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A NOTE ON THE p(x)-CURL-SYSTEMS PROBLEM ARISING IN

ELECTROMAGNETISM

Khaled Kefi1, Mohamed Ayari2, Khaled Benali3

This paper deals with the existence of one non trivial solution for the p(x)-Curl 
systems with sign-changing weight and nonstandard growth conditions. Our main tool 
is the variational method.
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1. Introduction

The study of partial differential equation with non standard growth conditions is an
intriguing content of exploration due to its significant part in many topics and disciplines of
mathematics. In fact this type of equations is very active in many fields, we mention e.g.,the
filtration of barotropic gas through a porous medium Antontsev-Shmarev [3], image process-
ing Chen-Levine-Rao [5], stationary thermorheological viscous flows of non-Newtonian fluids
Rajagopal-Ružička,[21] electrorheological fluids Ružička [22] and elastic mechanics Zhikov
[24]. For recent problems involving these kind of operators, the reader can be referred to
the papers Ge [12], Hsini-Irzi-Kefi [16], Hou-Ge-Zhang [17], Kefi [18], Kefi-Irzi-Al-Shomrani-
Repovš [19] and Hamdani et al [15].

In this paper, we shall show the existence of a non-trivial weak solution for the
following problem involving the p(x)-curl operator ∇× (|∇ × u|p(x)−2∇× u) + a(x)|u|p(x)−2 u = λV (x)|u|q(x)−2u, ∇ · u = 0 in Ω

|∇ × u|p(x)−2∇× u× n = 0, u · n = 0, on ∂Ω,
(1)

where Ω is a bounded simply connected domain of R3 with a C1,1 boundary denoted by ∂Ω,
p(x), q(x) ∈ C(Ω), 1 < p− ≤ p(x) ≤ p+ < 3 and p(x) satisfies logarithmic continuity: there
exists a function γ : R+

0 → R+
0 such that

∀x, y ∈ Ω, |x− y| < 1, |p(x)− p(y)| ≤ γ(|x− y|), lim
t→0+

γ(t) log
1

t
= C < ∞.

u is a vector function on Ω. The divergence of u = (u1, u2, u3) is denoted by

∇ · u = ∂x1
u1 + ∂x2

u2 + ∂x3
u3
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and the curl of u is defined by

∇× u = (∂x2u3 − ∂x3u2, ∂x3u1 − ∂x1u3, ∂x1u2 − ∂x2u1).

Then ∇× u and ∇ · u satisfy the following identity

−∆u = ∇× (∇× u)−∇(∇ · u),
where ∆u = (∆u1,∆u2,∆u3) and ∆ui = ∇ · (∇ui), i = 1, 2, 3.
The p(x)-curl operator is a natural generalization of the p-curl operator which appear in
many papers in literature, however the constant p has been replaced by the function p(x).
Note That due to the fact that the p(x)-curl operator is not homogenous, it has more
complicated structure than the the p-curl one.

In the recent years many problems involving the p(x)- curl operator have been studied
in many papers, we refer e.g., to recent works of Afrouzi, Chung-Naghizadeh [1], Ge-Lu [13],
Hamdani-Repovs̆ [14] and Xiang, Wang-Zhang [23].

For example and not limited to, we mention the paper of Afrouzi, Chung-Naghizadeh
[1] in which the authors consider the problem (1) in the particular case when a(x) ≡ 0 and
under a suitable condition on the nonlinearity, they proved the existence of solution. Their
main tools are essentially based on the mountain pass theorem and fountain theorem. The
study of the existence of solutions for p(x)-curl systems is a new and interesting topic and
only minor results involving these kind of operators are present in literature.

In the hole paper, let

C+(Ω) := {h | h ∈ C(Ω), h(x) > 1, for all x ∈ Ω},

and for η > 0, h ∈ C+(Ω), we set

h− := inf
x∈Ω

h(x), h+ := sup
x∈Ω

h(x)

and

[η]h := sup{ηh
−
, ηh

+

}, [η]h := inf{ηh
−
, ηh

+

}.
In the sequel, we shall need the following assumptions:
V : Ω → R is a sign-changing function such that V ∈ L∞(Ω) and
(A) a ∈ L∞(Ω) and ess inf

x∈Ω
a(x) = a0 > 0.

(V2) there exist an x0 ∈ Ω and two positive constants r and R with 0 < r < R such that

BR(x0) ⊂ Ω and V (x) = 0 for x ∈ BR(x0) \Br(x0) and one of the following conditions
hold

V (x) > 0,∀x ∈ Br(x0) and V (x) < 0,∀x ∈ Ω \BR(x0) (V
′

2 )

or

V (x) < 0,∀x ∈ Br(x0) and V (x) > 0,∀x ∈ Ω \BR(x0). (V
′′

2 )

Moreover, we assume that

(Q1) 1 < q(x) < p∗(x) = 3p(x)
3−p(x) for all x ∈ Ω.

