications of time series data mining 

where MP has been effective there can be mentioned: timeseries data 

visualization, timeseries chain discovery, finding similar patterns among a time-

series i.e., motif detection, anomaly discovery i.e., discord detection, augmented 

timeseries motif discovery, variable-length motif discovery [9], etc. 

To introduce a short definition, giving a timeseries T, the Matrix Profile 

computed for T is a compact timeseries   that stores the z-

normalized Euclidean distance between each subsequence and its nearest 

neighbor; n is the length of T, and m is the subsequence length [5]. The z-

normalized Euclidean distance or more general p-norm, used by MP is described 

by the following formula [10]: 

                (1) 

 

where Q and T are two timeseries of length m, µ and σ represents the mean and 

standard deviation, respectively. 

   and    .                           (2) 

  The ongoing research projects propose several algorithms and libraries 

based on Matrix Profile developed using different technologies such as 

MATLAB, Python, R, Java, Kotlin, etc. In the current research there were used 

four scalable timeseries Matrix Profile algorithms: STUMP, STOMP, SCRIMP++ 

and MPX implemented in open-source libraries written in the Python 

programming language. MP efficiency is closely related to the significant 

dimension reduction achieved by labelling the relevant components of the energy 

time series while avoiding full processing of the datasets. 
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3. Results 

The current research presents the experimental results of the Matrix Profile 

approach on a building energy repository that is publicly available through 

Building Data Genome repository [11]. The datasets used for the research contain 

the active power consumption for 422 academic (after filtering out) buildings 

from U.S. and Europe. Among the datasets, there are four types of dominant 

energy usage patterns, namely: classrooms, offices, laboratories, and dormitories. 

All the data is collected over one-year period, the sampling time for each dataset 

is one hour and they consist of 8.760 data points, reporting the active power in 

kW drawn by the building at the given instant.  

3.1. Matrix Profile Analysis 

The Matrix Profile was computed for all datasets through STUMP 

algorithm from STUMPY Library [12]. STUMP is Numba JIT-compiled version 

of the STOMP algorithm that is described in [13]. Fig. 2, Fig. 4, and Fig.5 present 

the Matrix Profile results with several window-lengths for three datasets that has 

as usage pattern an office, laboratory and classroom, respectively. The top subplot 

of each figure presents the real data, the measured active power and the following 

subplots present the Matrix Profile computed with one - day, 5 days, 7 days, 14 

days and 30 days window length. It can be noticed that increasing the window 

length have little impact on the resulting matrix profile but leads to a less granular 

dataset which also leads to a better identification of patterns within the dataset.  

 

 
Fig. 2. Matrix Profile – varying window length (Office) 
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Fig. 3. Matrix Profile – varying window length (Laboratory) 

 

 
 

Fig. 4. Matrix Profile – varying window length (Classroom) 
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Besides the Matrix Profile the index of the first discord identified within 

each resulted dataset was also computed. The first discord represents the highest 

relative peak on the Matrix Profile graph, and it is marked with a red arrow on 

each figure. For this particular case, what is noticeable is that the one-day window 

is not helpful in terms of identifying the top discords since there can be seen a lot 

of peaks. Increasing the length of the window helps visualize that the top discord 

is correlated with the period of winter holiday. This is one of the most unusual 

patterns among the timeseries because during the holiday the activity in 

universities is decreased, and highly dissimilar, compared to the rest of the 

semester.  

Taking into consideration that manipulating the window size has 

insignificant impact on the MP, there was also computed the necessary time to 

obtain the MP considering each window length variation, in order to see what the 

cost is of increasing it in terms of performance. For this experiment there were 

also computed MP using MPX, STOMP and SCRIMP++ algorithms from matrix 

profile library [14] in Python using the Jupyter Notebook web application in the 

Anaconda Data Science Distribution. Table 1 illustrates the major features of each 

algorithm [15]. 

 

 
 

Table 1 

 STOMP / STUMP 

Algorithm 

SCRIMP++ /MPX 

Algorithm 

F
ea

tu
re

s 

   

• exact algorithm. 

• evaluates the distance profiles in 

order (left-to-right) compared to 

STAMP which evaluates them in 

random order. 

