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KB-OPERATORS ON BANACH LATTICES AND THEIR
RELATIONSHIPS WITH DUNFORD-PETTIS AND ORDER WEAKLY
COMPACT OPERATORS

Akbar Bahramnezhad!, Kazem Haghnejad Azar®

Aqzzouz, Moussa and Hmichane proved that an operator T from a Banach
lattice E into a Banach space X is b-weakly compact if and only if {Txn}n is norm
convergent for every positive increasing sequence {xn }n of the closed unit ball Bg of E.
In the present paper, we introduce and study new classes of operators that we call K B-
operators and W K B-operators. A continuous operator T from a Banach lattice E into
a Banach space X is said to be K B-operator (respectively, W K B-operator) if {TTn}n
has a norm (respectively, weak) convergent subsequence in X for every positive increas-
ing sequence {Tn}n in the closed unit ball Bg of E. We investigate the relationships
between K B-operators (respectively, W K B-operators) and some other operators on Ba-
nach lattices spacial their relationships with Dunford-Pettis and order weakly compact
operators.

MSC2010: Primary 46B42; Secondary 47B60

Keywords: Banach lattice, K B-operator, W K B-operator, KB-space, b-weakly com-
pact operator

1. Introduction

Recall that a Riesz space E is an order vector space in which sup(z, y) (it is customary
to write sometimes x V y instead of sup(z,y)) exists for every x,y € E. Let E be a Riesz
space. For each z,y € E with < y, the set [z,y] = {z € F: 2 < z < y} is called an
order interval. A subset of E is said to be order bounded if it is included in some order
interval. An operator T': E — F between Riesz spaces is said to be order bounded if it
maps each order bounded subset of E into order bounded subset of F'. The collection of
all order bounded operators from a Riesz space E into a Riesz space F' will be denoted by
Ly(E, F). The collection of all order bounded linear functionals on a Riesz space E will be
denoted by E~, that is E~ = Ly(E,R). A subset of a Riesz space F is b-order bounded if
it is order bounded in E~~ := (E~)~. A Banach lattice F is a Banach space (E, ||.||) such
that E is a Riesz space and its norm satisfies the following property: for each x,y € E such
that |z| < |y|, we have ||z|| < ||y||. A sequence {z,}, in a Riesz space is said to be disjoint
whenever |z,| A |2,| = 0 holds for n # m. A Banach lattice £ has order continuous norm
if ||[zo| — 0 for every decreasing net (z4), with inf, z, = 0. If E is a Banach lattice, its
topological dual E’, endowed with the dual norm and dual order is also a Banach lattice. A
Banach lattice E is is said to be an AM-space if for each x,y € E such that |z| Aly| = 0, we
have ||z 4+ y|| = max{||z||, ||y||}. A Banach lattice E is an AL-space if its topological dual
E’ is an AM-space. A Banach lattice E is said to be K B-space whenever each increasing
norm bounded sequence of ET is norm convergent. An operator T : E — F between two
Riesz spaces is positive if T'(z) > 0 in F whenever > 0 in E. Note that each positive linear
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mapping on a Banach lattice is continuous. An operator T from a Banach space X into
a Banach space Y is compact (resp. weakly compact) if T'(Bx) is compact (resp. weakly
compact) where By is the closed unit ball of X. A sequence {x,}, in a normed space F
is weakly convergent to x € E if for each 2/ € E', 2/(z,) — 2/(z) in R. For terminology
concerning Banach lattice theory and positive operators, we refer the reader to the excellent
book of [1].

Alpay-Altin-Tonyali introduced the class of b-weakly compact operators for Riesz spaces
having separating order duals [2]. An operator T : E — X, mapping each b-order bounded
subset of E into a relatively weakly compact subset of X is called a b-weakly compact
operator. Any Banach lattice is a Riesz space having separating order dual. They proved
that a continuous operator T from a Banach lattice E into a Banach space X is b-weakly
compact if and only if {Tz,}, is norm convergent for each b-order bounded increasing
sequence {x,}, in ET if and only if {Tx,}, is norm convergent to zero for each b-order
bounded disjoint sequence {z,}, in ET [3]. In [6], authors proved that an operator T' from
a Banach lattice F into a Banach space X is b-weakly compact if and only if {Tx,}, is
norm convergent for every positive increasing sequence {z, }, of the closed unit ball Bg of
E. The aim of this paper is to define new classes of operators on Banach lattices that we call
K B-operators and W K B-operators, and study some of their properties. Our definitions is
based on the notion of positive increasing norm bounded sequence.

