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BAER’S THEOREM AND ITS CONVERSE IN THE VARIETY OF

n-ABELIAN GROUPS

Azam Pourmirzaei1, Azam Hokmabadi2, Yaser Shakouri3

In this article, we first prove an extension of Baer’s theorem in the vari-

ety of n-Abelian groups. Then we establish the converse of the mentioned result when
G/Zn

i (G) is finitely generated. Next we seek conditions which imply the finiteness of

the n-center factor subgroup of an n-Abelian group G and finally we give some upper
bounds, for the order of this factor subgroup.
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1. Introduction and Motivation

Because of the importance of Abelian groups in group theory, many generalizations
have been considered. One of these generalizations is the concept of n-Abelian group which
has been presented in 1944 by Levi [10], for the first time. These groups play an important
role in our discussion and extensively have been analyzed in [5], [2], [3] and [1]. If n is an
integer and n ≥ 1, then a group G is said to be n-Abelian if (xy)n = xnyn, for all elements
x and y in G. It follows that [xn, y] = [x, y]n = [xn, yn], for n-Abelian groups in which
[x, y] = x−1y−1xy. It is clear that a group is 2-Abelian if and only if it is Abelian, while
non Abelian n-Abelian groups do exist, for every n > 2. Here we use two other concepts,
the n-potent and the n-center subgroups of a group G, that have been introduced by Fay
and Waals [4]. For a positive integer n, the n-potent and the n-center subgroups of a group
G are defined respectively, as follows:

Gn = 〈[x, yn]|x, y ∈ G〉,
Zn(G) = {x ∈ G|xyn = ynx, ∀y ∈ G}.

It is easy to see that Gn is a fully invariant subgroup and Zn(G) is a characteristic subgroup
of G.

A famous theorem of Schur asserts that for a group G the finiteness of G/Z(G) implies
the finiteness of G′. The proof of this theorem in fact has been stated by B.H. Neumann
[11, Theorem 5.3]. He [12, End of page 237] mentioned that this result can be obtained from
an implicit idea of I. Schur [16], and his proof used Schur’s basic idea. Neumann [11] also
provided a partial converse of the Schur’s theorem as follows:
If G is finitely generated by k elements and G′ is finite, then G/Z(G) is finite and bounded
by |G/Z(G)| ≤ |G′|k.
Recently P. Niroomand [13] generalized this result by proving that if G′ is finite and G/Z(G)
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is finitely generated, then G/Z(G) is finite and |G/Z(G)| ≤ |G′|d(G/Z(G)). B. Sury [17] gave
a completely elementary short proof of a further generalization of the Niroomand’s result.
Also Yadav [19] provided some modifications of the converse of Schur’s theorem. In 1952,
Baer gave an important generalization of Schur’s theorem which asserts that for a group G
if G/Zn(G) is finite, then γn+1(G) is finite.
Hall [6] constructed a nilpotent p-group which shows that the converse of Baer’s theorem is
not true. In 1986 Hekster [8] proved that the converse of Baer’s theorem holds, for finitely
generated groups. Recently Hatamian et al. [7] improved the mentioned result of Hekster
and proved that, if G is a group, γn+1(G) is finite and G/Zn(G) is finitely generated, then
G/Zn(G) is finite and ∣∣∣∣ G

Zn(G)

∣∣∣∣ ≤ |γn+1(G)|d(G/Zn(G))n .

Definition 1.1. A normal series 1 = G0 ≤ G1 ≤ · · · ≤ Gt = G of group G is called
n-central series of length t if and only if

Gi+1

Gi
≤ Zn

(
G

Gi

)
.

Now we introduce the upper and lower n-central series of G which are two examples
of n-central series.

Definition 1.2. The upper n-central series of G is defined to be the series

1 = Zn0 (G) ≤ Zn1 (G) ≤ · · · ≤ Znt (G) ≤ · · ·

where inductively

Zni+1(G)/Zni (G) = Zn(G/Zni (G)),

for i ≥ 0. So Zn1 (G) = Zn(G).

