
U.P.B. Sci. Bull., Series C, Vol. 83, Iss. 3, 2021 ISSN 2286-3540

BENCHMARKING OPEN-SOURCE IMPLEMENTATIONS

FOR ENERGY TIME SERIES FEATURE EXTRACTION

METHOD

Cristina NICHIFOROV1, Grigore STAMATESCU2, Stelian – Sergiu ILIESCU3

The paper focuses on time series feature extraction technique benchmarking

for consumer-side energy applications which can be used to build robust learning

models for consumption forecasting and anomaly detection. More specifically we

analyze various open-source implementations of the Matrix Profile algorithm for

time series data mining available as software libraries written in the Python

programming language. Several replicable benchmarking results are carried out on

a reference large commercial building energy measurements data set while

reporting aggregate run times in conjunction with the particularities of each

algorithm. The work can serve as a practical guide for choosing appropriate

algorithm implementations for new intelligent data-driven systems for smart

building energy management.

Keywords: matrix profile, data mining, time series, feature extraction, energy

management

1. Introduction

Data-driven Internet of Things (IoT) systems are increasingly being

deployed in energy systems for monitoring and control purposes [1]. Several

reference case studies are discussed in [2] for energy-efficient scheduling in smart

homes and wireless power transfer for IoT devices in smart cities. These systems

have the ability of gathering large quantities of process data, both producer and

consumer side, and performing in situ analytics to extract meaningful patterns and

build prediction and anomaly detection models. In typical data science projects,

the majority of the time is spent on preliminary tasks such as data cleaning and

feature extraction/engineering, before the actual model selection, training and

evaluation, in accordance with the business logic. To this extent any improvement

in these early stages of a data-intensive research and development project can

have a high impact on the quality and timeliness of the results.

1 PhD Candidate and Teaching Assistant, Dept. of Automation and Industrial Informatics,

University POLITEHNICA of Bucharest, Romania, e-mail: cristina.nichiforov@upb.ro
2 Assoc. Prof., Dept. of Automation and Industrial Informatics, University POLITEHNICA of

Bucharest, Romania, e-mail: grigore.stamatescu@upb.ro
3 Prof., Dept. of Automation and Industrial Informatics, University POLITEHNICA of Bucharest,

Romania, e-mail: iliescu.shiva@gmail.com

mailto:iliescu.shiva@gmail.com

86 Cristina Nichiforov, Grigore Stamatescu, Stelian – Sergiu Iliescu

In previous work [3,4] we have focused on building machine learning

models that leverage temporal dependencies for improving short-term load

forecasting in large commercial buildings. For our current case study, we focus on

benchmarking various publicly available implementations of a time series data

mining technique, the Matrix Profile (MP) [5], for energy applications. This can

provide useful features such as time series motifs and discords that are used in the

early modelling stages for more robust results. In [6] we have illustrated several

features of the MP to extract information from active power measurements of

large commercial buildings which are prone to significant energy efficiency gains

using intelligent IoT based systems for energy management.

The main contribution of the current work lays in the experimental

evaluation of the computational performance of the Matrix Profile (MP) algorithm

as feature extraction primitive on reference commercial building energy datasets

under the Python programming language and associated development

environments.

2. Methodology

Figure 1 illustrates the steps thar are needed to compute MP for a time

series and how MP time series can help in an energy management system. MP

data mining technique is involved in the data analytics stage where the

preprocessed input data is used to compute de MP which helps in data analysis by

giving some important information about similar and unusual sequences within

the original timeseries and by eliminating most of the redundant information

contained in the input data.

When it comes to consumer-side applications of energy saving and energy

efficiency, energy management is the process of monitoring, controlling, and

optimizing the energy consumption in a building [7]. According to the literature,

this involves four important steps:

1. Energy consumption metering and data collecting.

2. Identifying opportunities to save energy and estimating how

much energy each opportunity could save; this can be automated

using current computational intelligence algorithms and tools.

3. Taking action to target the opportunities to save energy; this can be

implemented through smart building control systems that operate

in a predictive and optimal manner.

4. Tracking the progress by re-analyzing the data to see how well the

energy-saving efforts have worked at the building management

system (BMS) level.

We can discuss the MP efficiency in terms of the significant dimension

reduction achieved by labelling the relevant components of the energy time series

Benchmarking open-source implementations for energy time series feature extraction method 87

while avoiding full processing of the original timeseries. Considering this aspect,

MP can be used in pattern extraction and learning for timeseries classification

models [8] and load forecasting using different techniques. These applications can

help in step 2 when it comes to analyzing the data to find and quantify routine

energy waste. Looking at detailed interval load data is a good way to find patterns

in energy waste which are inevitably found. Also, can help in investigating the

return of investment that can be achieved by replacing wasteful building

equipment.

