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GLOBAL DYNAMICS OF A GENERALIZED EPIDEMIOLOGICAL

MODEL FOR DISTRIBUTED DENIAL OF SERVICE ATTACKS
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In this work, we propose and study a generalized epidemiological model for

distributed denial of service (DDoS) attacks. This model incorporates a recognized epi-

demiological model for DDoS attacks with nonlinear incidence rates. By using a simple

approach, which is based on global stabilizability of two cascade connected nonlinear sys-

tems, global asymptotic stability of disease-free and disease-endemic equilibrium points

is analyzed rigorously. As an important consequence, global dynamics of the proposed

model is fully determined. The obtained results not only improve upon some findings

reported in previous studies, but also provide useful applications in both theory and prac-

tice. Lastly, the theoretical results are supported by a set of numerical examples.

Keywords: Epidemiological models, Nonlinear incidence, DDoS attacks, Global asymp-

totic stability, Cascade systems

MSC 2020: 34C60, 37N99

1. Introduction

In this work, we revisit a modified epidemiological model for distributed denial of
service (DDoS) attacks on targeted resources in computer networks, which was proposed by
Rao et al. in [19]. The mathematical model is given by

Ṡt = −βStI + ϵtRt,

İt = βStI − γIt,

Q̇t = γIt − ηQt,

Ṙt = ηQt − ϵtRt,

Ṡ = µ− βSI − µS + ϵI,

İ = βSI − (µ+ ϵ)I.
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In this model:
• the entire population of nodes is divided into attacking and targeted populations;
• the targeted population is divided into four compartments: susceptible compartment
(St), infected compartment (It), quarantined compartment (Qt) and recovered com-
partment (Rt);

• the attacking population is also divided in two compartments: susceptible (S) and
infected (I) compartments;

• all the parameters are assumed to be positive due to epidemiological reasons.
We refer the readers to [19] for more details of the model (1) and its dynamical qualitative
properties. Also, in a recent work [18], Pham and Hoang have analyzed global asymptotic
stability (GAS) of the model (1) based on global stabilizability of two cascade connected
nonlinear systems [20].

It is important to remark that the model (1) used the interaction term of the form
f(S, I) = βSI, which was first introduced in a classical epidemic model proposed by Kermack
and McKendrick in 1927 [10]. However, as pointed out by Capasso and Serio in [4] that
this function may be quite unrealistic in many cases. For this reason, there have been many
epidemic models that used nonlinear incidence rates of the form f(S, I) = βg(I)S, where
g(I) is a nonlinear function of I and satisfies (see, e.g., [4, 5, 7, 8, 9, 16, 15, 22, 23])
(P1): g(0) ≥ 0 for I ≥ 0 and g(I) = 0 if and only if g(0) = 0;
(P2): g′(I) ≥ 0 for all I ≥ 0;
and
(P3): g′′(I) ≤ 0 for all I ≥ 0.
Note that two famous nonlinear incidence rates, namely the saturated incidence f(S, I) =
βSI/(1 + γI) and the standard incidence f(S, I) = βSI/(S + I), satisfy all the conditions
(P1)-(P3).

In this work, we will study a generalized version of (1) by incorporating it with
nonlinear incidence rates. More precisely, the generalized model under consideration is
given by

Ṡt = −β1Stg1(I) + ϵtRt,

İt = β1Stg1(I)− γIt,

Q̇t = γIt − ηQt,

Ṙt = ηQt − ϵtRt,

Ṡ = µ− β2Sg2(I)− µS + ϵI,

İ = β2Sg2(I)− (µ+ ϵ)I,

(2)

where g1 and g2 are nonlinear functions satisfying the properties (P1)-(P3).
Our main objective is to conduct a rigorous mathematical analysis for global dynamics

of the proposed model (2). After determining the basic reproduction number and the set of
equilibrium points, we use the approach introduced by Pham and Hoang in [18] to study the
GAS of the equilibrium points. Following this approach, the GAS analysis of the nonlinear
system (2) is reduced to the GAS analysis of simple linear systems. As an important
consequence, the GAS problem for (2) is resolved in a straightforward manner.