Definition 1.3. Put γn1 (G) = G, and let γni+1(G) be defined inductively, for i ≥ 1, as the
subgroup [γni (G), Gn]. It is clear that the series

G = γn1 (G) ≥ γn2 (G) ≥ · · · ≥ γnt (G) ≥ · · ·

is an n-central series of G. Note that γn2 (G) is the n-potent subgroup of G.

Here the subgroups

aG
n

= {g−nagn|g ∈ G}
and

C(an) = {g ∈ G|[an, g] = 1}
are denoted by CLn(a) and Cn(a), respectively.
In this article, we first prove that the finiteness of G/Zni (G) implies the finiteness of γni+1(G).
This is actually a version of Baer’s theorem in the variety of n-Abelian groups. Then we
prove some theorems to establish the converse of the mentioned result when G/Zni (G) is
finitely generated. Next we seek conditions which imply that finiteness of n-center factor
subgroup G/Zn(G) of an n-Abelian group G. Finally we give some upper bounds for the
order of n-center factor subgroup of an n-Abelian group G.

2. Main Results

We begin this section by proving a generalization of Baer’s theorem. This generaliza-
tion is in fact a version of Baer’s theorem in the variety of n-Abelian group. For this end
we need the following lemma.

Lemma 2.1. If G is an n-Abelian group, then γi(G
n) = γni (G), for any positive integer i.
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Proof. It is clear that γi(G
n) ≤ γni (G). Since G is n-Abelian, so [x1, x

n
2 ] = [xn1 , x

n
2 ],

for any x1, x2 ∈ G. Therefore by induction we can plainly show that [x1, x
n
2 , . . . , x

n
i ] =

[xn1 , x
n
2 , . . . , x

n
i ], for any x1, x2, . . . , xi ∈ G. �

Theorem 2.1. Let G be an n-Abelian group and let G/Zni (G) be finite. Then γni+1(G) is
finite.

Proof. Since G/Zni (G) is finite thus (GnZni (G))/Zni (G) and so Gn/(Zni (G) ∩ Gn) is finite.
We can easily show that Zni (G)∩Gn = Zi(G

n). Hence Gn/Zi(G
n) is finite. Therefore Baer’s

theorem implies the finiteness of γi+1(Gn) and so by Lemma 2.1, γni+1(G) is finite. �

As we said before, there are many attempts to prove the converse of Baer’s theorem.
Therefore we are interested in finding conditions under which the converse of the above
theorem holds. We collect here a few results to achieve the mentioned goal.

Lemma 2.2. Let G be an n-Abelian group. Then γni (G)/(CnG((γni+1(G)) ∩ γni (G)) can be
embedded in Aut(γni+1(G)).

Proof. For any g ∈ G, let fg : γni+1(G) → γni+1(G), defined by fg(x) = xg
n

, and let f :
γni (G) → Aut(γni+1(G)), defined by f(g) = fg. It is easy to see that f is a homomorphism
and ker f = CnG(γni+1(G)) ∩ γni (G). Hence the assertion follows. �

Theorem 2.2. Let G be a finitely generated n-Abelian group and i ≥ 1. If γni+1(G) is finite,
then γni (G/Zn(G)) is finite.

Proof. Suppose G = 〈g1, g2, . . . , gt〉, for a natural number t. Therefore

Zn(G) =

t⋂
j=1

Cn(gj).

Let fj : CnG(γni+1(G)) ∩ γni (G) → γni+1(G), defined by fj(x) = [x, gnj ]. Clearly fj is a well-
defined homomorphism and we can show that

ker fj = Cn(gj) ∩ Cn(γni+1(G)) ∩ γni (G).

Put Kj = ker fj . Since γni+1(G) is finite, [Cn(γni+1(G)) ∩ γni (G) : Kj ] < ∞. On the other

hand
⋂t
j=1Kj = Zn(G) ∩Cn(γni+1(G)) ∩ γni (G) = Zn(G) ∩ γni (G). Therefore by Poincare’s

Lemma the following index is finite.