Fig. 1. Data mining steps using energy time-series

2.1. Matrix Profile data mining approach

Time series are a particular type of input data since the points

measured are related by time and analyzing them using traditional approaches

88 Cristina Nichiforov, Grigore Stamatescu, Stelian – Sergiu Iliescu

such as ARIMA or machine learning can often become quite difficult and

computationally inefficient as the amount of data increase. This also requires

specialized knowledge for identifying the appropriate model structure and

performing adjustments.

Lately, in the literature has been introduced a near universal time series

data mining tool called Matrix Profile (MP) [5]. According to the authors, this

novel approach has some important features that makes the MP algorithms

suitable for many time series data mining tasks. The most significative features

would be scalability, the reduced dimension of the approach, the less training

time, data and parameter tuning required compared to other data mining

techniques. Among the many different applications of time series data mining

where MP has been effective there can be mentioned: timeseries data

visualization, timeseries chain discovery, finding similar patterns among a time-

series i.e., motif detection, anomaly discovery i.e., discord detection, augmented

timeseries motif discovery, variable-length motif discovery [9], etc.

To introduce a short definition, giving a timeseries T, the Matrix Profile

computed for T is a compact timeseries that stores the z-

normalized Euclidean distance between each subsequence and its nearest

neighbor; n is the length of T, and m is the subsequence length [5]. The z-

normalized Euclidean distance or more general p-norm, used by MP is described

by the following formula [10]:

 (1)

where Q and T are two timeseries of length m, µ and σ represents the mean and

standard deviation, respectively.

 and . (2)

 The ongoing research projects propose several algorithms and libraries

based on Matrix Profile developed using different technologies such as

MATLAB, Python, R, Java, Kotlin, etc. In the current research there were used

four scalable timeseries Matrix Profile algorithms: STUMP, STOMP, SCRIMP++

and MPX implemented in open-source libraries written in the Python

programming language. MP efficiency is closely related to the significant

dimension reduction achieved by labelling the relevant components of the energy

time series while avoiding full processing of the datasets.

Benchmarking open-source implementations for energy time series feature extraction method 89

3. Results

The current research presents the experimental results of the Matrix Profile

approach on a building energy repository that is publicly available through

Building Data Genome repository [11]. The datasets used for the research contain

the active power consumption for 422 academic (after filtering out) buildings

from U.S. and Europe. Among the datasets, there are four types of dominant

energy usage patterns, namely: classrooms, offices, laboratories, and dormitories.

All the data is collected over one-year period, the sampling time for each dataset

is one hour and they consist of 8.760 data points, reporting the active power in

kW drawn by the building at the given instant.

3.1. Matrix Profile Analysis

The Matrix Profile was computed for all datasets through STUMP

algorithm from STUMPY Library [12]. STUMP is Numba JIT-compiled version

of the STOMP algorithm that is described in [13]. Fig. 2, Fig. 4, and Fig.5 present

the Matrix Profile results with several window-lengths for three datasets that has

as usage pattern an office, laboratory and classroom, respectively. The top subplot

of each figure presents the real data, the measured active power and the following

subplots present the Matrix Profile computed with one - day, 5 days, 7 days, 14

days and 30 days window length. It can be noticed that increasing the window

length have little impact on the resulting matrix profile but leads to a less granular

dataset which also leads to a better identification of patterns within the dataset.

Fig. 2. Matrix Profile – varying window length (Office)

90 Cristina Nichiforov, Grigore Stamatescu, Stelian – Sergiu Iliescu

Fig. 3. Matrix Profile – varying window length (Laboratory)

Fig. 4. Matrix Profile – varying window length (Classroom)

Benchmarking open-source implementations for energy time series feature extraction method 91

Besides the Matrix Profile the index of the first discord identified within

each resulted dataset was also computed. The first discord represents the highest

relative peak on the Matrix Profile graph, and it is marked with a red arrow on

each figure. For this particular case, what is noticeable is that the one-day window

is not helpful in terms of identifying the top discords since there can be seen a lot

of peaks. Increasing the length of the window helps visualize that the top discord

is correlated with the period of winter holiday. This is one of the most unusual

patterns among the timeseries because during the holiday the activity in

universities is decreased, and highly dissimilar, compared to the rest of the

semester.

Taking into consideration that manipulating the window size has

insignificant impact on the MP, there was also computed the necessary time to

obtain the MP considering each window length variation, in order to see what the

cost is of increasing it in terms of performance. For this experiment there were

also computed MP using MPX, STOMP and SCRIMP++ algorithms from matrix

profile library [14] in Python using the Jupyter Notebook web application in the

Anaconda Data Science Distribution. Table 1 illustrates the major features of each

algorithm [15].