•  complexity 

• faster than the original anytime 

algorithm STAMP with 

 

• cannot locate the motifs/discords 

even when it is 50% completed 

because of the left-to-right sequential 

computation compared to STAMP 

which has better interactivity - can 

locate the highlighted 

motifs/discords in the timeseries 

when the MP is only 10% 

completed. 

• exact and anytime algorithm. 

• combines the anytime future of 

STAMP with the speed of STOMP 

•  complexity. 

• faster convergence characteristics 

than STAMP or STOMP. 

• real-time interactive discovery of 

motifs/discords. 
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Table 2 and Table 3 present the quantitative results achieved as mean 

values for Wall time and CPU time over 100 iterations of the algorithm on the 

same input data. This is justified in order to establish statistical variation bounds 

that account for the varying load of the host system during the experiments. Wall 

time represents the actual time, measured in seconds, that the program takes to run 

or to execute its assigned tasks/operations (e.g., MP computing). Opposed to it, is 

the CPU time, which only includes the periods of time during which the CPU was 

processing instructions. It can be noticed that in all cases, increasing the length of 

the window leads to a relatively constant time complexity which is also mentioned 

in the literature as a feature of the MP algorithm. Fig. 5 shows an example of 

normalized histogram with the time distribution over 100 iterations for the case 

with 7-days window length computed with STUMP. A fairly normal distribution 

can be observed for the CPU time measurements while the Wall time 

measurements exhibit a bi-modal shape. 

Fig. 5. Example of time distribution – 7 - days window length (STUMP) 
 

In addition, Table 2 and Table 3 also show the comparison between MP 

approach implemented with STUMP, STOMP, SCRIMP++ and MPX algorithms 

in Python. It pictures that the difference in terms of performance is quite 

significant when comparing the four algorithms. The fastest tested algorithm is 

MPX, which is approximately 15 times faster than the slowest one STOMP. 

Figure 6 and Figure 7 offer a better visualization of the previous results. For the 

current research, all test of the approach has been carried out on a 2.7 GHz i5 

quad core processor with 8GB RAM.  

https://en.wiktionary.org/wiki/CPU_time
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Table 2 

 

 

Window  

Length 

Wall-Clock Time  

[seconds] 

CPU Time  

[seconds] 

STUMP 

algorithm 

(STUMPY 

Python) 

MPX 

algorithm 

(Python) 

STUMP  

algorithm 

(STUMPY 

Python) 

MPX 

algorithm 

(Python) 

1 Day  0.2696 0.1537 0.9012 0.1517 

5 Days 0.2650 0.1572 0.8665 0.1545 

7 Days 0.2458 0.1549 0.8482 0.1535 

14 Days 0.2449 0.1625 0.8485 0.1620 

30 Days 0.2454 0.1751 0.8540 0.1742 

 

 

Table 3 

 

 

Window  

Length 

Wall-Clock Time  

[seconds] 

CPU Time  

[seconds] 

SCRIMP++ 

algorithm 

(Python) 

STOMP 

algorithm 

(Python) 

SCRIMP++ 

algorithm 

(Python) 

STOMP 

algorithm 

(Python) 

1 Day  0.5051 2.3825 0.9106 2.5156 

5 Days 0.4438 2.2732 0.8640 2.4281 

7 Days 0.3653 2.2277 0.7050 2.4015 

14 Days 0.2444 2.2628 0.4768 2.4056 

30 Days 0.1672 2.4503 0.3267 2.5834 
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Fig. 6. CPU Time performance comparison between the 4 algorithms 

 
 

 

Fig. 7. Wall-Clock Time performance comparison between the 4 algorithms 

 

4. Conclusions 

The results presented in this article can serve as baseline metrics for 

choosing appropriate MP implementations: programming language, environment, 

libraries, algorithm type, in the specific area of building energy modelling using 

data mining and computational intelligence techniques. Based on the presented 

results the Python implementation of Matrix Profile using the open-source 
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Stumpy library and the STUMP algorithm has been found most suitable for 

further use within an embedded smart building energy management system, 

currently under development. 
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