[Cn(γni+1(G)) ∩ γni (G) :

t⋂
j=1

Kj ] = [Cn(γni+1(G)) ∩ γni (G) : Zn(G) ∩ γni (G)].

The finiteness of Aut(G) implies the finiteness of γni (G)/(Cn(γni+1(G)) ∩ γni (G)) by Lemma
2.2. Hence [γni (G) : Zn(G) ∩ γni (G)] < ∞ and therefore by the following isomorphism,
γni (G/Zn(G)) is finite.

γni (G)

Zn(G) ∩ γni (G)
∼=
Zn(G)γni (G)

Zn(G)
= γni

(
G

Zn(G)

)
.

�

Let V be the variety of groups defined by the word v = {[x1, xn2 , . . . , xnc+1]}. The
following proposition gives the structures of verbal and marginal subgroups of n-Abelian
groups, for the variety V.

Proposition 2.1. By the above assumption V (G) = γnc+1(G) and V ∗(G) = Znc (G), for any
n-Abelian group G.
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Proof. This is easy to show that V (G) = γnc+1(G). We show that V ∗(G) = Znc (G). Let
x ∈ V ∗(G) and e be the identity element of G, thus [xe, gn1 , . . . , g

n
c ] = [e, gn1 , . . . , g

n
c ] = e,

for any g1, . . . , gc ∈ G. Therefore x ∈ Znc (G) and so V ∗(G) ≤ Znc (G). We use induction on
c to show that Znc (G) ≤ V ∗(G). For c = 1 if x ∈ Zn(G), then for any y, g ∈ G, we have
[xy, gn] = [x, gn]y[y, gn] = [y, gn], and

[y, (xg)n] = [yn, xg] = [yn, g][yn, x]g = [y, gn].

Therefore x ∈ V ∗(G).
Now suppose that for all i < c, Zni (G) ≤ V ∗(G). We prove that Znc (G) ≤ V ∗(G). Let
x ∈ Znc (G). Then xZn(G) ∈ Znc−1(G/Zn(G)) and so by induction hypothesis, xZn(G) ∈
V ∗(G/Zn(G)). It follows that for all gj ∈ G, 1 ≤ j ≤ c and all 1 ≤ i < c, we have

[g1, g
n
2 , ..., (gix)n, ..., gnc ] ≡ [g1, g

n
2 , ..., g

n
i , ..., g

n
c ] (mod Zn(G)).

Now let X = [g1, g
n
2 , ..., (gix)n, ..., gnc ] and Y = [g1, g

n
2 , ..., g

n
i , ..., g

n
c ]. Then X = Y z, for an

element z ∈ Zn(G). Thus

[X, gnc+1] = [Y z, gnc+1] = [Y, gnc+1]z[z, gnc+1] = ([Y, gc+1]n)z = [Y, gnc+1].

So

[g1, g
n
2 , ..., (gix)n, ..., gnc , g

n
c+1] = [g1, g

n
2 , ..., g

n
i , ..., g

n
c , g

n
c+1]. (1)

The missing case is i = c+ 1. Put y = g−1c and z = [g1, g
n
2 , ..., g

n
c−1]. Then

[g1, g
n
2 , ..., g

n
c , x

n] = [z, y−n, xn],

and therefore by equality [z, y−1, x]y[y, x−1, z]x[x, z−1, y]z = 1 we have

[z, y−n, xn] = (([xn, z−1, yn]z)−1([yn, x−n, z]x
n

)−1)y
−n

.

The equality Znc (G)/Znc−1(G) = Zn(G/Znc−1(G)) implies that [Znc (G), Gn] ≤ Znc−1(G). It
follows that

[g1, g
n
2 , ..., g

n
c , x

n] = [z, y−n, xn] = 1. (2)

Now by (2) we are in a position to show that

[g1, g
n
2 , ..., g

n
c , g

n
c+1x

n] = [g1, g
n
2 , ..., g

n
c , g

n
c+1].