(Q2) Either

max
x∈Br(x0)

q(x) < p− ≤ p+ < min
x∈Ω\BR(x0)

q(x) (Q
′

2)

or

max
x∈Ω\BR(x0)

q(x) < p− ≤ p+ < min
x∈Br(x0)

q(x). (Q
′′

2 )

Our result can be described as follow.

Theorem 1.1. Assume that the assertions (A), (V2) and (Q1) are fulfilled. Moreover,

either the assertions (V
′

2 )− (Q
′

2) or the assertions (V
′′

2 )− (Q
′′

2 ) hold. Then any λ > 0 is an
eigenvalue of problem (1).
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2. Backgrounds setting

In this part, let us recall some definitions and results be needed later.
Firstly, we recall some theories of Lebesgue-Sobolev space with variable exponent

which are described in details in Diening [15], Edmunds- Rákosnic [7], Fan- Zhang [8], Fan-
Zhao [9], Fan- Zhao- Zhao [10], Fan-Zhao [11], Kovacik- Rákosnic [20].

Let
C+(Ω) = {h ∈ C(Ω) : h(x) > 1 for any x ∈ Ω},
h− = min

x∈Ω
h(x), h+ = max

x∈Ω
h(x) for any h ∈ C+(Ω).

(2)

Obviously, 1 < h− ≤ h+ < +∞.
Denote by U(Ω) the set of all measurable real functions defined on Ω. Two functions

in U(Ω) are considered to be one element of U(Ω), when they are equal almost everywhere.
For p ∈ C+(Ω), define

Lp(x)(Ω) = {u ∈ U(Ω) :

∫
Ω

|u(x)|p(x)dx < +∞}, (3)

with the norm |u|Lp(x)(Ω) = |u|p(x) =inf{λ > 0 :
∫
Ω
|u(x)λ |p(x)dx ≤ 1}, and

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)} (4)

with the norm ∥u∥ = ∥u∥W 1,p(x)(Ω) = |u|p(x) + ∥∇u∥p(x).
Denote W

1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) in W 1,p(x)(Ω).
Hereafter, let

p∗(x) =


3p(x)

3− p(x)
, p(x) < 3,

+∞, p(x) ≥ 3.

(5)

We recall that the variable exponent Lebesgue spaces are separable and reflexive
Banach spaces. Denote by Lp′(x)(Ω) the conjugate Lebesgue space of Lp(x)(Ω) with 1

p(x) +
1

p′(x) = 1, then the Hölder type inequality∫
Ω

|uv|dx ≤ (
1

p−
+

1

p′−
)|u|p(x)|v|p′(x), u ∈ Lp(x)(Ω), v ∈ Lq(x)(Ω) (6)

holds. Furthermore, define the mapping ρ : Lp(x)(Ω) → R by

ρ(u) =

∫
Ω

|u(x)|p(x)dx, (7)

then the following relations hold

|u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x),

|u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x).
(8)

Proposition 2.1. (See Fan-Zhang[8] If q ∈ C+(Ω) and q(x) < p∗(x) for any x ∈ Ω, then
the embedding from W 1,p(x)(Ω) to Lq(x)(Ω) is compact and continuous.

Let Lp(x)(Ω) = Lp(x)(Ω)× Lp(x)(Ω)× Lp(x)(Ω) and define

Wp(x)(Ω) = {u ∈ Lp(x)(Ω) : ∇× u ∈ Lp(x)(Ω),∇ · u = 0,u · n|∂Ω = 0},

where n denotes the outward unitary normal vector to ∂Ω. Equip Wp(x)(Ω) with the norm

∥u∥ = ∥u∥Wp(x)(Ω) = |u|Lp(x)(Ω) + |∇ × u|Lp(x)(Ω).
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If p− > 1, then by Theorem 2.1 of [2], Wp(x)(Ω) is a closed subspace of W1,p(x)
n (Ω), where

W1,p(x)
n (Ω) = {u ∈ W1,p(x)(Ω) : u · n|∂Ω = 0}

and

W1,p(x)(Ω) = W 1,p(x)(Ω)×W 1,p(x)(Ω)×W 1,p(x)(Ω).

Thus, we have the following theorem.

