
U.P.B. Sci. Bull., Series C, Vol. 77, Iss. 1, 2015                                                     ISSN 2286-3540 

DISCRETE-TIME CONTROL STATEGIES FOR 
HORIZONTAL AXIS WIND TURBINES 

Raluca MATEESCU1, Nicolai CHRISTOV2, Dan ŞTEFĂNOIU3 

This paper introduces two discrete-time controllers for horizontal axis wind 
turbines (HAWTs): a Linear Quadratic Gaussian (LQG) one and a model predictive 
(MPC) one. The LQG controller aims to strongly attenuate the disturbances 
influence on the system output. The control objective consists of keeping the output 
power constant, despite the wind variation, and thus reducing the fatigue that 
involves damaging the turbine components. The MPC provides an integrated 
solution for controlling systems with interacting variables, complex dynamics and 
constraints. Both controllers have the advantage that can easily be  implemented 
and in case of HAWTs.  
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1. Introduction 

In 2010, Romania has increased the energy production using wind turbines 
with 448MW, ensuring a total of 462MW. Although this only represents 1.6% of 
the totally produced energy in Romania, many private companies are developing 
projects to build more wind farms. The research in wind turbine control has 
established as an objective the maximization of the power produced when the 
wind speed is in the range between the cut in and the cut out wind speed. This 
goal is usually achieved by controlling the electromagnetic torque of the 
generator, in order to obtain the optimal rotor speed for optimum power 
coefficient [1]. The problem that arises in this framework is the turbine grid 
integration. Thus, in many cases, it is important to obtain an optimal value, rather 
than the maximum available amount [2]. In order to reach for this goal, in the past 
years, different control strategies have been analysed, from classical control ones 
(using PI) to RST [3], optimal [4] and predictive [5] control ones, for different 
types of wind turbines.  

The turbine considered within this article is an onshore horizontal axis 
wind turbine (HAWT) with variable rotor speed. This paper introduces two 
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discrete controllers: a discrete Linear Quadric Gaussian (LQG) one and a Model 
Predictive (MPC) one. The objective for these controllers is to keep the output 
power at its nominal value, in presence of disturbances (wind speed variations). 
The LQG controller modifies the value of the pitch angle, in order to maintain the 
turbine output power nearby the constant nominal value (referred to as rated 
power) and rejects the disturbances influence on the system output. The MPC  
predicts the future state of the plant and computes a new control signal in order to 
obtain the desired closed-loop performances. 

2. General model of wind power 

As the wind is the power source for wind turbines, it is important to know 
the amount of energy available on site. The electrical energy that can be obtained 
from the wind (without considering the limitations of the physical system) is: 

 

31( )
2 air wE t Av t= ρ

, t +∀ ∈R ,  (1) 

where A  is the area swept by the wind, airρ  is the air density and wv  is the wind 
speed. However, the wind turbine is a complex system, consisting of mechanical 
and electrical components that introduce losses in the energy conversion process. 
Thus, the power extraction efficiency of a wind turbine is defined in terms of a 
factor refered to as power coefficient, PC . According to A. Betz [6], the 
theoretical upper bound of PC  is 0.593. The power produced by a wind turbine is 
defined as: 

 
( )31 ,

2wt air w PP Av C= ρ λ β
, (2) 

where λ  is the relative speed (the ratio between peripheral speed of blades and 
the wind speed), while β  is the pitch angle of blades.  

As the output power is proportional to the cube of the wind speed, it is 
necessary to determine a wind speed model, in order to integrate it into the 
process model. The wind speed wv  is generally considered as a non-stationary 
random process expressed by: 

 w s tv v v= +
, (3) 

where sv  is a low frequency component and tv  is a high frequency turbulent 
component. The first one refers to the long term variations of wind currents, 
whereas the second one corresponds to the fast, unexpected changes of wind 
direction and/or speed. In this paper sv  will be considered as a constant and tv  as 
a zero-mean Gaussian white noise process.  
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The wind speed can produce several damages on the turbine, depending on 
its value and blades orientation against the air flow. Thus, it is important to 
consider aspects like structural dynamic loads and reliability of the wind speed 
components such as drive trains, blades and tower, in the controller design 
process. It is suitable to divide the turbine operation into three different operating 
regions depending on the value of wind speed [10, 11]. Within this article, the 
third region is under concern. Here, the wind speed is above the rated value. 
 Therefore, the blades pitch should be controlled such that the optimally captured 
wind power involves minimal fatigue of the physical components. 