Of course

[g1, g
n
2 , ..., g

n
c , g

n
c+1x

n] = [g1, g
n
2 , ..., g

n
c , x

n][g1, g
n
2 , ..., g

n
c , g

n
c+1]x

n

.

So

([g1, g
n
2 , ..., g

n
c , g

n
c+1x

n])x
−n

= [g1, g
n
2 , ..., g

n
c , g

n
c+1]

and

([g1, g
n
2 , ..., g

n
c , g

n
c+1x

n])x
−n

= [gx
−n

1 , (gn2 )x
−n

, ..., (gnc )x
−n

, (gnc+1)x
−n

(xn)x
−n

].

Therefore by (1), [g1, g
n
2 , ..., g

n
c , x

ngnc+1] = [g1, g
n
2 , ..., g

n
c , g

n
c+1], which proves the proposition.

�

Hekster [8] defined the concept of V-isologism between groups for an arbitrary variety
V. We apply Proposition 2.1 to this definition, for the variety V defined by the word
v = {[x1, xn2 , ..., xnc+1]}.

Definition 2.1. Let G and H be n-Abelian groups. Then (n, i)-isoclinism between G and
H is a pair of isomorphisms (α, β) with α : G/Zni (G) → H/Zni (H) and β : γni+1(G) →
γni+1(H), such that for all g1, ..., gi+1 ∈ G, β([g1, g

n
2 , ..., g

n
i+1]) = [h1, h

n
2 , ..., h

n
i+1], whenever

hj ∈ α(gjZ
n
i (G)), for 1 ≤ j ≤ i + 1. Then we write G ∼(n,i) H and we say that G and H

are (n, i)-isoclinic.
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Lemma 2.3. Let G be an n-Abelian group and H ≤ G. Then H is (n, i)-isoclinic to
HZni (G).

Proof. See [8, Lemma 4.4]. �

Lemma 2.4. If G is an n-Abelian group, then [G : Cn(a)] = |CLn(a)|, for any a ∈ G.

Proof. For any a ∈ G, f : G/C(an) → CLn(a), defined by f(gC(an)) = g−nagn, for all
g ∈ G, is a correspondence between G/Cn(a) and CLn(a). �

We have now accumulated all the information necessary to prove the following result
which is a modification of the converse of Baer’s theorem in the variety of n-Abelian groups.

Theorem 2.3. Let G be an n-Abelian group such that G/Zni (G) is finitely generated. Then
if γni+1(G) is finite, then G/Zni (G) is finite and∣∣∣∣ G

Zni (G)

∣∣∣∣ ≤ ∣∣γni+1(G)
∣∣(d( G

Zn
i

(G)
))i

where d(X) is the least number of generator of the group X.

Proof. For convenience, put t = d(G/Zni (G)). We use induction on i. If i = 1 and
G/Zn(G) = 〈x1Zn(G), x2Z

n(G), ..., xtZ
n(G)〉, thenG = HZn(G) such thatH = 〈x1, x2, ..., xt〉.

So by Lemma 2.3, G and H are (n, 1)-isoclinic. Therefore G/Zn1 (G) ∼= H/Zn1 (H) and
γn1+1(G) ∼= γn1+1(H). These isomorphisms allow us to apply H instead of G such that
d(H) = t. Thus by Lemma 2.4 we have

[H : Zn(H)] = [H : ∩ti=1C
n
H(xi)] ≤

t∏
i=1

[H : CnH(xi)] =

t∏
i=1

|xH
n

i |.

Since xh
n

i = xi[xi, h
n], for any h ∈ H, thus |xHn

i | ≤ |xiHn| = |Hn| where Hn = γn2 (H).