Definition 1.1. A continuous operator T' from a Banach lattice E into a Banach space X
is said to be K B-operator if {T'z,}, has a norm convergent subsequence in X for every
positive increasing sequence {x,}, in the closed unit ball Bg of E.

Definition 1.2. A continuous operator T' from a Banach lattice E into a Banach space X
is said to be WK B-operator if {T'z,}, has a weak convergent subsequence in X for every
positive increasing sequence {x,}, in the closed unit ball Bg of E.

In [7], authors proved that if E and F are Banach lattices, then each b-weakly com-
pact operator T : E — F admits a b-weakly compact adjoint 7" if and only if E' or F' is a
K B-space. They established that if £ and F' are Banach lattices such that the norm of F is
order continuous, then each operator T': E — F is b-weakly compact whenever its adjoint 7"
is b-weakly compact if and only if E or F is a K B-space. As b-weakly compact operators [7],
the class of K B-operators and W K B-operators does not satisfy duality property. In fact the
identity operator of the Banach lattice ¢! is a K B-operator (respectively, W K B-operator);
but its adjoint which is the identity operator of the Banach lattice £*°, is not a K B-operator
(respectively, W K B-operator). Conversely, the identity operator of the Banach lattice ¢g is
not a K B-operator (respectively, not W K B-operator); but its adjoint, which is the identity
operator of the Banach lattice ¢!, is a K B-operator (respectively, W K B-operator).

2. Main results

The collection of K B-operators and W K B-operators will be denoted by Lxp(FE, X)
and Wi p(FE, X). The collection of b-weakly compact operators will be denoted by Wy (E, X)
and the collection of weakly compact and compact operators will be denoted by W (E, X)
and K(F,X). Clearly K(E,X) C W(E,X)C Wy(E,X) C Lxp(E,X) C Wkp(E, X). We
will prove that if F is a K B-space, then W,,(E, X) = Lgp(E, X) for each Banach space X.

Proposition 2.1. Let E and F be Banach lattices and T : E — F be a positive operator.
Then the following statements are equivalent.

(1) T is b-weakly compact.
(2) T is K B-operator.
(3) T is W K B-operator.
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Proof. The implications (1) = (2) = (3) are obvious.

For (3) = (1) Let T : E — F be a positive W K B-operator and let {x,}, be a positive
increasing sequence in the closed unit ball B of E. By our hypothesis there exists a
subsequence {Tz,,}; which T'z,,;, —+ x, where  is an element of X. Now, by [1, Theorem

3.52], we have Tz, M> x. Since {T'x,}, is an increasing sequence, T, M> x. Then T is

b-weakly compact and we are done. (|

Example 2.2. In the statement of the following example, ¢ denotes the usual Banach
lattice of convergent real sequences and ¢y denotes the subspace of null sequences. If for
each ¢ = (z1,x2,23,...) € ¢ we put o = limx, then the operator T : ¢ — ¢o defined by
T(x) = (oo, 1 — Too, T2 — Too, -..) 18 DOt & positive operator. Clearly the sequence {Z, }m

defined by
Ly <n
Tm(n) = {12 m>n

is a positive increasing sequence in the closed unit ball of ¢. We claim that {Tz,}, has
no weak convergent subsequence. Indeed, note first that Tz,, = (%, e %,O,O7 ...), where
the %’s occupy the first n positions, is an increasing sequence which is a weak Cauchy
sequence but is not a norm Cauchy sequence in ¢q (see [1, P.233]). If {Tx,,}n, has a weak
convergent subsequence, then by [9, Proposition 1.4.1], {T%, } is norm convergent which

is a contradiction. Hence T is not K B-operator.