Table 1

 STOMP / STUMP

Algorithm

SCRIMP++ /MPX

Algorithm

F
ea

tu
re

s

• exact algorithm.

• evaluates the distance profiles in

order (left-to-right) compared to

STAMP which evaluates them in

random order.

• complexity

• faster than the original anytime

algorithm STAMP with

• cannot locate the motifs/discords

even when it is 50% completed

because of the left-to-right sequential

computation compared to STAMP

which has better interactivity - can

locate the highlighted

motifs/discords in the timeseries

when the MP is only 10%

completed.

• exact and anytime algorithm.

• combines the anytime future of

STAMP with the speed of STOMP

• complexity.

• faster convergence characteristics

than STAMP or STOMP.

• real-time interactive discovery of

motifs/discords.

92 Cristina Nichiforov, Grigore Stamatescu, Stelian – Sergiu Iliescu

Table 2 and Table 3 present the quantitative results achieved as mean

values for Wall time and CPU time over 100 iterations of the algorithm on the

same input data. This is justified in order to establish statistical variation bounds

that account for the varying load of the host system during the experiments. Wall

time represents the actual time, measured in seconds, that the program takes to run

or to execute its assigned tasks/operations (e.g., MP computing). Opposed to it, is

the CPU time, which only includes the periods of time during which the CPU was

processing instructions. It can be noticed that in all cases, increasing the length of

the window leads to a relatively constant time complexity which is also mentioned

in the literature as a feature of the MP algorithm. Fig. 5 shows an example of

normalized histogram with the time distribution over 100 iterations for the case

with 7-days window length computed with STUMP. A fairly normal distribution

can be observed for the CPU time measurements while the Wall time

measurements exhibit a bi-modal shape.

Fig. 5. Example of time distribution – 7 - days window length (STUMP)

In addition, Table 2 and Table 3 also show the comparison between MP

approach implemented with STUMP, STOMP, SCRIMP++ and MPX algorithms

in Python. It pictures that the difference in terms of performance is quite

significant when comparing the four algorithms. The fastest tested algorithm is

MPX, which is approximately 15 times faster than the slowest one STOMP.

Figure 6 and Figure 7 offer a better visualization of the previous results. For the

current research, all test of the approach has been carried out on a 2.7 GHz i5

quad core processor with 8GB RAM.

https://en.wiktionary.org/wiki/CPU_time

Benchmarking open-source implementations for energy time series feature extraction method 93

Table 2

Window

Length

Wall-Clock Time

[seconds]

CPU Time

[seconds]

STUMP

algorithm

(STUMPY

Python)

MPX

algorithm

(Python)

STUMP

algorithm

(STUMPY

Python)

MPX

algorithm

(Python)

1 Day 0.2696 0.1537 0.9012 0.1517

5 Days 0.2650 0.1572 0.8665 0.1545

7 Days 0.2458 0.1549 0.8482 0.1535

14 Days 0.2449 0.1625 0.8485 0.1620

30 Days 0.2454 0.1751 0.8540 0.1742

Table 3

Window

Length

Wall-Clock Time

[seconds]

CPU Time

[seconds]

SCRIMP++

algorithm

(Python)

STOMP

algorithm

(Python)

SCRIMP++

algorithm

(Python)

STOMP

algorithm

(Python)

1 Day 0.5051 2.3825 0.9106 2.5156

5 Days 0.4438 2.2732 0.8640 2.4281

7 Days 0.3653 2.2277 0.7050 2.4015

14 Days 0.2444 2.2628 0.4768 2.4056

30 Days 0.1672 2.4503 0.3267 2.5834

94 Cristina Nichiforov, Grigore Stamatescu, Stelian – Sergiu Iliescu

Fig. 6. CPU Time performance comparison between the 4 algorithms

Fig. 7. Wall-Clock Time performance comparison between the 4 algorithms

4. Conclusions

The results presented in this article can serve as baseline metrics for

choosing appropriate MP implementations: programming language, environment,

libraries, algorithm type, in the specific area of building energy modelling using

data mining and computational intelligence techniques. Based on the presented

results the Python implementation of Matrix Profile using the open-source

Benchmarking open-source implementations for energy time series feature extraction method 95

Stumpy library and the STUMP algorithm has been found most suitable for

further use within an embedded smart building energy management system,

currently under development.

Acknowlegdement

The work has been funded by the Operational Programme Human Capital

of the Ministry of European Funds through the Financial Agreement

51675/09.07.2019, SMIS code 125125.