It is important to note that the model (1) can be considered as a generalization of a
mathematical model for DDoS attacks, which was constructed by Haldar et al. in [6]. Other
epidemiological models that are similar to (1) can be found in [12, 14, 24]. We can introduce
the nonlinear incidence rates to the above-mentioned models. Then, the approach used in
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this work can be applied to study the GAS of the resulted mathematical models with the
nonlinear incidence rates.

With the incorporation of nonlinear incidence rates, the proposed model (2) becomes
more flexible than the original model (2). As a result, it can capture a wider range of malware
spreading and cyber-attack scenarios. This may have practical significance, particularly for
studying parameter estimation problems with real data and for estimating the scale of cyber-
attacks in reality.

On the other hand, from the GAS of the equilibrium points (Section 2), we can
propose measures and strategies to prevent malware spreading as well as cyber-attack based
on controlling parameters so that the basic reproduction number R0 is greater than 1. This
ensure that the disease-free equilibrium point is globally asymptotically stable; consequently,
malware spreading and cyber-attacks are eventually eliminated.

The plan of this work is as follows: Global dynamics of (2) is studied in Section 2.
Some numerical examples supporting the theoretical assertions are reported in Section 3.
The last section presents some conclusions and open problems.

2. Dynamical analysis of the proposed model

In this section, we analyze dynamical qualitative properties of (2) on its positively
invariant set defined by

Ω = {(St, It, Qt, Rt, S, I) ∈ R6
+|St + It +Rt +Qt = S + I = 1}. (3)

We first determine the basic reproduction number of the attacking population by using the
method developed in [25]. For this reason, consider the subsystem modeling the attacking
population of (2):

Ṡ = µ− β2Sg2(I)− µS + ϵI,

İ = β2Sg2(I)− (µ+ ϵ)I.

Since S + I = 1, this system is reduced to

İ = β2(1− I)g2(I)− (µ+ ϵ)I = F(I)− V(I),

where

F(I) = β2g2(I), V(I) = β2Ig2(I) + (µ+ ϵ)I.

Consequently, at the disease-free equilibrium point I0 = 0, we have

F := DF(0) = β2g
′
2(0), V := DV(0) = µ+ ϵ.

By using the method developed in [25], the basic reproduction number is computed as the
spectral radius of a matrix FV −1 and hence is given by

R0 =
β2g

′
2(0)

µ+ ϵ
.

As will be seen later, asymptotic stability of equilibrium points of (2) depends on the value
of R0 relative to 1.

Next, we determine the set of equilibrium points of (2). It is easily seen that (2)
always has a disease-free equilibrium (DFE) point, which is given by

E0 = (S0
t , I

0
t , Q

0
t , R

0
t , S

0, I0) = (1, 0, 0, 0, 1, 0).

To determine the possible disease-endemic equilibrium points, we need the following auxil-
iary result.

Lemma 2.1. If g is any function satisfying the properties (P1)-(P3), then Ig′2(I) ≤ g2(I)
for all I ≥ 0.
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Proof. Let us consider a function

z(I) = Ig′2(I)− g2(I), I ≥ 0.

Then, z′(I) = Ig′′2 (I) ≤ 0, which implies that z(I) ≤ z(0) = 0 for I ≥ 0. This is the desired
conclusion. The proof is complete. □

Lemma 2.2. The model (2) has a unique (positive) equilibrium point E∗ = (S∗
t , I

∗
t , Q

∗
t , R

∗
t , S

∗, I∗)
if and only if R0 > 1. Furthermore, if E∗ exists, it is defined by

S∗ = 1− I∗,

I∗t =
β1g1(I

∗)

β1g1(I∗)