Note that each weakly compact operator is a K B-operator but the converse may be
false in general. For example, the identity operator I : L'[0,1] — L'[0, 1] is a K B-operator
but is not weakly compact.

Proposition 2.3. Let E and F be two Banach lattices such that the norm of E' is order
continuous. Then each positive K B-operator T : E — F' is weakly compact.

Proof. Let T : E — F be a positive K B-operator. By using Proposition 2.1, T is b-weakly
compact. Hence from [8, Theorem 2.3], T' is weakly compact. |

Recall that a Banach space is said to have Schur property whenever every weak

convergent sequence is norm convergent, i.e., whenever z,, — 0 implies ||z,| — 0. Let E,
F be Banach lattices. If either E or F' has the Schur property then L(E, F) = W,,(E, F) [3].

Proposition 2.4. Let E be a Banach lattice and X a Banach space with Schur property.
Then every W K B-operator T : E — X is a K B-operator.

Proof. Let {z,}, be a positive increasing sequence in Bg. Since T is W K B-operator, there
exists subsequence {T'x,;}; which is weakly convergent. Hence, by property Schur of X,
{Tw,,}; is norm convergent. Then T is a K B-operator. O

Proposition 2.5. The collection of all K B-operators from a Banach lattice E into a Banach
space X is a norm closed subspace for the collection of all operators from E into X.

Proof. We only show that Lxp(F,X) = Lgp(F,X). Let S € Lxp(E,X). We have to
show that S is a K B-operator. For each e > 0, there exists T € Ligp(F,X) such that

IS —T| <e. Let {x,}, be a positive increasing sequence in Bg. Since T is K B-operator,

there exists subsequence {T'z,,, }; of {T'x,}, such that Tz, M> z for an element x € X.

Since

1520, — xl| < |Szn; — Tl + | Ton, — af] < e(flz]] + 1),

ST, M> x. Then S is a K B-operator. ]
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Proposition 2.6. Let FE, F be Banach lattices and X a Banach space. Then we have the
following assertions:

(1) If T € L(F,X) and S € Lxp(E,F), then TS € Lgp(F,X). As a consequence,
Lixp(E) is a left ideal of L(E).

(2) If T € Lkp(F,X) and S € L(E,F)*, then TS € Lxg(E,F). As a consequence,
Lkg(FE) is a right ideal of L(E)™".

Proof. (1) Let S be a K B-operator and {x,}, be a positive increasing sequence in Bp.
Then there exists subsequence { Sz, }; which is norm convergent to an element x € F.
Since T is continuous, {T'Sx,,}; is norm convergent to Tx. Then T'S is a KB-
operator.

(2) Let T be a K B-operator and {zy}, be a positive increasing sequence in Bg. Since S
is positive, we may assume that {Sz,}, is a positive increasing sequence in Br. Then
{T Sz}, is a norm bounded and positive increasing sequence in F. Since T is K B-
operator, {T'Sx,}, has a norm convergent subsequence. Then T'S is a K B-operator.

This completes the proof.
O

Corollary 2.7. Let E, F' be Banach lattices, X a Banach space and S : E — F a positive
operator and T : F — X be a continuous operator. If either S or T is a KB-operator, then
TS is likewise a KB-operator.

Proof. Let E, F' be Banach lattices, X a Banach space and S : E — F' a positive operator
and T : F — X be a continuous operator. If S is a K B-operator then by part (1) of
Proposition 2.6, T'S is a K B-operator and if T is a K B-operator, then by part (2) of
Proposition 2.6, T'S is a K B-operator. O

We obtain the following result:

Corollary 2.8. The space Lxg(E) forms a two sided norm closed ideal in L(E)T.

Proof. By Proposition 2.5, The space Lxp(F) is norm closed. Let T' € Lxp(F) and S €
L(E)*. By part (2) of Proposition 2.6, T'S is a K B-operator, so, Lxp(E) is a right ideal
of L(E)™ and by part (1) of Proposition 2.6, ST is a K B-operator. Therefore, Lxp(FE) is
a left ideal of L(E)™. This completes the proof. O

Recall from [2, Corollary 2.9] that if S,T : E — F are operators between Banach
lattices with 0 < S < T and T is a b-weakly compact operator, then S is also a b-weakly
compact operator. Now, we show that K B-operators satisfy domination property.