Theorem 2.1. (See S. Antontsev, F. Mirandac [2, Theorem 2.1]) Assume that 1 < p− ≤
p+ < ∞ and p satisfies (1.2). Then W p(x)(Ω) is a closed subspace of W1,p(x)

n (Ω). Moreover,

if p− > 6
5 , then |∇×·|Lp(x)(Ω) is a norm in Wp(x)(Ω) and there exists C = C(N, p−, p+) > 0

such that

∥u∥ ≤ C|∇ × u|Lp(x)(Ω)

Corollary 2.1. (See Bahrouni-Repovs̆ [4, Corollary 2.5]) The embedding Wp(x)(Ω) ↪→
Lq(x)(Ω) is compact, with 1 < p− ≤ p+ < 3, q ∈ C(Ω) and 1 ≤ q(x) < p∗(x) in Ω.

Moreover, (Wp(x)(Ω), ∥u∥) is a uniformly convex and reflexive Banach space.

Let

∥u∥a = inf
{
µ > 0 :

∫
Ω

(
|∇ × u

µ
|p(x) + a(x)|u(x)

µ
|p(x)

)
dx ≤ 1

}
for all u ∈ Wp(x)(Ω). Since a− > 0, it’s easy to see that ∥ · ∥a is equivalent to the norm

∥ · ∥Wp(x)(Ω). In this paper, we shall use for convenience the norm ∥u∥a on Wp(x)(Ω).

Proposition 2.2. (See Hamdani-Repovs̆ [14])

Let Λp(x),a(u) =

∫
Ω

(
|∇ × u|p(x) + a(x)|u(x)|p(x)

)
dx for all u ∈ Wp(x)(Ω).

Then

[∥ u ∥a]p ≤ Λp(x),a(u) ≤ [∥ u ∥a]p.

Consider the following function:

Φ(u) =

∫
Ω

1

p(x)
|∇ × u|p(x)dx+

∫
Ω

a(x)

p(x)
|u|p(x)dx,u ∈ Wp(x)(Ω). (9)

We know that(see [23, Lemma 3.1]) Φ ∈ C1(Wp(x)(Ω),R) and the p(x)-curl operator
∇× (|∇ × u|p(x)−2∇× u) is the derivative operator of Φ in the weak sense.

We denote ξ= Φ′ : Wp(x)(Ω) → (Wp(x)(Ω))∗, then

⟨ξ(u),v⟩ =
∫
Ω

(|∇ × u(x)|p(x)−2∇× u(x) · ∇ × v(x))dx

+

∫
Ω

a(x)|u(x)|p(x)−2u(x) · v(x)dx, ∀ u,v ∈ Wp(x)(Ω).

(10)

Furthermore, one has

Proposition 2.3. Set X = Wp(x)(Ω), ξ is as above, then
(a) ξ : X → X∗ is a continuous, bounded and strictly monotone operator.
(b) ξ : X → X∗ is a mapping of type (S)+, i.e., if un ⇀ u weakly in X and

lim sup
n→∞

⟨ξ(un),un − u⟩ ≤ 0, implies un → u in X.

(c) ξ : X → X∗ is a homeomorphism.

In the rest of paper for u ∈ Lp(x)(Ω), we use the notation |u|p(x) instead of ∥u∥Lp(x)(Ω).

In order to formulate the variational approach to problem (1), let us recall the defi-
nition of a weak solution for our problem.
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Definition 2.1. We say that u ∈ X is a weak solution of problem (P ), if∫
Ω

|∇ × u|p(x)−2∇× u · ∇ × v dx+

∫
Ω

a(x)|u|p(x)−2u · v dx

− λ

∫
Ω

V (x)|u|q(x)−2u · v dx = 0, for all v ∈ X.

(11)

3. Proof of the Main Result

In order to prove Theorem 1.1 let us define the functions q1 and q2 as follows
q1 : Br(x0) → (1,+∞), q1(x) = q(x) for any x ∈ Br(x0) and

q2 : Ω\BR(x0) → (1,+∞), q2(x) = q(x) for any x ∈ Ω\BR(x0).
We also introduce here the notations

q−1 = min
x∈Br(x0)

q1(x), q+1 = max
x∈Br(x0)

q1(x)

q−2 = min
x∈Ω\BR(x0)

q2(x), q+2 = max
x∈Ω\BR(x0)

q2(x).

By the conditions (Q1) and (Q
′

2)

1 < q−1 ≤ q+1 < p− ≤ p+ < q−2 ≤ q+2 < p∗(x) for all x ∈ Ω, (12)

hence, for i = 1, 2, X is continuously embedded in Lqi(Ω), we deduce that there exists a
positive constant ci such that

|u|Lqi (Ω) ≤ ci||u||a, for all u ∈ X and i = 1, 2. (13)

To begin, let us denote

Ψ(u) :=

∫
Ω

V (x)

q(x)
|u|q(x)dx.