Therefore [H : Zn(H)] ≤
∏t
i=1 |Hn| = |Hn|t = |γn2 (H)|t. Now suppose that the assertion

holds for i− 1. Let

G/Zni (G) = 〈x1Zni (G), x2Z
n
i (G), . . . , xtZ

n
i (G)〉

and γni+1(G) be finite. Then G and H are (n, i)-isoclinic where H = 〈x1, · · ·xt〉. Therefore
γni+1(H) is finite. Thus by Theorem 2.2, γni (H/Zn(H)) is finite. Hence the induction
assumption holds, for H/Zn(H). So we have∣∣∣∣ H

Zni (H)

∣∣∣∣ =

∣∣∣∣ H/Zn(H)

Zni (H)/Zn(H)

∣∣∣∣ =

∣∣∣∣ H/Zn(H)

Zni−1(H/Zn(H))

∣∣∣∣ ≤ |γni ( H

Zn(H)

)
|t

i−1

. (3)

Since
⋂t
i=1 C

n
H(xi) = Zn(H), thus Zn(H) ∩ γni (H) =

⋂t
i=1 C

n
γn
i (H)(xi). So

γni

(
H

Zn(H)

)
=
γni (H)Zn(H)

Zn(H)
∼=

γni (H)

Zn(H) ∩ γni (H)
=

γni (H)⋂t
i=1 C

n
γn
i (H)

.

Now we have

[γni (H) :

t⋂
i=1

Cnγn
i (H)(xi)] ≤

t∏
i=1

[γni (H) : Cnγn
i (H)(xi)]

=

t∏
i=1

|xiγni+1(H)|

= |γni+1(H)|t.
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On the other hand, G and H are (n, i)-isoclinic. Therefore by (3),∣∣∣∣ G

Zni (G)

∣∣∣∣ =

∣∣∣∣ H

Zni (H)

∣∣∣∣ ≤ (|γni+1(H)|t
i−1

)t = |γni+1(H)|t
i

= |γni+1(G)|t
i

.

�

Now an attempt will be made to study the finiteness of the n-center factor of n-Abelian
groups under conditions different from Theorem 2.3.

Theorem 2.4. Let G be an n-Abelian group having a normal subgroup A such that the index
of CnG(A) in G is finite and G/A is finitely generated by g1A, ..., grA where |gGn

i | <∞, for
1 ≤ i ≤ r. Then G/Zn(G) is finite.

Proof. Let G/A be generated by g1A, ..., grA, for some gi ∈ G, where 1 ≤ i ≤ r. Let X =
{g1, ..., gr} and A be generated by a set Y . Then G = 〈X∪Y 〉 and Zn(G) = CnG(X)∩CnG(Y ).
Note that CnG(A) = CnG(Y ). Therefore CnG(Y ) is of finite index in G. On the other hand,

since |gGn

i | < ∞, for 1 ≤ i ≤ r, CnG(X) is also of finite index in G, by Lemma 2.4. Hence
G/Zn(G) = G/(CnG(X) ∩ CnG(Y )) is finite. �

Theorem 2.5. Let G be an n-Abelian and let |γn2 (G)/(γn2 (G) ∩ Zn(G))| = t. Then∣∣∣∣ G

Zn2 (G)

∣∣∣∣ ≤ t2 logt
2 .

Proof. For the proof we refer the reader to [15]. �

Yadav provided a modification of the converse of Schur’s theorem in [19]. The next
result is a generalization of Yadav’s result.

Theorem 2.6. For an n-Abelian group G, G/Zn(G) is finite if any one of the following
holds.
(i) Zn2 (G)/Zn(Zn2 (G)) is finitely generated and γn2 (G) is finite.
(ii) G/Zn(Zn2 (G)) is finitely generated and G/(Zn2 (G)γn2 (G)) is finite.
(iii) γn2 (G) is finite and Zn(Zn2 (G)) = Zn2 (G).
(iv) γn2 (G) is finite and Zn2 (G) ≤ γn2 (G).

