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STABILITY IN p-TH MOMENT FOR UNCERTAIN SINGULAR

SYSTEMS

Zhifu Jia1 and Cunlin Li2

The uncertain singular system is a type of singular system that is disrupted

by the canonical Liu process and is described as a multidimensional uncertain differential

equation. Although stability in mean, stability in measure, and almost sure stability
have been investigated for uncertain singular systems, these three types of stability may

not apply in all cases. This paper aims to introduce the concept of stability in p-th
moment for uncertain singular systems as a supplementary type of stability. A stability

theorem is also presented for uncertain singular systems that are stable in p-th moment.

Furthermore, this paper discusses the relationships between stability in measure and
stability in p-th moment, between stability in p1-th moment and stability in p2-th moment

for uncertain singular systems. An example is provided to demonstrate the effectiveness

of our results.
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1. Introduction

Singular systems, such as descriptor systems, implicit systems, and generalized state-
space systems, are modeled by differential-algebraic equations. These systems [1, 2, 3]
have been extensively researched over the past few decades due to their ability to describe
various natural phenomena in physical systems, including economics [4], demography [5],
and microelectronic circuits [6], among others [7, 8, 9, 10]. However, when analyzing these
systems, uncertain or stochastic disturbances may occur, which require the stability analysis
of singular systems to be considered. Unlike stochastic singular systems [11], uncertain
singular systems are a type of multidimensional uncertain differential equation that are
disturbed by uncertain processes associated with belief degrees. This type of uncertainty
associated with belief degrees is a distinct type of indeterminate phenomenon that can be
described using uncertainty theory, which was introduced as the opposite of probability
theory by Liu in 2007 [12] and updated in 2015 [13]. Today, uncertainty theory is widely
applied in various fields,such as uncertain variational inequalities [14, 15], uncertain systems
[16, 17] and so on.

In 2008, Liu [18] proposed the concept of uncertain differential equations, which are
driven by the canonical Liu process. Later in 2009, Liu [19] claimed that the Liu process
is an uncertain process with stationary and independent normal uncertain increments. In
2010, Chen and Liu [20] provided an analytic solution for a linear uncertain differential
equation. Following this, Yao and Chen [21, 22] developed a numerical method to obtain
the uncertainty distributions of the solution to an uncertain differential equation. Besides
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theoretical research, uncertain differential equations have numerous applications in dynam-
ical systems, one of which is in uncertain singular systems, as explored in this paper and
previous works [23, 24, 25, 26].

Considering various kinds of uncertain factors disturbances which may occur in uncer-
tain dynamical system, Yao [27] proposed multi-dimensional uncertain differential equation
(MUDE) and proved existence and uniqueness of its solution, which depends on the initial
value, and stability is required to obtain a stable solution. Stability analysis [28] for an
uncertain differential system is fundamental and important. Su et al. [29] presented the
concept of stability for the multidimensional uncertain differential equation in the sense of
uncertain measure, and subsequent studies investigated stable in p-th moment [30], stability
in mean [31], almost sure stability [32]. Tao and Zhu [34] investigated attractivity and sta-
bility of uncertain differential systems in 2015 and considered other types of stabilities and
attractivity in optimistic value for dynamical systems with uncertainty in 2016, providing a
solid foundation for studying uncertain singular systems. In 2017, Su et al. [35, 36] investi-
gated three types of stabilities for an uncertain singular system. However, these cannot be
applied to all cases, so this paper aims to supplement the existing research by presenting a
concept of stability in p-th moment for uncertain singular systems.

The paper is organized as follows: Section 2 will provide a review of some basic
concepts, lemmas, and theorems. Section 3 presents the concept of p-th moment stability
and proves the stability theorem. In Section 4, we provide an example to demonstrate the
effectiveness of the results. Finally, a brief summary will be given in Section 5.

2. Preliminaries

Definition 2.1. [14] Let ξ be an uncertain variable. Then the expected value of ξ is defined
by

E[ξ] =

∫ +∞

0

M{ξ ≥ x}dx−
∫ 0

−∞
M{ξ ≤ x}dx

provided that at least one of the two integrals is finite.

Definition 2.2. [14] Suppose that Ck is a canonical Liu process, f and g are continuous
functions, k is the time. Given an initial value U0, the uncertain differential equation

dUk = f(k, Uk)dk + g(k, Uk)dCk

is called an uncertain differential equation with an initial value U0.

Theorem 2.1. [18] Let Uk and Uαk be the solution and α-path of the uncertain differential
equation

dUk = f(k, Uk)dk + g(k, Uk)dCk

Then

M{Uk ≤ Uαk ,∀k} = α,M{Uk > Uαk ,∀k} = 1− α.

