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HIGH ORDER COMPACT CRANK-NICOLSON DIFFERENCE
SCHEME FOR A CLASS OF SPACE FRACTIONAL

DIFFERENTIAL EQUATIONS

Qinghua Feng1

In this paper, we present a high order compact Crank-Nicolson dif-
ference scheme for the initial boundary value problem of a class of space frac-
tional differential equations, where the space fractional Riemann-Liouville
derivative are approximated by a weighted and shifted Grünwald-Letnikov
approximation formula with sixth order accuracy. This difference scheme
is proved to be of unique solution, unconditionally stable, convergent with
accuracy of second order and sixth order in temporal direction and space
direction respectively. Numerical experiments are carried out to support the
theoretical analytical results.

Keywords: Space fractional differential equation; Riemann-Liouville de-
rivative; Compact difference scheme; Unconditionally stable.

MSC2000: 65M06; 65M12; 26A33

1. Introduction

Recently, research on the theory and applications of fractional differential
equations (FDEs) has gained more and more attention by many researchers.
Compared with integer-order differential equations, FDEs are better choices
for describing some phenomena or processes with memory, hereditary and long-
range interaction in diffusion, biology, relaxation vibrations, electrochemistry,
finance, fluid mechanics and so on [1-6]. In the last few decades, a variety of
models have been proposed by use of FDEs for the description of memory and
hereditary properties of various materials and processes such as physical and
biological processes. For the basic theory of fractional calculus, we refer the
readers to the [7, 8].

In the research of FDEs, seeking solutions of FDEs are a hot topic, and
have been paid much attention by many authors. However, in most cases, it
is difficult to obtain exact solutions for FDEs due to the complexity of frac-
tional operators and fractional calulus. Thus, it becomes very important to
develop efficient and high accuracy numerical methods to obtain numerical
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solutions for FDEs. Among the existing numerical methods, the finite differ-
ence method is the most popularly used one easy to be fulfilled. So far many
efficient finite difference schemes have been developed by many authors for
solving a variety of time FDEs and space FDEs as well as space-time FDEs.
In general, the Caputo fractional derivative is the most widely used one in time
FDEs, and the main method for approximating the Caputo derivative is by
L interpolation approximation formulas [9-16], while the Riemann-Liouville
fractional derivative and the Riesz fractional derivative are usually used in
space FDEs, and approximation formulas for them are usually constructed by
use of the Grünwald-Letnikov (G-L) approximation method [17-23], which was
initially proposed by Meerschaert and Tadjeran [24]. Besides, the Riesz frac-
tional derivative can also be approximated by the fractional center difference
approximation formula [25, 26]. On the other hand, due the global prop-
erty of the fractional operator, computation and stored task become expensive
for fractional finite difference schemes, especially for the computation of high
dimensional problems. The alternating direction implicit method [27-29] is a
valid approach to solve this problem, which reduce stored task to a large degree
for computer, and reduce the high dimensional computation problem to several
one dimensional computation problems improving computation efficiency.

In order to improve the accuracy of the finite difference scheme, com-
pact techniques are usually used to develop compact difference schemes [30-
32]. However, in the existing difference schemes for spatial FDEs, most of
the approximation accuracy for the fractional derivatives are no more than
fourth order. So motivated by the works above, we will construct an ap-
proximation formula with sixth accuracy for the Riemann-Liouville fractional
derivatives, and then based on the approximation formula develop a compact
Crank-Nicolson difference scheme for the initial boundary value problem of a
class of space fractional differential equation, which is denoted as follows

ut(x, t) = k(0D
α
xu(x, t)−x D

α
Lu(x, t)) + f(x, t),

1 < α < 2, x ∈ [0, L], t ∈ [0, T ],
u(x, 0) = φ(x), x ∈ [0, L],
u(0, t) = u(L, t) = 0,

(1)

where the function u is smooth enough, k > 0 is a constant, and the fractional
derivatives are defined in the sense of the left-side and right-side Riemann-
Liouville derivatives as follows: −∞Dα

xu(x, t) =
dn

dxn ( 1
Γ(n− α)

∫ x

−∞(x− σ)n−1−αu(σ, t)dσ),

xD
α
∞u(x, t) = (−1)n dn

dxn ( 1
Γ(n− α)