3. Wind Turbine Mathematical Model 

The plant model used in this paper is one of a variable speed HAWT with 
two blades. The mathematical model will be built considering the main 
components with as mnay degrees of freedom as possible, in order to obtain an 
accurate representation of this system. To avoid the implementation constraints of 
high order model control algorithms using physical controllers, the following 
elements will be considered: the first mode of the drive train, the first mode of 
tower bending dynamics, the first mode of the blades flapping, the two blades as a 
whole facing same forces acting on them [7]. 

It is important to define first the two important factors of a wind turbine: 
the power coefficient ( )PC ,λ β  (see eq. (2)) and the thrust coefficient ( , )aC λ β , 
both depending on two specific variables of the wind turbine: λ  and β . The 
thrust coefficient ( , )aC λ β , which depends on the thrust force exerted by the wind 
on the turbine rotor is determined empirically. The definition used in this paper 
can be found in Reference [10]. 

The next step consists of modelling the HAWT mechanical equations of 
its components. The wind turbine is an assembly of interconnected subsystems: 
aerodynamic, mechanical and electrical [8]. The Lagrange equations are suitable 
to express the mathematical model: 

 

C C D P

i i i i

E E E Ed
dt

⎛ ⎞∂ ∂ ∂ ∂
− + + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

Q
q q q q

, (4) 
where CE  is the kinetic energy, PE  is the potential energy, DE  is the dissipated 
energy of the system, Q  is the vector of the generalized forces acting on the 
system and q  is the vector of generalized coordinates.  

The three energies can be expressed as sums of energies specific to the 
wind turbine components considered for the model, 
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where TJ , GJ , TM , PM , Ak , Pk , Tk , Ad , Pd  and Td  are coefficients specific to 
the wind turbine components as defined in Appendix, Gω  is the generator angular 
speed and Pr  is the distance from the rotor hub to the point on the blade where the 
generalized thrust force is applied. The values of all parameters can be found in 
the Appendix as well. 

For the wind turbine model, the generalized coordinates vector is: 

 
( )1 2T G Ty= θ θ ζ ζq     

, (6) 
where Tθ  is the angular position of the rotor, Gθ  represents the angular position 
of the generator, 1ζ  and 2ζ  are the blades bending angles, while Ty  represents the 
horizontal movement of the tower. The vector Q  representing the generalized 
forces acting on the system is: 

 ,1 ,2( 2 )aero em aero aero aeroC C F F F= −Q     
, (7) 

where aeroC  is the aerodynamic torque, emC  represents is the electromagnetic 
torque and ,1 ,2,aero aeroF F  stand for the thrust forces acting on the blades. 

As previously stated, some simplifying hypotheses were made, in order to 
decrease the model order. The thrust forces acting on the blades can be considered 
equal. Consequently, as the blades are similar, it can be assumed that the blades 
equaly bent under the action of the same thrust forces. The mathematical 
expressions for the aerodynamic torque and the thrust force can be written as 
follows: 

 

3
2

2 2

1 ( , ),
2
1 ( , ).
2

aero P
T

aero a

vC R C

F R v C

ρπ λ β
ω

ρπ λ β

=

=
 (8) 

Another important component of the mathematical model is the wind 
speed profile. According to [5]: 

 

1( ) ( ) ( )w w t
v

v t v t v t
T

= − +
, t +∀ ∈ , (9) 
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where vT  is the time constant, calculated in [8], and tv  is the turbulent component 
of the wind speed.  

The last expression of the mathematical model corresponds to the output 
power of the wind turbine: 

 el G emP C= ω
. (10) 

Based on the mathematical models expressed so far, the state space 
representation of the wind turbine can be obtained. The command vector is 
represented by ( )emCβ=u  , the state vector is represented by 

( )TT
m T G T T G T wy y vθ θ ζ ω ω ζ β= −x          while the system output is ely P= . 

Since the mathematical expressions of aeroC  and aeroF  introduce a certain level of 
nonlinearity to the system, it is necessary to perform a linearization on the model, 
around some operating point ( ), , ,op T op op medP vω β .  