Theorem 2.2. [28] Let Ck be a Liu process on uncertainty space (Γ,L,M). Then there
exists an uncertain variable K such that K(γ) is a Lipschitz constant of the sample path
Ck(γ) for each γ,

lim
x→+∞

M{γ ∈ Γ|K(γ) ≤ x} = 1

and

M{γ ∈ Γ|K(γ) ≤ x} ≥ 2Φ(x)− 1.



Stability in p-th moment for uncertain singular systems 39

Theorem 2.3. [20] Suppose that Ck is a canonical Liu process, and Uk is an integrable
uncertain process on [a, b]. Then the inequality

|
∫ b

a

Uk(γ)dCk| ≤ Kγ

∫ b

a

|Uk(γ)|dk

holds, where Kγ is the Lipschitz constant of the sample path Uk(γ).

Definition 2.3. [33] Suppose that Ck is an n-dimensional canonical Liu process,f(k,u) is
a vector-valued function from T × Rn to Rm, and g(k,u) is a matrix-valued function from
T ×Rn to the set of m× n matrices. Then

dUk = f(k,Uk)dk + g(k,Uk)dCk

is called an m-dimensional uncertain differential equation (MUDE)driven by an n-dimensional
canonical Liu process. An m-dimensional uncertain process that satisfies this equation iden-
tically at each time k is called a solution of the MUDE.

Su etal. [29] studied the stability concerning the MUDE.

Theorem 2.4. [29] Suppose the MUDE

dUk = f(k,Uk)dk + g(k,Uk)dCk

has a unique solution for each initial value. If the coefficients f(k,u) and g(k,u) satisfies

| f(k,u)− f(k,v) | + | g(k,u)− g(k,v) |
≤ Lk | u− v |, ∀u,v ∈ Rm, k ≥ 0

for some positive functions Lk with ∫ +∞

0

Lkdk < +∞,

then the MUDE is stable.

Definition 2.4. [21]Let α be a real number with 0 < α < 1. An UDE

dUk = g1(Uk, k)dk + g2(Uk, k)dCk

is said to have an α-path Uαk if it solves the corresponding ODE

dUαk = g1(Uαk , k)dk+ | g2(Uαk , k) | Φ−1(α)dk

where Φ−1(α)is the inverse standard normal uncertainty distribution, i.e.,

Φ−1(α) =

√
3

π
ln

1− α
α

.

Theorem 2.5. [28] Let Ck be a canonical Liu process. Then there exists an uncertain
variable K such that for each γ, Kγ is a Lipschitz constant of the sample path Ck(γ), and

M{K ≤ x} ≥ 2

(
1 + exp

(
− πx√

3

))−1
− 1.

Theorem 2.6. [28]Let Ck be a canonical Liu process. Then there exists a nonnegative
uncertain variable K such that Kγ is a Lipschitz constant of the sample path Ck(γ) for each
γ, and

lim
x→+∞

M{K ≤ x} = 1.
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The uncertain singular system can be written as the following MUDE:{
FdUk = g(k)AUkdk + h(k)BUkdCk,
U |k=0 = U0, k ≥ 0.

(1)

where the system is represented by a state vector Uk ∈ Rn. The functions g(k) and h(k),
which are bounded and defined for k ≥ 0, are associated with the system. Additionally,
there are known coefficient matrices A ∈ Rn×n and B ∈ Rn×n that are respectively related
to the state vector Uk. F is a known (singular) matrix with rank (F) = q ≤ n, and
deg(det(zF − A)) = r where z is a complex variable. Ck is a canonical Liu process defined
on uncertainty space, representing the noise of the system. Throughout this paper, for a
matrix A = [aij ]n×n and a vector U = (u1, u2, . . . , un)T , we define

‖A‖ =

n∑
i,j=1

| aij |, ‖U‖ =

n∑
i=1

| ui | .

Definition 2.5. [11] (i)(F,A) is said to be regular if det(zF − A) is not identically zero.
(ii)(F,A) is said to be impulse-free if deg(det(zF− A)) = rank(F).

Lemma 2.1. [36]If (F,A) is regular, impulse-free and rank[F,B] = rank(F), there exist a
pair of nonsingular matrices P ∈ Rn×n and Q ∈ Rn×n for the triplet (F,A,B) such that
the following conditions are satisfied:

PFQ =

[
Ir 0
0 0

]
, PAQ =

[
A1 0
0 In−r

]
,

PBQ =

[
B1 B2

0 0

]
,

where A1 ∈ Rr×r,B1 ∈ Rr×r,B2 ∈ Rr×n−r.