∫∞
x
(σ − x)n−1−αu(σ, t)dσ),

(2)

where n− 1 ≤ α < n, n ∈ N.
For the sake of convenience, we extend the definition domain of the func-

tion u(x, t) to R× [0, T ], and satisfies u(x, t) ≡ 0 for (x, t) /∈ [0, L]× [0, T ]. So
under this extension we have
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−∞Dα
xu(x, t) =0 D

α
xu(x, t), xD

α
∞u(x, t) =x Dα

Lu(x, t).
The rest of this paper is organized as follows. In Section 2, we present

some notations and preliminaries, and derive an approximation formula with
sixth accuracy for the Riemann-Liouville fractional derivatives. In Section 3,
we develop a compact Crank-Nicolson difference scheme for the problem (1).
In Section 4, unique solvability, unconditionally stability and convergence for
the Crank-Nicolson difference scheme are discussed. In Section 5, we carry
out numerical experiments for checking the validity of the present difference
scheme. In Section 6, some conclusions are given.

2. Preliminaries

Let M, N be positive integers, and h = L
M denotes the spatial step size,

while τ = T
N denotes the temporal step size. Define xi = i ∗ h(i ∈ Z), tn =

nτ(0 ≤ n ≤ N), Ωh = {xi|i ∈ Z}, Ωτ = {tn|0 ≤ n ≤ N}, (i, n) = (xi, t
n), and

then the domain R× [0, T ] is covered by Ωh × Ωτ . Let U
n
i = u(xi, t

n) and un
i

denote the exact solution and numerical solution at the point (i, n) respectively.
Un = (..., Un

−2, Un
−1, Un

0 , Un
1 , Un

2 , ...)
T , un = (..., un

−2, un
−1, un

0 , un
1 , un

2 , ...)
T .

Define the grid functions spaces Uh = {u|u = (..., u−2, u−1, u0, u1, u2, ...)
T}

and U0
h = {u|u ∈ Uh, lim

|i|→∞
ui = 0, lim

|i|→∞
δxui− 1

2
= 0}, where δxui− 1

2
=

ui − ui−1

h
. For u, v ∈ U0

h , define the inner product as (u, v) = h
∞∑

i=−∞
uivi,

while define the discrete L2 norm by ∥u∥ =
√
(u, u) = (

∞∑
i=−∞

h|ui|2)
1
2 .

For further use, denote

δtu
n− 1

2
i =

un
i − un−1

i
τ , δ2xu

n
i =

un
i+1 − 2un

i + un
i−1

h2 , u
n− 1

2
i =

un
i + un−1

i
2 .

Lemma 1 [27]. Let α ∈ (1, 2), u ∈ Cn+3(R) such that all derivatives of u up
to order n+3 belong to L1(R). Define the left-side shifted Grünwald difference
operator by

Aα
h,pu(x) =

1
hα

∞∑
k=0

g
(α)
k u(x− (k − p)h),

where p is an integer, and g
(α)
0 = 1, g

(α)
k = (1− α + 1

k
)g

(α)
k−1, k = 1, 2, .... Then

it holds that

Aα
h,pu(x) =−∞ Dα

xu(x)+
n−1∑
l=1

cα,pl −∞Dα+l
x u(x)hl+O(hn) (3)

uniformly for x ∈ R, where cα,pl , l = 1, 2... are the coefficients of the power

series expansion for the function (1− e−z

z )αepz.
Corollary 1. If we define the right-side shifted Grünwald difference operator
by

Bα
h,pu(x) =

1
hα

∞∑
k=0

g
(α)
k u(x+ (k − p)h),

then we have
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Bα
h,pu(x) =x Dα

∞u(x)+
n−1∑
l=1

cα,pl xD
α+l
∞ u(x)hl+O(hn), (4)