The linear state space continuous-time model is then:  

 ( )
1( ) ( ) ( ) ( )

( ) ( ) ( )
m x

m y

t t t w t
y t t t w t

= + +

= + +
2x Fx G u G

Hx Mu
, t +∀ ∈ , (11) 

where xv   and yv  represent the disturbances of the system: xv  is the wind speed 
variatio. The matrices F , 1G , 2G , H  and M  corresponding to this model were 
computed with the numerical values from the Appendix.  

4. Discrete-time LQG controller design  

In this section, the discrete-time LQG controller with integral action is 
designed for the considered HAWT, in order to minimize the effect of wind 
variations on the produced electrical power. The Fig. 1 illustrates the structure of 
such cotroller. 

 
Fig.1. LQG controller with integral action. 

The integrator is included in the  control loop in order to cancel the 
tracking error refy y− . The design of LQG controllers with integral action is 
reduced to the standard LQG design introducing the augmented state vector 
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TT⎡ ⎤= ε⎣ ⎦z x . The standard LQG control problem for (11) consists in finding a 

control law *u  that minimizes the quadratic cost function ( )J u . 
A discrete-time turbine model for sample time 0.01 sdT =  is first obtained 

from (11): 

 

1[ 1] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

x

y

n n n w n
y n n n w n

⎧ + = + +⎪
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, .n∀ ∈  (12) 

For the LQG controller design, the augmented model is: 
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and the corresponding quadratic cost function can be expressed like below:  
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where [ ] [ ] [ ]
TTn n n⎡ ⎤= ε⎣ ⎦z x , [ ] [ ]refn y y nε = − ,  1

TQ = C Q C , 1 1
T= +R R D Q D  

and 1
T=S C Q D , while 1Q  and 1R  are positive definite weighting matrices 

selected by the user. 
The discrete-time LQG control law is:  

 
ˆ ˆ ˆ[ ] [ ], with [ ] [ ] Tn n n n n∗ = = ε[ ]⎡ ⎤⎣ ⎦u Kz z x , (15) 

where ˆ[ ]nx  is the optimal estimate of [ ]nx , as given by the Kalman filter: 

 

( )ˆ ˆ ˆ[ 1] [ ] [ ] [ ] [ ]
ˆ ˆ[ ] [ ] [ ]

fn n n y n y n

y n n n

⎧ + = + + −⎪
⎨

= +⎪⎩

x Ax Bu K

Cx Du
, n∀ ∈ . (16) 

The gain matrix 
0 iK

−⎡ ⎤
= ⎢ ⎥

⎣ ⎦
dK 0

K  in (15) is computed as: 

 
( ) ( )1T T T−

= + +K R B PB B PA S
, (17) 

where P  is the non negative definite solution of a discrete matrix Riccati 
equation. The gain matrix fK  of the Kalman filter (16) is determined as:  

 
( ) 1T T

f f f

−
= +K AP C W CP C

, (18) 
where fP  is the non negative definite solution of another Riccati equation.  
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5. Discrete MPC design 

The general design objective of model predictive control is to compute a 
trajectory of a future manipulated variable u  to optimize the future behavior of 
the plant output y . The optimization is performed within a limited time window 
by giving plant information at the begining of that window [9]. 

The model described in (11) must be transformed from continuous-time 
into a discrete-time one. The sample time chosen for this controller is 0.02 sdT = . 
Using the discrete model, the matrices corresponding to the augmented model are 
computed: 

 [ ] [ ]
[ 1] [ ] [ ] [ ]e e

e

n n n n
y n n

ε+ = + Δ + ε

=

x A x B u B
C x

, ,n∀ ∈  (19) 
where [ ][ ] [ ] [ ] T

mn n y n= Δx x , [ ] [ ] [ 1]n n nΔ = − −u u u  and ε  is the input 
disturbance corresponding to the wind speed variation, assumed to be a sequence 
of integrated white noise. This means that the input disturbance w  is related to a 
zero mean, white noise sequence ε  by the difference equation 

[ ] [ 1] [ ]w n w n n− − = ε , n∀ ∈ . 
The system signals will be referred as m  - number of inputs ( 2m = ), 1n  - 

the number of states ( 1 9n = ) and q  - the number of outputs ( 1q = ). Then the 
dimension of the augmented state-space equation is ( )1 10n n q= + = . 