Let

[
U1,k

U2,k

]
= Q−1Uk, where U1,k ∈ Rr and U2,k ∈ Rn−r. The system (1) is equivalent

to  dU1,k = g(k)A1U1,kdk
+h(k)[B1U1,k + B2U2,k]dCk,

0 = g(k)U2,kdk,

or {
dU1,k = g(k)A1U1,kdk + h(k)B1U1,kdCk,
0 = U2,k,

for all k ≥ 0.

Lemma 2.2. [35]System (1) has a unique solution if (F,A) is regular, impulse-free and
rank[F,B] = rank(F). Moreover, the solution is sample-continuous.

Definition 2.6. [36] A MUDE is said to be stable in measure if for any solutions Uk and
Vk with initial values U0 and V0, respectively, we have

lim
‖U0−V0‖→0

M{‖Uk −Vk‖ > ε} = 0,∀k ≥ 0

for any given number ε > 0.

Theorem 2.7. [36] System (1) is stable in measure if (F,A) is regular and impulse-free,
rank[F,B] = rank(F) and the bounded functions g(k) and h(k) are both integrable on [0,+∞).

Lemma 2.3. [36] If a vector function

f(k) = (f1(k), f2(k), . . . , fn(k))T

is derivable on k ∈ (0,+∞), then ‖f(k)‖ is derivable almost everywhere for k > 0.
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3. Stability Theorem

Inspired by the work in Sheng et al. [30], we now consider stability in p-th moment
of uncertain singular system (1).

Definition 3.1. A MUDE is said to be stable in p-th moment if for any solutions Uk and
Vk with initial values U0 and V0, respectively, we have

lim
‖U0−V0‖→0

E[sup
k≥0
‖Uk −Vk‖p] = 0. (2)

Theorem 3.1. System (1) is stable in p-th moment if (F,A) is regular and impulse-
free,rank[F,B] = rank(F), the bounded function g(k) is integrable on [0,+∞) and∫ +∞

0

h(s)ds <
π√

3p‖B1‖
.

Proof By applying Lemma 2.2, we establish the existence and uniqueness of the
solution. Let [

U1,k

U2,k

]
= Q−1Uk,

where U1,k ∈ Rr and U2,k ∈ Rn−r. For each γ, U1,k(γ) − V1,k(γ) is differentiable on
(0,+∞), then by Lemma 2.3 we know that ‖U1,k(γ) − V1,k(γ)‖ is differentiable almost
everywhere for k > 0. Denote

Aγ ={k ∈ (0,+∞) | ‖U1,k(γ)−V1,k(γ)‖}

is differentiable, and

A′γ = (0,+∞)− Aγ .

It is evident that we obtain

mA′γ = 0.

We can then express it as

U1,k(γ) = (u1(γ), u2(γ), . . . , ur(γ))
T

and

V1,k(γ) = (v1(γ), v2(γ), . . . , vr(γ))
T
.

Hence, for any k ∈ Aγ , we can always apply Lemma 2.1 to conclude that

d‖U1,k(γ)−V1,k(γ)‖

= d

r∑
i=1

± (ui(γ)− vi(γ))

=

r∑
i=1

± (dui(γ)− dvi(γ))

≤
r∑
i=1

| (dui(γ)− dvi(γ)) |

= ‖dU1,k(γ)− dV1,k(γ)‖
= ‖g(k)A1(U1,k(γ)−V1,k(γ))‖dk + ‖h(k)B1(U1,k(γ)−V1,k(γ))dCk(γ)‖
≤ g(k)‖A1(U1,k(γ)−V1,k(γ))‖dk +Kγh(k)‖B1(U1,k(γ)−V1,k(γ))‖dk
≤ g(k)‖A1‖ · ‖U1,k(γ)−V1,k(γ)‖dk + Kγ h(k)|B1‖ · ‖U1,k(γ)−V1,k(γ)‖dk,
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where, Kγ denotes the Lipschitz constant of the sample path Ck(γ) as stated in Theorem
2.5. This implies that

‖U1,k(γ)−V1,k(γ)‖

≤ ‖U1,0 −V1,0‖ exp

(
‖A1‖

∫ k

0

g(s)ds

)
· exp

(
Kγ‖B1‖

∫ k

0

h(s)ds

)
.