Lemma 2. Let α ∈ (1, 2), u ∈ C9(R) such that all derivatives of u up to order

9 belong to L1(R), cα =
2∑

p=−2

spc
α,p
4 , where sp, p = 0,±1, ±2 are constants,

and cα,pl are defined as in (3). Define three operators ∆α
1 , ∆α

2 , Aα such that
∆α

1u(x) =
1
hα

∞∑
k=0

λ
(α)
k u(x− (k − 2)h),

∆α
2u(x) =

1
hα

∞∑
k=0

λ
(α)
k u(x+ (k − 2)h),

Aαu(x) = (1 + cαh4δ2xδ
2
x)u(x),

where

λ
(α)
0 = s2g

(α)
0 ,

λ
(α)
1 = s2g

(α)
1 + s1g

(α)
0 ,

λ
(α)
2 = s2g

(α)
2 + s1g

(α)
1 + s0g

(α)
0 ,

λ
(α)
3 = s2g

(α)
3 + s1g

(α)
2 + s0g

(α)
1 + s−1g

(α)
0 ,

λ
(α)
k = s2g

(α)
k + s1g

(α)
k−1 + s0g

(α)
k−2 + s−1g

(α)
k−3 + s−2g

(α)
k−4, k = 4, 5, ...,

If 

s2 = − 7
144α− 1

96α
2 + 1

144α
3 − 1

30 + 1
480α

4,

s1 =
23
72α + 7

48α
2 − 1

144α
3 + 2

15 − 1
120α

4,

s0 =
1
24α− 1

4α
2 − 1

48α
3 + 4

5 + 1
80α

4,

s−1 = −25
72α + 5

48α
2 + 5

144α
3 + 2

15 − 1
120α

4,

s−2 =
5
144α+ 1

96α
2 − 1

72α
3 − 1

30 + 1
480α

4.

(5)

Then it holds that{
∆α

1u(x) = Aα[−∞Dα
xu(x)] +O(h6),

∆α
2u(x) = Aα[xD

α
∞u(x)] +O(h6),

(6)

Proof . From the definition of ∆α
1 we have in fact ∆α

1u(x) =
2∑

p=−2

spA
α
h,pu(x).

It follows from Lemma 1 that

∆α
1u(x) =

2∑
p=−2

sp[−∞Dα
xu(x)] +

n−1∑
l=1

2∑
p=−2

spc
α,p
l [−∞Dα+l

x u(x)]hl +O(h6).

After setting
2∑

p=−2

sp = 1 and the coefficients of [−∞Dα+l
x u(x)]hi, i = 1, 2, 3, 5

be zero one can obtain (5), and furthermore,
∆α

1u(x) =−∞ Dα
xu(x) + (−∞Dα+4

x u(x))cαh4 +O(h6)
=−∞ Dα

xu(x)+ cαh4δ2xδ
2
x[−∞Dα

xu(x)]+O(h6) = Aα[−∞Dα
xu(x)]+O(h6),

where the center difference formula δ2xδ
2
x[−∞Dα

xu(x)] has been used for approx-
imating −∞Dα+4

x u(x).
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Similarly, one can prove that ∆α
2u(x) = Aα[xD

α
∞u(x)]+O(h6). The proof

is complete.
Lemma 3. [33, Lemma 2.1.1]. Suppose u ∈ U0

h . Then it holds that
√
6

(b− a)
∥u∥ ≤ ∥δxu∥ ≤ 2

h
∥u∥,

6
(b− a)2

∥u∥ ≤ ∥δ2xu∥ = ∥δxδxu∥ ≤ 4
h2∥u∥,

Lemma 4. For u ∈ U0
h , we have

0.36∥u∥2 ≤ (Aαu, u) ≤ ∥u∥2.
In fact, by use of the definition of Aα and the discrete Green formula we

have
(Aαu, u) = (u, u) + cαh4(δ2xδ

2
xu, u) = ∥u∥2 + cαh4∥δ2xu∥2.

According to the function curve of cα shown in Fig. 1 one can see that cα ∈
(−0.04,−0.01) for α ∈ (1, 2). Then the result can be deduced by a combination
with Lemma 3.