The Euler-Lagrange functional corresponding to problem (1) is then defined by Iλ :
X → R,

Iλ(u) = Φ(u)− λΨ(u), for all u ∈ X,

where

Φ(u) =

∫
Ω

1

p(x)
|∇ × u|p(x)dx+

∫
Ω

a(x)

p(x)
|u|p(x)dx.

By using inequality (8), one has

|Ψ(u)| ≤ 1

q−

∫
Ω

|V (x)||u|q(x)dx ≤ 1

q−
|V |∞

∫
Ω

|u|q(x)dx ≤ 1

q−
|V |∞[∥|u∥a]q.

The following result asserts the existence of a “valley” for Ψλ near the origin.

Lemma 3.1. There exists u0 ∈ X, such that u0 ̸= 0, and Iλ(tu0) < 0 for any t > 0 small
enough.
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Proof. Let u0 ∈ (C∞
0 (Ω))3, there exist x1 ∈ Br(x0) and ϵ > 0 such that for any Bϵ(x1) ⊂

Br(x0) we have |u0(x1)| > 0. Letting 0 < t < 1 we then obtain

Iλ(tu0) = (

∫
Ω

1

p(x)

(
|∇ × (tu0)|p(x) + a(x)|tu0|p(x)

)
dx− λ

∫
Ω

V (x)

q(x)
|tu0|q(x)dx

≤ 1

p−

∫
Ω

tp(x)
(
|∇ × u0|p(x) + a(x)|u0|p(x)

)
dx− λ

∫
Br(x0)

V (x)

q1(x)
tq1(x)|u0|q1(x)dx

≤ tp
−

p−

∫
Ω

(
|∇ × u0|p(x) + a(x)|u0|p(x)

)
dx− λtq

+
1

q+1

∫
Br(x0)

V (x)|u0|q1(x)dx

≤ tp
−

p−

∫
Ω

(
|∇ × u0|p(x) + a(x)|u0|p(x)

)
dx− λtq

+
1

q+1

∫
Bϵ(x1)

V (x)|u0|q1(x)dx.

Obviously, we have Iλ(tu0) < 0 for any 0 < t < δ
1

p−−q
+
1 , where

0 < δ < min

{
1,

λp−

q+1

∫
Bϵ(x1)

V (x)|u0|q1(x)dx∫
Ω

(
|∇ × u0|p(x) + a(x)|u0|p(x)

)
dx

}
.

Finally, we point out that∫
Ω

(
|∇ × u0|p(x) + a(x)|u0|p(x)

)
dx > 0.

Indeed, supposing the contrary we have

∫
Ω

(
|∇ × u0|p(x) + a(x)|u0|p(x)

)
dx = 0. By Propo-

sition 2.2, we deduce that ∥u0∥a = 0 and consequently u0 = 0 in Ω which is a contradiction.
The proof of Lemma 3.1 is complete. □

Proof of Theorem 1.1. We prove Theorem 1.1 in details for the case when the
conditions (V

′

2 ) − (Q
′

2) hold, the remaining one can be made by similarly arguments so we
omit it. Using Hölder inequality (6) for ∥u∥a > 1 combined with relations (8), it follows for
any λ > 0 and all u ∈ X with ∥u∥a > 1,

Iλ(u) =

∫
Ω

( 1

p(x)
|∇ × u|p(x)dx+

a(x)

p(x)
|u|p(x)

)
dx− λ

∫
Ω

V (x)

q(x)
|u|q(x)dx

≥ 1

p+
∥u∥p

−

a − λ

q−

∫
Ω

V (x)|u|q(x)dx

≥ 1

p+
∥u∥p

−

a − λ

q−
|V |∞

∫
Br(x0)

|u|q1(x)dx

≥ 1

p+
∥u∥p

−

a − λ

q−
|V |∞[c1∥u∥a]q.

By (Q
′

2), we have q+1 < p−, then Iλ(u) → +∞, as ∥u∥a → +∞. This implies that Iλ is
coercive and bounded from below on X. On the other hand, by (Q1), the embedding X ↪→
Lq(x)(Ω) is compact, so Iλ is weakly lower semicontinuous then it has a global minimizer w.
Due to Zeidler [[25] Theorem D.25], w is weak solution of problem (1). Finally, we point out
that due to the Lemma 3.1, this minimizer is nontrivial and thus any λ > 0 is an eigenvalue
of problem (1). Which ends the proof.
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