The strategy of MPC design implies that the plant output has to be 
predicted with the future control signals as the adjustable variables, within an 
optimization window length PN . In order to proceed, the future control trajectory 
is denoted by: [ ],  [ 1],  ..., [ 1]Cn n n NΔ Δ + Δ + −u u u , where CN  is the control 
horizon length. This parameter sets the number of samples used to capture the 
future control trajectory. Considering that the state vector [ ]nx  is known, the 
future state variables - [ 1| ],  [ 2 | ],..., [ | ]Pn n n n n N n+ + +x x x  - are predicted for 

PN  number of samples, where PN  referred to as prediction horizon length. In the 
future state variables representation, the term [ | ]n i n+x  stands for the predicted 
state variable at n i+ , with given current plant information [ ]nx . The control 
horizon length CN  is chosen to be less than (or equal to) the prediction horizon 
length PN . The following vectors can then naturally be defined as: 

 [ ]

[ ]  [ 1]  ... [ 1]

[ 1| ] y[n 2 | ] ... y[ | ]

TT T T
C

T
P

n n n N

y n n n n N n
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Y
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Based on the state-space model ( ), , ,e e e εA B C B , the future state variables 
are recursively computed using the set of future control parameters:  

 

1 2

1

2

[ | ] [ ] [ ] [ 1]

                      [ 1] [ ]

                     [ 1| ] ... [ 1| ].

p P P

pP C

P

N N N
P

NN N
C

N
P

n N n n n n

n N n

n n n N n

− −

−−
ε

−
ε ε

+ = + Δ + Δ +

+ Δ + − + ε

+ ε + + + ε + −

x A x A B u A B u

A B u A B

A B B  (21) 
With the assumption that ε  is a zero-mean white noise sequence, the 

predicted value of |n i nε( + )  at future sample i  is assumed to be null. The 
predicted state and output variables are calculated as this mean values. Hence, the 
noise effect to the predicted values is minimal. 

Effectively, one obtaines: 
 ΔY = Fx + L U , (22) 
where: 

 

2

3 2

1 2
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0
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CA CA B CA B CA B . (23) 
Let r  be a given set-point signal within a prediction horizon. Then, the 

objective of the predictive control system is to bring the predicted output as close 
as possible to the set-point signal (which is kept constant in the optimization 
window). This objective involves solving the problem to find the optimal control 
parameter vector ΔU , such that an error function between the set-point and the 
predicted output is minimized.  

Assuming that the data vector that contains the set-point information is: 

[ ][ ] 1 1 ... 1 [ ]
PN

T
S n n=R r , for each sample time n , the cost function J  that 

reflects the control objective is: 

 ( ) ( )T T
s sJ = − − + Δ ΔR Y R Y U R U

. (24) 
The first term in (24) is linked to the objective of minimizing the errors between 
the predicted output and the set-point signal, while the second term purpose is to 
limit the variation of ΔU , when minimizing J , in order to avoid operation shocks 
applied to the plant. Also, R  is a diagonal matrix such as ( ) 0

C CN Nr rω × ω= ≥R I , 
where rω  is used as a tuning parameter for the desired closed-loop performance. 

The incremental optimal control within the optimization window is linked 
to the current set-point signal r  and state variable x , via the following equation: 
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( ) ( )1

s

−Τ Τ ΤΔ = + −U L L R L R r L Fx
. (25) 

Applying the receding horizon control principle, the first m  elements of 
ΔU  are considered to form the incremental optimal control: 

 

[ ]( ) ( )1

y

[ ] ... [ ] [ ] [ ] [ ] [ ] [ ]

          = [ ] [ ] [ ] [ ]

CN

m m

mpc

n n n n n n n

n n n n

−Τ Τ ΤΔ = + × −

−
su I 0 L L R L R r L Fx

K r K x
. (26) 

The mesurable state of the process, will be estimated using the following 
observer: 

 ( )
correction termmodel

ˆ ˆ ˆ[ 1] [ ] [ ] [ ] [ ]m m m m ob m mn n n y n n+ = + + −x A x B u K C x
, (27) 

where obK  is the observer gain matrix, while mA  and mB  correspond to the plant 
model. Note that obK  was computed using the Matlab place function. 

6. Simulation results 

The simulation environment used for performance analysis of the designed 
controllers is MATLAB/ SIMULINK. 

The turbine model (11) was implemented for the operating point 
(8 rad/s, 1 , 17 m/s)opP = ° . The presented simulation results were obtained for the 

wind speed profile given in Fig. 2.  

 
Fig. 2. Wind speed profile. 