Proposition 2.9. Let E and F be Banach lattices and S,T : E — F are operators with
0<S<T. If T is a KB-operator, then S is also a KB-operator.

Proof. Let E and F be Banach lattices and S, T : E — F are operators with 0 < S < T and
let T be a KB-operator. Since T is a positive K B-operator, by Proposition 2.1, T is b-weakly
compact. So, by above argument, S is b-weakly compact and so, is a K B-operator. O

Remark 2.10. Similarly the positive W K B-operators satisfy domination property.

Recall that a Banach lattice F is said to be K B-space whenever each increasing norm
bounded sequence of E is norm convergent. Now we obtain the following result which is
similar to [2, Proposition 2.10]:

Proposition 2.11. Let E be a Banach lattice. E is a KB-space if and only if [ : E — E
is a K B-operator.
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Proof. Let E be a K B-space and {x, }, be a positive increasing sequence in Bg. Then by
our hypothesis, {x,,}, is norm convergent. So, {zy}, = {Ix,}n is norm convergent. Then
I is K B-operator.

Conversely, let I : E — E be a K B-operator and {x,}, be an increasing norm bounded
sequence in Et. We may assume that {z,}, is a positive increasing sequence in Bg. As
I is K B-operator, {Ix,}, has a norm convergent subsequence. On the other hand, since
{n}n = {Iz,}n is an increasing sequence, {z,}, is norm convergent. So, F is a K B-
space. O

As a consequence of preceding proposition, we have the following result:

Corollary 2.12. Let E be a Banach lattice. E is a KB-space if and only if [ : E — E is
a W K B-operator.

Proposition 2.13. Let E be a Banach lattice. Then the following statements are equivalent:

(1) E is a KB-space.
(2) L(E,X) = Lgp(E, X) for each Banach space X .

Proof. Let E be a K B-space, X be a Banach space and let T be a continuous operator from
E into X, and {x, }, be a positive increasing sequence in Bg. Since E is a K B-space, {2, }n,
is norm convergent. Since T is a continuous operator, {Tz,}, is norm convergent. So, T' is
a K B-operator. Then L(E, X) C Lxp(F,X). On the other hand, Lxp(E, X) C L(E, X).
Hence Lgp(E, X) = L(E, X). Conversely, we assume that Lxg(F, X) = L(F, X) for every
Banach space X. Then the identity operator I : E — FE is a K B-operator. So by Proposition
2.11, E is a K B-space.

|

For the next two results we need the following lemmas which are just [5, Proposition
2.1] and [7, Corollary 2.3]:

Lemma 2.14. Let E be a Banach lattice. Then the following statements are equivalent:

(1) E is a KB-space.
(2) L(E,X) = Wy(E,X) for each Banach space X .

Lemma 2.15. Let F' be a Banach lattice. Then the following statements are equivalent:

(1) For any Banach lattice E, each operator from E into F is b-weakly compact.
(2) Each operator from cy into F' is b-weakly compact (resp. compact).

(3) Each positive operator from cq into F is b-weakly compact (resp. compact).
(4) F is a KB-space.

Corollary 2.16. Let E be a KB-space. Then Wy(E,X) = Lxp(E,X) for each Banach
space X .

Proof. Let E be a K B-space. Then by Proposition 2.13 and Lemma 2.14, L(E,X) =
Ligp(E,X) and Wy(E, X) = L(E, X). So, Wy(E, X) = Lxp(E, X) for each Banach space
X. This ends the proof. (]

Corollary 2.17. Let T : E — X be an operator from a Banach lattice E into a Banach
space X. If T factors through a K B-space, then T is a K B-operator.