Proof. Since γn2 (G) is finite, it follows from Theorem 2.5, that G/Zn2 (G) is finite. Now using
the fact that Zn2 (G)/Zn(Zn2 (G)) is finitely generated, it follows that G/Zn(Zn2 (G)) is finitely
generated. Take A = Zn(Zn2 (G)). Then note that A is a normal subgroup of G and since
Zn2 (G) ≤ CnG(A), so the index of CnG(A) in G is finite. Hence G/Zn(G) is finite, by Theorem
2.4 and (i) follows.
Again take A = Zn(Zn2 (G)) and note that Zn2 (G)γn2 (G) ≤ CnG(A). So proof of (ii) directly
follows from Theorem 2.4. Proof of (iii) follows from Theorem 2.4 by taking A = Zn2 (G)
and using Theorem 2.5. If Zn2 (G) ≤ γn2 (G), then Zn(Zn2 (G)) = Zn2 (G). Thus (iv) follows
from (iii). �

To close this article we give some bounds for the order of G/Zn(G), for an n-Abelian
group G, which generalize some results of [19].

Theorem 2.7. Let G be an n-Abelian group in which [γn2 (G)Zn(G) : Zn(G)] = t. Let
Zn2 (G)/Zn(G) be finitely generated by x1Z

n(G), x2Z
n(G), . . . , xsZ

n(G) such that exp([xi, G
n])

is finite, for any 1 ≤ i ≤ s and let Zn2 (G)/Zn(G) has no element as xZn(G) such that
xn ∈ Zn(G). Then ∣∣∣∣ G

Zn(G)

∣∣∣∣ ≤ t2 log2 t
s∏
i=1

exp([xi, G
n]).
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Proof. From Theorem 2.5, |G/Zn2 (G)| ≤ t2 log2 t. By hypothesis exp([xi, G
n]) is finite, for

any 1 ≤ i ≤ s. Suppose that exp([xi, G
n]) = ti. Since xi ∈ Zn2 (G), so [xki , G

n] ⊆ Zn(G), for
any integer k. Then we can use induction on k to prove [xki , g

n] = [xi, g
n]k. So [xtii , g

n] =

[xi, g
n]ti = 1, for any 1 ≤ i ≤ s. Thus xtii ∈ Zn(G) and no lesser power of xi than ti can lie

in Zn(G). Since Zn2 (G)/Zn(G) has no element as xZn(G) such that xn ∈ Zn(G), therefore∣∣∣∣(Zn2 (G)

Zn(G)

)n∣∣∣∣ =

∣∣∣∣Zn2 (G)

Zn(G)

∣∣∣∣ .
Hence (Zn2 (G)/Zn(G))n is Abelian and generated by

x1Z
n(G), x2Z

n(G), . . . , xsZ
n(G).

So ∣∣∣∣(Zn2 (G)

Zn(G)

)n∣∣∣∣ ≤ s∏
i=1

exp([xi, G
n]).

Therefore ∣∣∣∣ G

Zn(G)

∣∣∣∣ =

∣∣∣∣ G

Zn2 (G)

∣∣∣∣ ∣∣∣∣Zn2 (G)

Zn(G)

∣∣∣∣
=

∣∣∣∣ G

Zn2 (G)

∣∣∣∣ ∣∣∣∣(Zn2 (G)

Zn(G)

)n∣∣∣∣
≤ t2 log2 t

s∏
i=1

exp([xi, G
n]).

�

Lemma 2.5. Let G be an n-Abelian group and let H be a subgroup of G generated by
h1, h2, . . . , ht and Zn(G), such that [hi, G

n] is finite, for 1 ≤ i ≤ t. Then |G/CnG(H)| ≤∏t
i=1 |[hi, Gn]|.

Proof. Indeed, by Poincare’s Lemma

|G : CnG(H)| ≤
t∏
i=1

|G : CnG(hi)| =
t∏
i=1

|hG
n

i |.

Since |G : CnG(z)| = 1, for any z ∈ Zn(G) and |[hi, Gn]| = |hGn

i |, the desired conclusion
follows as well. �

Proposition 2.2. Let G be an n-Abelian group and assume that G/Zn(G) is finitely gen-
erated by x1Z

n(G), x2Z
n(G), . . . , xtZ

n(G) such that [xi, G
n] is finite, for 1 ≤ i ≤ t. Then∣∣∣∣ G

Zn(G)

∣∣∣∣ ≤ t∏
i=1

|[xi, Gn]|.

Proof. Put H = G in previous Lemma. �
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