Based on Lemma 4, for u, v ∈ V 0
h , we can define the following inner

product

(u, v)Aα = h
∞∑

i=−∞
(Aαui)vi

and the corresponding discrete norm ∥u∥Aα = (Aαu, u). Furthermore, ∥u∥Aα

is equivalent to ∥u∥.
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3. The compact Crank-Nicolson difference scheme

Now we derive the compact Crank-Nicolson difference scheme for the
problem (1). Considering −∞Dα

xu(x, t) =0 D
α
xu(x, t), xD

α
∞u(x, t) =x Dα

L1
u(x, t),

by use of Lemma 2 one can obtain that at the point (i, n)
Aα[0D

α
xu(x, t)−x D

α
Lu(x, t)](i,n)

= 1
hα

∞∑
k=0

λ
(α)
k un

i−k+2 − 1
hα

∞∑
k=0

λ
(α)
k un

i+k−2 +O(h6)

= 1
hα

∞∑
k=−∞

ω
(α)
k un

i−k+O(h6). (7)

where

ω
(α)
0 = λ

(α)
2 − λ

(α)
2 = 0,

ω
(α)
1 = λ

(α)
3 − λ

(α)
1 ,

ω
(α)
2 = λ

(α)
4 − λ

(α)
0 ,

ω
(α)
k = λ

(α)
k+2, k = 3, 4, ...,

ω
(α)
−k = −ω

(α)
k , k = 1, 2, ....

After applying the operator Aα on both sides of the first equation of (1),
by use of the center difference approximation formula for ut(x, t), together with
the average of the approximation formula (7) at the point (i, n) and (i, n− 1)
one can deduce that

Aα(δtU
n− 1

2
i ) = 1

hα

∞∑
k=−∞

ω
(α)
k U

n− 1
2

i−k +Aαf
n− 1

2
i +O(τ 2+h6). (8)

Then the compact Crank-Nicolson difference scheme approximating the prob-
lem (1) can be denoted as follows:

Aα(δtu
n− 1

2
i ) = 1

hα

∞∑
k=−∞

ω
(α)
k u

n− 1
2

i−k +Aαf
n− 1

2
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,

u0
i = φ(xi), 1 ≤ i ≤ M − 1,

un
i = 0, i ≤ 0, or i ≥ M.

(9)

4. Unique solvability, stability and convergence analysis

In this section, we research the unique solvability, stability and conver-
gence of the present Crank-Nicolson difference scheme (9). For further use,
the definition domain of the function f(x, t) is extended to R× [0, T ] such that
f is smooth enough and f ∈ U0

h .

Lemma 5. For u ∈ U0
h , it holds that

∞∑
i=−∞

[
∞∑

k=−∞
ω
(α)
k ui−kui] = 0.

Proof . We have the following observations
∞∑

i=−∞
[

∞∑
k=−∞

ω
(α)
k ui−kui] =

∞∑
k=−∞

[
∞∑

i=−∞
ω
(α)
k ui−kui]

=
∞∑

k=−∞
[

∞∑
i=−∞

ω
(α)
k uiui+k] =

∞∑
k=−∞

[
∞∑

i=−∞
ω
(α)
−kuiui−k]
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= −
∞∑

i=−∞
[

∞∑
k=−∞

ω
(α)
k ui−kui],

which implies
∞∑

i=−∞
[

∞∑
k=−∞

ω
(α)
k ui−kui] = 0. The proof is complete.

Theorem 1. The Crank-Nicolson difference scheme denoted by (9) has unique
solution.
Proof . The corresponding homogeneous difference equation of the first equa-
tion of (9) is denoted by

Aαun
i = τ

2hα

∞∑
k=−∞

ω
(α)
k un

i−k. (10)

Taking the inner product of (10) with un, by use of Lemma 5 we have
∥un∥2Aα = 0, and then ∥un∥ = 0. So there is only zero solution for (10),
which implies the Crank-Nicolson difference scheme denoted by (9) has unique
solution. The proof is complete.
Theorem 2. The Crank-Nicolson difference scheme (9) is unconditionally
stable on the initial value and the the right source term f .
Proof . Setting r = τ

hα , the first equation of (9) can be rewritten as follows

Aα(un
i −un−1

i ) = r
∞∑

k=−∞
ω
(α)
k u

n− 1
2

i−k +τAαf
n− 1

2
i . (11)

Multiplying hu
n− 1

2
i on both sides of Eq. (11) and a summation with respect to

i from −∞ to ∞ yields that

h
∞∑

i=−∞
[Aα(un

i − un−1
i )](

un
i + un−1

i
2 )

= rh
∞∑

i=−∞

∞∑
k=−∞

ω
(α)
k u

n− 1
2

i−k u
n− 1

2
i + τh

∞∑
i=−∞

(Aαf
n− 1

2
i )u

n− 1
2

i .