Proof. Assume that T factors through a K B-space, i.e., there exist a K B-space F' and two
operators Q : E — F, S : F — X such that T = S o Q. Let {x,}, be a positive increasing
sequence in Bp. Since F' is a K B-space, by Lemma 2.15, ) is a K B-operator. Hence
{Qz}» has a norm convergent subsequence. Then {S o Q(z,)}, has a norm convergent
subsequence. So, T'= S o () is also a K B-operator. |
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Let E be a Banach lattice, X a Banach space and 7' : E — X be a continuous
operator. Then T is b-weakly compact if and only if {Tz,}, is norm convergent to zero
for every b-order bounded disjoint sequence {x,}, C ET if and only if {Tz,}, is norm
convergent in X for every positive increasing sequence {x,}, in the closed unit ball Bg of
E [3, 6].

Proposition 2.18. ([4, Proposition 1]) Let E be a Banach lattice, X a Banach space and
T:E — X be a continuous operator. Then the following assertions are equivalent:

(1) T is b-weakly compact.

(2) {Txp,}n is norm convergent for every b-order bounded increasing sequence {x,}, C ET.

Corollary 2.19. Let E, F be Banach lattices and T : E — F be a positive operator. Then
the following assertions are equivalent:
(1) T is a K B-operator.
(2) {Tzp}n is norm convergent to zero for every b-order bounded disjoint sequence {xp}, C
ET.
(3) {Txy}n is norm convergent for every b-order bounded increasing sequence {x,}, C ET.

An operator T : E — F between two Banach spaces is called a Dunford-Pettis

operator whenever z,, — 0 implies Tz, M‘% 0. We show that each Dunford-Pettis operator

is K B-operator. The converse is not always true. In fact, the identity operator of the
Banach lattice ¢2 is K B-operator, but it is not Dunford-Pettis.

Recall that if F is a Banach lattice and if 0 < 2" € E”, then the principal ideal I~ generated
by 2" € E” under the norm ||.|| defined by

1" loe = inf{A >0 [y"] < A"}, ¢ € Lo,

is an AM-space with unit z”, whose closed unit ball is order interval [—z”, 2”] [1, Theorem
4.21].

Lemma 2.20. Let E be a Banach lattice. Then every b-order bounded disjoint sequence in
FE is weakly convergent to zero.

Proof. Let {x,,}, be a disjoint sequence in E such that {z,}, C [—-z",2"] for some 2" € E".
Let Y = I,» N E and equip Y with the order unit norm ||| generated by z”. The space
(Y, ]l.ll) is an AM-space. So, Y’ is an AL-space and then its norm is order continuous.

Now, by Theorem 2.4.14 from [9], we see that x, — 0. O

Proposition 2.21. FEvery Dunford-Pettis operator from a Banach lattice E into a Banach
space X is a K B-operator.

Proof. Let T be a Dunford-Pettis operator from a Banach lattice E into a Banach space
X. Tt is enough to show that {Tz,}, is norm convergent to zero for each b-order bounded
disjoint sequence {x,}, in ET. Let {z,}, be a b-order bounded disjoint sequence in E7.
As the canonical embedding of F into E” is a lattice homomorphism, {z,}, is an order
bounded disjoint sequence in E”. By using preceding lemma, {z,}, is o(E, E’) convergent
to zero in E. Since T is Dunford-Pettis, {Tz, }, is norm convergent to zero. This completes
the proof. a

To give conditions under which a K B-operator is Dunford-Pettis, we will need the
following lemma [6, Lemma 2.8].

Lemma 2.22. Let E be a Banach lattice. Then every positive norm bounded net {xs}a of
E is b-order bounded, i.e., {xs}o s order bounded in the topological bidual E" .

Theorem 2.23. Let F' be a Banach lattice. Then each positive K B-operator from an AM -
space E into F is Dunford-Pettis.
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Proof. Let F be a Banach lattice, E an AM-space and T' : E — F be a positive K B-
operator. Suppose that T is not Dunford-Pettis. Note that, for every = € E, p(x) = ||z|| is
a continuous lattice seminorm on E. Since T is not Dunford-Pettis, there exists a sequence
{z,}, in E with 2, % 0 and |Tz,| > 1. By Theorem 4.31 from [1], E has weakly
sequentially continuous lattice operations. So, we may assume that {z,} C E*. Now by
Corollary 2.3.5 of [9], for every 0 < ¢ < 1, there exists a subsequence {k,}, C N and a
disjoint sequence {y,}, C ET such that