(
1 +

γ

η
+

γ

ϵt

)
+ γ

,

Q∗
t =

γ

η
I∗t ,

R∗
t =

γ

ϵt
I∗t ,

S∗
t = 1− I∗t −Q∗

t −R∗
t ,

(4)

where I∗ is a unique positive solution of the equation

β2(1− I)g2(I)− (µ+ ϵ)I = 0. (5)

Proof. It follows from the two last equations of (2) that I∗ must be a positive solution of
the (5), or equivalently

F (I) =
β2(1− I)g2(I)

I
− (µ+ ϵ) = 0. (6)

From the assumption R0 > 1 and Lemma 2.1, we obtain

lim
I→0

F (I) = β2g
′
2(0)− (µ+ ϵ) > 0,

F ′(I) =
β2(1− I)(Ig′2(I)− g2(I))− β2Ig2(I)

I2
≤ 0, 0 < I ≤ 1.

(7)

On the other hand,

F (1) = −(µ+ ϵ) < 0.

Therefore, (6) has a unique positive equation I∗ ∈ (0, 1). Then, (4) is obtained from the
relation S∗ = 1− I∗ and from the first four equations of (2). The proof is complete. □

We now analyze the GAS of the DFE and disease-endemic equilibrium (DEE) points
of (2). Since Ω defined in (3) is a positively invariant set, we only need to consider the
following sub-system of (2):

İt = β1(1− It −Qt −Rt)g1(I)− γIt,

Q̇t = γIt − ηQt,

Ṙt = ηQt − ϵtRt,

İ = β2(1− I)g2(I)− (µ+ ϵ)I

(8)

on a feasible set defined by

Ω∗ = {(It, Qt, Rt, I) ∈ R4
+|It +Qt +Rt ≤ 1, I ≤ 1}. (9)

The DFE and DEE points of (8) are

e0 = (I0t , Q
0
t , R

0
t , I

0) = (0, 0, 0, 0), e∗ = (I∗t , Q
∗
t , R

∗
t , I

∗),

respectively. Here, I∗t , Q
∗
t , R

∗
t and I∗ are given in (4).
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We now focus on the last equation of (8):

İ = G(I) := β2(1− I)g2(I)− (µ+ ϵ)I. (10)

Before analyzing the GAS of (8), we need the following auxiliary result.

Theorem 2.1. (i) If R0 < 1, then the trivial equilibrium point f0 = 0 of (10) is globally
asymptotically stable with respect to the set {I ∈ R|I ≥ 0}.
(ii) Assume that R0 > 1. Then, (10) has a unique positive equilibrium point f∗ = I∗.
Moreover, f∗ is globally asymptotically stable with respect to the set {I ∈ R|I > 0}.

Proof. Proof of Part (i). First, we show that f0 is locally asymptotically stable. Indeed,
the Jacobian matrix of (10) evaluated at f0 = 0 is given by

J(f0) = β2g
′
2(0)− (µ+ ϵ) < 0.

So, J(f0) is locally asymptotically stable ([11, 21]).
On the other hand, it follows from the properties (P1)-(P3) and R0 < 1 that the

derivative of G satisfies

G′(I) = β2g
′
2(I)− β2Ig

′
2(I)− β2g2(I)− (µ+ ϵ)

≤ β2g
′
2(I)− (µ+ ϵ) ≤ β2g

′
2(0)− (µ+ ϵ) < 0,

which implies that İ = G(I) ≤ G(0) = 0 for I ≥ 0. Since I(t) is decreasing and 0 ≤ I(t) ≤ 1
for t ≥ 0, its limit exists and equals f0, that is limt→∞ I(t) = f0. Hence, the GAS of f0 is
proved.
Proof of Part (ii). First, it is easy to verify that (10) admits the set Ω1 := {I|I > 0}
as a positively invariant set and has a unique positive equilibrium point f∗ = I∗. We now
rewrite (10) in the form

İ = IF (I) = I(F (I)− F (I∗)), (11)

where F is defined in (6). Using Taylor’s expansion theorem gives

F (I)− F (I∗) = F ′(ξI)(I − I∗), (12)

where ξI is between I and I∗. Consider a Lyapunov function candidate (see [13, 26])

V2(I) = I − I∗ ln
I

I∗
− I∗.