As one can observe, the wind speed has a deviation from the initial value, 
17 m/s , at instant 1 20 st = , when it becomes 18 m/s  and even a bigger one at 
instant 2 80 st = , when it becomes 16 m/s . 

6.1 Simulation results for the wind turbine controlled by the discrete-
time LQG controller with integral action  

The simulation results of the controller described on Chapter 4 are 
described in this paragraf.  
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The two control signals: pitch angle β  and generator electomagnetic torque emC  
provided by the LQG controller are shown in Fig. 3. 

 
Fig. 3. Control signals: pitch angle and generator electromagnetic torque.  

At instants 1 20 st =  and 2 80 st = , small deviation from the initial values 
can be observed in both command signals, corresponding to wind speed variation. 
The average stabilization time is 30 s , although this is not a fast reaction, the 
deviation is very small and it does not affect the HAWT components. In turn, Fig. 
4 illustrates the output power of the wind turbine, obtained when using the 
designed discrete-time LQG controller.  

 
Fig. 4. Electrical power produced by the wind turbine  

The nominal power of the considered HAWT is 400 kW . One can observe 
that, at instants 1t  and 2t , the output power has two spikes produced by the 
variation of wind speed. At 1t , the deviation is of 1.25 kW  and, at 2t  the deviation 
reises to 2.4 kW . The controller manages to reject the disturbances in 2 s  at 1t  
and in 3 s  at 2t . 

6.2 Simulation results for the wind turbine controlled by the Discrete-
time MPC controller 

The the control signals provided by the MPC strategy described in Chapter 
5 are illustrated in Fig. 5. At instant 4 t s= , a small variation from the initial 
values can be observed in both command signals, corresponding to wind speed 
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variation. The average stabilization time is 0.5 s , wich is quite a fast reaction. 
Since the variation is small enough, it does not affect the HAWT components. 

 
 

 

 

 

Fig. 5. Control signals: pitch angle variation (left) and generator electromagnetic torque variation 
(right). 

In turn, Fig. 6 illustrates the output power of the wind turbine obtained 
using the designed discrete-time MPC controller.  

 
Fig. 6. Electrical power produced by the wind turbine with MPC control. 

At instant 1 4 st = , while facing the input disturbance corresponding to the 
wind speed variation, the output has quite a small variation, but the predictive 
control is effective at instant 2 4.5 st = , as the output signal is stabilized at its 
nominal value.  

7. Conclusions 

For this study, the discrete-time approach has been chosen, in order to 
provide two control strategies that can easily be implemented in digital control 
systems especially in case of HAWTs. The LQG approach presented has showed 
very good results in disturbance (the wind speed variation) rejection. Regarding 
the MPC strategy, one can observe that, based on the current plant information 
represented by the state variable vector, the prediction of the future behavior of 
the plant output relies on the state-space model where the optimal control 
trajectory is captured by the set of parameters that define the incremental control 
movement. The MPC approach presented has showed sufficiently good results for 
the output power of the wind turbine. Nevertheless, improvements are posible, by 
cosidering more performant predictors (e.g. of ARMAX class) and a finer tunning 
for rω  parameter in definition (24). Future developments can include the 
implementation of the two controllers on a digital processor or on a 
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microcontroller. These control strategies can be easily implemented on a real wind 
turbine with the proper configuration of the parameters according to the physical 
characteristics of the turbine. 
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A P P E N D I X 
Table 1 

Significance and numerical values of the wind turbine parameters 
Symbol. Physical meaning Value Symbol. Physical meaning Value 

TJ Turbine inertia 2214 000 kg m×  Td  Tower Damping coefficient 50 000 kg m s×  

GJ  Generator inertia 241 kg m×  Ad Drive shaft damping 
coefficient 

260 000 kg m s×  

TM
 

Tower and nacelle 
mass 

35000 kg  Pr  Distance from the rotor hub 8 m  

PM Blade mass 3000 kg N Number of blades 2  

Pk
 

Blade Stiffness 
coefficient. 

2 21000 kg m s×  ,T nomω  Nominal rotor speed 4 rad s  

Tk  
Tower Stiffness 
coefficient. 

28500 kg m s×  ,T opω Rotor speed – operational 
point 8 rad s  

Ak
 

Drive Shaft Stiffness 
coefficient. 

2 211000 kg m s×  opβ Pitch angle - operational 
point 9 rad  

Pd  
Blade Damping 
coefficient. 

210000 kg m s×  opλ Speed trip ratio – 
operational point 8  

 