Yn < Zhys ([ Tynll = ¢

for all n € N. Since y, < zy, and z, 25 0, the sequence {yn} is norm bounded. So,
the sequence u, = X?_,y; is an increasing norm bounded sequence. Hence, from Lemma
2.22, there exists " € E’/ such that 0 < w, < z”. So, {u,}n is a b-order bounded
increasing sequence in Et. Then by Corollary 2.19, {Tu,}, is norm convergent. Since
Yn = Up — Up—1, we have ||Ty,| — 0, which is a contradiction. Hence T is Dunford-Pettis
and we are done. O

Recall that an operator T' from a Banach lattice F into a Banach space X is called
o-weakly compact if for each order bounded subset A of E, T(A) is a relatively weakly
compact subset of X. The identity operator of the Banach lattice cg is an o-weakly compact
operator, but is not a K B-operator (respectively, not a W K B-operator).

Proposition 2.24. Let E be a Banach lattice, X a Banach space and T : E — X be a
continuous operator. If T" : E" — X" is o-weakly compact, then T is W K B-operator.

Proof. Let {x,} be a positive increasing sequence of the closed unit ball Bg of E. By Lemma
2.22, the set A = {z,, : n € N} is an order bounded subset of E”. So, by our hypothesis,
T"(A) = T(A) is a relatively weakly compact subset of X. Hence {Tx,}, has a weakly
convergent subsequence. Then T' is W K B-operator. (|

Recall that a continuous operator 7' : X — FE from a Banach space into a Banach
lattice is semicompact if for each € > 0 there exists some v € ET such that

TU) C [—u,u] +V

where U and V' denote the closed unit balls of X and FE, respectively. Note that the identity
operator of the Banach lattice £°° is semicompact but is not K B-operator and the identity
operator of the Banach lattice ¢2 is a K B-operator which is not semicompact.

As a consequence of [3], we obtain:

Corollary 2.25. Let E, F be Banach lattices and T : E — F be a continuous operator. If
T' : F' — E' is semicompact, then T is K B-operator.

Recall that an ordered vector space E is a Riesz space if and only if the absolute value
|z] = x V (—z) exists for each vector z € E ( see [1, P.7] ). If E and F are Riesz spaces
with F' Dedekind complete, then the ordered vector space Ly(E, F') is a Dedekind complete
Riesz space [1, Theorem 1.18].

Remark 2.26. We now show that Lxp(FE, F') is not a Riesz space. For an operator T :
E — F between two Riesz spaces we shall say that its modulus |T| exists ( or that T
possesses a modulus) whenever |T'| := TV (—T) exists-in the sense that |T'| is the supremum
of the set {—T,T} in L(E,F). This example due to Z.L. Chen and A.W. Wickstead in
[10] shows that the order bounded K B-operators from a Banach lattice into a Dedekind
complete Banach lattice do not form a lattice, i.e., a modulus of a K B-operator need not
be a K B-operator. Let E = C[0,1], F = loo(F,) where F, = (I, |.])) and ||(Az)]] =
max{||(Ax)|loo, nlimsup(|Ag|)} for all (Ag) € lo. Then for each n € N, F, is a Dedekind
complete AM-space, hence so is F. Define T,, : E — F,, by T,,(f) = (2". fln fredt)?e, € F,
for all f € E, where 7, is the n’th Rademacher function on [0, 1] and I,, = (27,27 "*1).
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Now define T : E — F by T(f) = (2T,(f))32;. Then T is a weakly compact operator, so

n=1"
T is a K B-operator and its modulus |T'| exists and |T'| is not order weakly compact hence
not b-weakly compact and by Proposition 2.1, not K B-operator. So, Lxg(E,F) is not a
lattice.

Problem 2.27. Give an operator T' from a Banach lattice E into a Banach space X which
18 a KB-operator; but is not b-weakly compact.

Problem 2.28. Give an operator T' from a Banach lattice E into a Banach space X which
is a W K B-operator; but is not K B-operator.
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