From (11) and (12), we have that

dV2

dt
=

dV2

dI

dI

dt
=

I − I∗

I
IF ′(ξI)(I − I∗) = F ′(ξI)(I − I∗)2.

On the other hand, we deduce from the last estimate of (7) that F ′(I) < 0 for all 0 < I ≤ 1.
As a consequence, dV2/dt ≤ 0 for all I > 0 and dV2/dt = 0 if and only if I = I∗. Hence,
the Lyapunov function V2 satisfies Barbashin-Krasovskii-LaSalle theorem (see [11, Theorem
4.2] and [17]). Hence, we conclude that f∗ is globally asymptotically stable. The proof is
complete. □

The following theorem is the main result of this section.

Theorem 2.2 (GAS analysis). (i) If R0 < 1, then the DFE point e0 of (8) is globally
asymptotically stable.
(ii) Suppose that R0 > 1. Then, the DEE point e∗ of (8) is globally asymptotically stable if
I(0) > 0.



114 Hoai Thu Pham, Dinh Hung Tran, Ha Hai Truong, Manh Tuan Hoang

Proof. Proof of Part (i). From the conclusion of Part (i) of Theorem 2.1 and [20, Corollary
4.3], it is enough to study the GAS of the following system, which is obtained from (8) by
substituting I = 0 into the first three equations of (8):

İt = −γIt, Q̇t = γIt − ηQt, Ṙt = ηQt − ϵtRt. (13)

The system (13) has a unique equilibrium point ẽ0 = (0, 0, 0). We will show that ẽ0 is
globally asymptotically stable. Indeed, (13) can be rewritten in the matrix form v̇ = Av,
where A and v are given by in (14)

v =
[
It Qt Rt

]T
, A =

−γ 0 0
γ −η 0
0 η −ϵt

 . (14)

Three eigenvalues of A are −γ,−η and −ϵt, which are all negative. So, from the stability
theory of systems of linear ODEs (see [3, 11, 21]), we conclude that the origin is a globally
asymptotically stable equilibrium point of (13). Then, the GAS of f0 is obtained by using
[20, Corollary 4.3].
Proof of Part (ii). From the conclusion of Part (ii) of Theorem 2.1, we have I∗ is the
globally asymptotically stable equilibrium point of the fourth equation of (8). Hence, by
applying [20, Corollary 4.3] to the cascade system (8), it is enough to study the GAS of
the following system, which is obtained from (8) by substituting I = I∗ into the first three
equations of (8):

İt = β1g1(I
∗)(1− It −Qt −Rt)− γIt,

Q̇t = γIt − ηQt,

Ṙt = ηQt − ϵtRt.

(15)

Since (I∗t , Q
∗
t , R

∗
t ) is a unique equilibrium point of (15), we can write (15) in the matrix

form u̇ = Bu, where u and B are given by in (16)

u =
[
It − I∗ Qt −Q∗

t Rt −R∗
t

]T
, B =

−β1g1(I
∗)− γ −β1g1(I

∗) −β1g1(I
∗)

γ −η 0
0 η −ϵt

 . (16)

We will show that any eigenvalue λ of the coefficient matrix B satisfies Re(λ) < 0. Indeed,
the characteristic polynomial of B is

PB(x) = x3 + a1x
2 + a2x+ a3,

where

a1 = ϵt + η + γ + β1

(
g1(I

∗)
)2
,

a2 = ϵt(η + γ + β1g1(I
∗)) + η(γ + β1g1(I

∗)) + β1g1(I
∗)γ,

a3 = ϵt[η(γ + β1g1(I
∗)) + β1g1(I

∗)γ] + β1ηg1(I
∗)γ.