Since
∞∑

i=−∞

∞∑
k=−∞

ω
(α)
k u

n− 1
2

i−k u
n− 1

2
i = 0 according to Lemma 5, one has

h
∞∑

i=−∞
[Aα(un

i − un−1
i )](

un
i + un−1

i
2 ) = τh

∞∑
i=−∞

(Aαf
n− 1

2
i )u

n− 1
2

i ,

that is,

∥un∥2Aα − ∥un−1∥2Aα = 2τ(fn− 1
2 , un− 1

2 )Aα .
Furthermore, we have

∥un∥2Aα − ∥un−1∥2Aα ≤ 2τ [ 1
2 + τ ∥u

n− 1
2∥2Aα + 2 + τ

4 ∥fn− 1
2∥2Aα ]

= τ
2(2 + τ)

(∥un + un−1∥2Aα) +
τ(2 + τ)

2 ∥fn− 1
2∥2Aα

≤ τ
(2 + τ)

(∥un∥2Aα + ∥un−1∥2Aα) +
τ(2 + τ)

2 ∥fn− 1
2∥2Aα ,

which implies
∥un∥2Aα ≤ (1 + τ)∥un−1∥2Aα + τ(1 + τ

2)
2∥fn− 1

2∥2Aα .
Moreover,
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∥un∥2Aα ≤ (1 + τ)n∥u0∥2Aα +
n−1∑
m=0

(1 + τ)mτ(1 + τ
2)

2∥fn−m− 1
2∥2Aα

≤ (1 + τ)n∥u0∥2Aα + [
n−1∑
m=0

(1 + τ)m]τ(1 + τ
2)

2 max
1≤k≤n

∥fk− 1
2∥2Aα

≤ (1 + τ)n[∥u0∥2Aα + (1 + τ
2)

2 max
1≤k≤n

∥fk− 1
2∥2Aα ]

≤ expnτ ∥u0∥2Aα + exp(n+1)τ max
1≤k≤n

∥fk− 1
2∥2Aα

≤ expT ∥u0∥2Aα + exp2T max
1≤k≤n

∥fk− 1
2∥2Aα .

From the inequality above one can see that the solution un of the Crank-
Nicolson difference scheme (9) depends continuously on the initial value u0 and
the right term f , which shows that the difference scheme (9) is unconditionally
stable. The proof is complete.

Now we prove the convergence of the difference scheme (9).
Let ϵn = Un − un, n = 0, 1, ..., N denote the errors between the exact

solutions and the numerical solutions, and ϵn = (..., ϵn−2, ϵn−1, ϵn0 , ϵn1 , ϵn2 , ...)
T .

Then from (8), (9), (11) we have Aα(ϵni − ϵn−1
i ) = r

∞∑
k=−∞

ω
(α)
k ϵ

n− 1
2

i−k + τAαR(τ, h), 1 ≤ n ≤ N, i = 0,±1,±2, ...,

ϵ0i = 0, i = 0,±1,±2, ...,
(12)

where AαR(τ, h) = O(τ 2 + h6).
Similar to the proof process of Theorem 2 one can deduce that
∥ϵn∥2Aα ≤ expT ∥ϵ0∥2Aα + exp2T ∥R(τ, h)∥2Aα = exp2T ∥R(τ, h)∥2,

which implies

∥ϵn∥Aα ≤ expT ∥R(τ, h)∥.
Furthermore, according to lemma 4 we have ∥ϵn∥ ≤ C1τ

2+C2h
6, where C1, C2

are two positive constants. So we have the following theorem.
Theorem 3. The Crank-Nicolson difference scheme denoted by (9) is conver-
gent with the accuracy O(τ 2 + h6).

5. Numerical experiments

In this section, we present two numerical examples for testing the theo-
retical analysis results above. In the first example, approximation accuracy for
the Riemann-Liouville derivative by use of (6) is checked, while in the second
example, the efficiency of the Crank-Nicolson difference scheme (9) is tested.

Example 1. Let u(x) = x7, x ∈ [0, 1], and consider 0D
α
xu(x) =

7!x7−α

Γ(8− α)
.