R E F E R E N C E S

[1]. Y. Simmhan, P. Ravindra, S. Chaturvedi, M. Hegde, R. Ballamajalu, “Towards a

data‐driven IoT software architecture for smart city utilities”, in Software: Practice and

Experience, vol.48, 2018, pp.1390– 1416.

[2]. W. Ejaz, M. Naeem, A. Shahid, A. Anpalagan and M. Jo, "Efficient Energy Management for

the Internet of Things in Smart Cities," in IEEE Communications Magazine, vol. 55, no. 1,

pp. 84-91, January 2017.

[3]. C. Nichiforov, G. Stamatescu, I. Stamatescu, V. Calofir, I. Fagarasan and S. S. Iliescu, "Deep

Learning Techniques for Load Forecasting in Large Commercial Buildings”, in 2018 22nd

International Conference on System Theory, Control and Computing (ICSTCC), Sinaia,

2018, pp. 492-497, doi: 10.1109/ICSTCC.2018.8540768.

[4]. C. Nichiforov, G. Stamatescu, I. Stamatescu, I. Făgărăşan,“Evaluation of Sequence-

Learning Models for Large-Commercial-Building Load Forecasting”,

in Information 2019, 10, 189.

[5]. C.-C. M. Yeh, “Towards a near universal time series data mining tool: Introducing the

matrix profile,” ArXiv, vol. abs/1811.03064, 2018.

[6]. C. Nichiforov, I. Stancu, I. Stamatescu and G. Stamatescu, "Information Extraction

Approach for Energy Time Series Modelling", in 2020 24th International Conference on

System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 2020, pp. 886-891,

doi: 10.1109/ICSTCC50638.2020.9259635.

[7]. M. Ostadijafari, A. Dubey, Y. Liu, J. Shi and N. Yu, "Smart Building Energy Management

using Nonlinear Economic Model Predictive Control," 2019 IEEE Power & Energy Society

General Meeting (PESGM), Atlanta, GA, USA, 2019.

[8]. C. Nichiforov, G. Stamatescu, I. Stamatescu and I. Făgărăşan, "Learning Dominant Usage

from Anomaly Patterns in Building Energy Traces," 2020 IEEE 16th International

Conference on Automation Science and Engineering (CASE), Hong Kong, Hong Kong,

2020, pp. 548-553, doi: 10.1109/CASE48305.2020.9216794.

[9]. M. Linardi, Y. Zhu, T. Palpanas, and E. Keogh, “Matrix profile x: Valmod-scalable

discovery of variable-length motifs in data series, in Proceedings of the 2018 International

Conference on Management of Data, 2018, pp 1053–1066

[10]. De Paepe, D. Nieves Avendano, and S. Van Hoecke,“ Implications of Z-normalization in the

matrix profile,” in Pattern recognition applications and methods, 8th International

Conference, ICPRAM 2019, Prague, Czech Republic, February 19-21, 2019, Revised

Selected Papers, Prague, Czech Republic, 2020, vol. 11996, pp. 95–118

96 Cristina Nichiforov, Grigore Stamatescu, Stelian – Sergiu Iliescu

[11]. C. Miller and F. Meggers,“ The building data genome project: An open, public data set

from non-residential building electrical meters”, in Energy Procedia, vol. 122, 2017, pp.

439 – 444

[12]. S. Law,“ STUMPY: A Powerful and Scalable Python Library for Time Series Data

Mining”, in Journal of Open Source Software. vol. 4(39), 2019, pp. 1504, doi:

10.21105/joss.01504

[13]. Y. Zhu, Z. Zimmerman, N. Shakibay Senobari, C.-C. M. Yeh, G. Funning, A. Mueen, P.

Berisk, E. Keogh, “Matrix Profile II: Exploiting a Novel Algorithm and GPUs to break the

one Hundred Million Barrier for Time Series Motifs and Joins, in IEEE 16th International

Conference on Data Mining, Barcelona, 2016, pp. 739-748, doi: 10.1109/ICDM.2016.0085.

[14]. A. Van Benschoten, A. Ouyang, F. Bischoff, T. Marrs, “MPA: a novel cross-language API

for time series analysis, in Journal of Open Source Software, vol. 5(49), 2020, pp.

2179, https://doi.org/10.21105/joss.02179

[15]. Y. Zhu, C. M. Yeh, Z. Zimmerman, K. Kamgar, E. Keogh, "Matrix Profile XI: SCRIMP++:

Time Series Motif Discovery at Interactive Speeds", in IEEE International Conference on

Data Mining (ICDM), Singapore, 2018, pp. 837-846, doi: 10.1109/ICDM.2018.0009

https://doi.org/10.21105/joss.02179