It is clear that a1, a2 and a3 are positive. On the other hand,

a1a2 − a3 = (β2
1ϵt + β2

1η + β2
1γ)g1(I

∗)2

+ (β1ϵ
2
t + 2β1ϵtη + 2β1ϵtγ + β1η

2 + 2β1ηγ + β1γ
2)g1(I

∗)

+ ϵ2tη + ϵ2tγ + ϵtη
2 + 2ϵtηγ + ϵtγ

2 + η2γ + ηγ2 > 0.

Hence, the Routh-Hurwitz criteria [1] implies that the real parts of all the roots of PB(x) are
negative. By using the stability theory of systems of linear ODEs ([3, 11, 21]), we conclude
that (I∗t , Q

∗
t , R

∗
t ) is a globally asymptotically stable equilibrium point of (15).
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Now, by applying [20, Corollary 4.3], we obtain the GAS of e∗ of (8). The proof is
completed. □

Remark 2.1. From the conclusion of Theorem 2.2, the GAS of the DFE and DEE points
of the full models (2) is shown.

3. Numerical experiments

In this section, two numerical examples are reported to support the theoretical find-
ings, in which the classical four stages Runge-Kutta method (see [2, 21]) using a small step
size, namely h = 10−4, is implemented to numerically solve the model (2) over the time
interval 0 ≤ t ≤ 100. In all the examples, we will use saturated incidence rates of the form

βigi(I)S = βi
SI

1 + αiI
, i = 1, 2.

Consequently, the basic reproduction number is given by

R0 =
β2

µ+ ϵ
.

Now, consider the model (2) with the parameters and initial data given in Table 1 and
Table 2, respectively.

Table 1. Parameters used in the numerical examples.

Case β1 β2 α1 α2 γ η ϵ ϵt µ R0 GAS Equilibrium point

1 0.25 0.2 0.1 0.15 0.1 0.5 0.15 0.25 0.2 0.5714 (1, 0, 0, 0, 0, 1, 0)

2 0.4 0.5 0.02 0.05 0.1 0.1 0.05 0.025 0.2 2 (0.0794, 0.1534, 0.1534, 0.6137, 0.5122, 0.4878)

Table 2. Initial data used in the numerical examples.

Set St(0) It(0) Qt(0) Rt(0) S(0) I(0)

1 0.5 0.1 0.2 0.2 0.7 0.3

2 0.4 0.4 0.1 0.1 0.5 0.5

3 0.25 0.25 0.25 0.25 0.75 0.25

4 0.3 0.3 0.3 0.1 0.6 0.4

5 0.1 0.5 0.2 0.2 0.4 0.6

The solutions of the generalized system (2), which are associated with the five sets of
initial data given in Table 2, are depicted in Figures 1-2. In Figures 1(A) and 2(A), each
blue curve represents a trajectories of the targeted population that starts from one initial
condition in Table 2, and the yellow arrows describe the evolution of the model. Meanwhile,
each solid-dashed pair of curves of the same color in Figures 1(B) and 2(B) represents a
solution of the attacking population that starts from one initial condition in Table 2.

It is clear that all the solutions are stable and converge to the corresponding GAS
equilibrium points. This is evidence supporting the theoretical assertions presented in Sec-
tion 2.
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Figure 1. Dynamics of the model (2) corresponding to the parameters in
Case 1 of Table 1.
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4. Conclusions and discussions

As the main conclusion of this work, we have proposed and studied a generalized
epidemiological model for DDoS attacks, which combines a well-known mathematical model
for DDoS attacks with a general family of nonlinear incidence rates. Global dynamics of the
proposed model has been analyzed rigorously and supported by a set of numerical examples.
The obtained results not only improve upon some findings in previous studies, but also
provide useful applications in both theory and practice. In the near future, we will further
develop the approach and extend the obtained results in this work to study mathematical
and computational modeling of DDoS attacks with applications in science and engineering.
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