In Table 1, we list the errors in L2 norm and the convergence rates gen-
erated by use of the approximation formula (6), where the error is denoted by

∥R(h)∥, and the convergence rate is defined byRate =
ln(∥R(τ, h1)∥/∥R(τ, h2)∥)

ln(h1/h2)
.
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Table 1: The L2 errors and convergence rates for (6)

α = 1.3 α = 1.5 α = 1.7
h ∥R(h)∥ Rate ∥R(h)∥ Rate ∥R(h)∥ Rate
1
8 4.7724 ×10−5 5.3243 ×10−5 4.8612 ×10−5

1
10 1.2699 ×10−5 5.9331 1.4390 ×10−5 5.8632 1.3465 ×10−5 5.7532
1
12 4.3004 ×10−6 5.9389 4.9381 ×10−6 5.8663 4.7128 ×10−6 5.7580
1
14 1.7215 ×10−6 5.9390 1.9986 ×10−6 5.8678 1.9348 ×10−6 5.7755
1
16 7.7942 ×10−7 5.9342 9.1325 ×10−7 5.8654 8.9897 ×10−7 5.7402
1
18 3.8600 ×10−7 5.9662 4.6010 ×10−7 5.8205 4.5676 ×10−7 5.7486
1
20 2.0669 ×10−7 5.9284 2.5056 ×10−7 5.7682 2.4616 ×10−7 5.8675

From the results in Table 1 one can see that the errors are about O(h6),
and the convergence rates are about sixth order, which coincide with the con-
clusion of (6).
Example 2. Consider the problem (1) with an exact analytical solution

u(x, t) =

{
(t2 + 1)x3(1− x)3, x ∈ [0, 1],
0, x ∈ (−∞, 0)

∪
(1,∞),

and satisfies
k = L = 1,

f(x, t) = 2tx3(1− x)3 −
6∑

n=3

[ cnn!x
−α+n

Γ(1− α+ n)
− cnn!(1− x)−α+n

Γ(1− α+ n)
],

u(x, 0) = φ(x) = x3(1− x)3,

where x3(1− x)3 =
6∑

n=3

cnx
n.

Let ∥e∥∞ = max
i

|Un
i −un

i | denotes the maximum absolute error between

the exact solutions and the numerical solutions. By use of the Crank-Nicolson
difference scheme (9) we obtain corresponding numerical results, which are
shown in Fig. 2 and Table 2 respectively under certain conditions.

Table 2: The maximum absolute errors at τ = 10−5, h = 1
10

α = 1.3 α = 1.5 α = 1.7 α = 1.9
time steps ∥e∥∞ ∥e∥∞ ∥e∥∞ ∥e∥∞

10 1.0633×10−6 1.9728×10−6 3.3266×10−6 5.0501×10−6

20 1.0631×10−6 1.9724×10−6 3.3262×10−6 5.0497×10−6

30 1.0626×10−6 1.9717×10−6 3.3255×10−6 5.0491×10−6

40 1.0620×10−6 1.9708×10−6 3.3246×10−6 5.0481×10−6

50 1.0611×10−6 1.9695×10−6 3.3233×10−6 5.0469×10−6

60 1.0601×10−6 1.9680×10−6 3.3218×10−6 5.0454×10−6

From Fig. 2 one can see that the maximum absolute errors between
the numerical solutions and the exact solutions lie in a low level with about
O(h6), and the results in both Fig. 2 and Table 2 show that the maximum
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absolute errors are stable with the time steps increasing, which coincides with
the stability analysis in Section 4 for the Crank-Nicolson difference scheme (9).

6. Conclusions

In this paper, by use of the weighted and shifted Grünwald-Letnikov ap-
proximation technique, we have derived an approximation formula with sixth
order accuracy for the Riemann-Liouville derivative, and based on this formula
constructed a compact Crank-Nicolson difference scheme for a class of space
fractional differential equations. The present difference scheme is proved to
be unconditionally stable and convergent with accuracy O(τ 2 + h6). Numer-
ical experiments are carried out to test the approximation formula and the
Crank-Nicolson difference scheme, and the numerical results show their good
agreement with the theoretical analytical results.
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