Let us consider any k ∈ A′γ , to begin with, we can choose k1 ∈ ((1 − 1
2 )k, k), such that

k1 ∈ Aγ ; Furthermore, we can select k2 ∈ ((1 − 1
22 )k, k) − {k1} such that k2 ∈ Aγ . In a

similar manner, for any n ∈ N+, we can choose kn ∈ ((1− 1
2n )k, k)−{k1, k2, . . . , kn−1} such

that kn ∈ Aγ . It is clear that kn → k, as n→ +∞. For any n ∈ N+, kn ∈ Aγ , building on
our earlier discussion, we can now establish the following inequality:

‖U1,kn(γ)−V1,kn(γ)‖

≤ ‖U1,0 −V1,0‖ exp

(
‖A1‖

∫ kn

0

g(s)ds

)
· exp

(
Kγ‖B1‖

∫ kn

0

h(s)ds

)

≤ ‖U1,0 −V1,0‖ exp

(
‖A1‖

∫ k

0

g(s)ds

)
· exp

(
Kγ‖B1‖

∫ k

0

h(s)ds

)
.

Let n → +∞, since Lemma 2.2 guarantees the sample-continuity of Uk, we can conclude
that

‖U1,k(γ)−V1,k(γ)‖

≤ ‖U1,0 −V1,0‖ exp

(
‖A1‖

∫ k

0

g(s)ds

)
· exp

(
Kγ‖B1‖

∫ k

0

h(s)ds

)
.

In summary, for any k ∈ (0,+∞) and considering the arbitrariness of γ, we can always
deduce that

‖U1,k −V1,k‖

≤ ‖U1,0 −V1,0‖ exp

(
‖A1‖

∫ k

0

g(s)ds

)
· exp

(
K‖B1‖

∫ k

0

h(s)ds

)

≤ ‖U1,0 −V1,0‖ exp

(
‖A1‖

∫ +∞

0

g(s)ds

)
· exp

(
K‖B1‖

∫ +∞

0

h(s)ds

) (3)

almost surely, where K is a nonnegative uncertain variable such that

M{K ≥ x} = 1−M{K < x} ≤ 2

(
1 + exp

(
πx√

3

))−1
according to Theorem 2.5. Hence we know

sup
k>0
‖U1,k −V1,k‖

≤ ‖U1,0 −V1,0‖ exp

(
‖A1‖

∫ +∞

0

g(s)ds

)
· exp

(
K‖B1‖

∫ +∞

0

h(s)ds

) (4)

almost surely. Taking p-th moment on both sides, we have

E
[

sup
k>0
‖U1,k −V1,k‖p

]
≤ ‖U1,0 −V1,0‖p exp

(
p‖A1‖

∫ +∞

0

g(s)ds

)
· E
[
exp

(
pK‖B1‖

∫ +∞

0

h(s)ds

)]
.

(5)
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Given that the bounded function g(k) is integrable over the interval [0,+∞), it follows that
we can clearly deduce that

exp

(
p

∫ +∞

0

g(s)ds

)
< +∞.

For the expected value

E

[
exp

(
pK‖B1‖

∫ +∞

0

h(s)ds

)]
,

we denote

% =

∫ +∞

0

h(s)ds <
π√

3p‖B1‖
.

By applying Definition 2.1 of expected value and utilizing Theorem 2.5, we can conclude
that

E [exp (pK · ‖B1‖%)]

=

∫ +∞

0

M {exp (‖B1‖% · pK) ≥ x} dx

=

∫ +∞

0

M

{
K ≥ lnx

‖B1‖% · p

}
dx

≤ 2

∫ +∞

0

(
1 + exp

(
π lnx√

3‖B1‖% · p

))−1
dx

= 2

∫ +∞

0

(
1 + x

π√
3‖B1‖%·p

)−1
dx < +∞.

Therefore, we can derive at

lim
‖U1,0−V1,0‖→0

E

[
sup
k>0
‖U1,k −V1,k‖p

]
= 0.

Since Lemma 2.2 proves that U2,k = 0 and V2,k = 0 hold for all k > 0, we can conclude
that

E

[
sup
k>0
‖Uk −Vk‖p

]
= E

[
sup
k>0

∥∥∥∥Q [U1,k

U2,k

]
−Q

[
V1,k

V2,k

]∥∥∥∥p]
= E

[
sup
k>0
‖Q1(U1,k −V1,k)‖p

]
≤ E

[
‖Q1‖p · sup

k>0
‖(U1,k −V1,k)‖p

]
→ 0,

as ‖U1,0 −V1,0‖ → 0, where

Q =
[
Q1 Q2

]
and Q1 ∈ Rn×r. Namely,

lim
‖U1,0−V1,0‖→0

E

[
sup
k>0
‖Uk −Vk‖p

]
= 0.

It is readily evident that ‖U1,0 −V1,0‖ → 0, as ‖U0 −V0‖ → 0, Thus, we obtain

lim
‖U0−V0‖→0

E

[
sup
k>0
‖Uk −Vk‖p

]
= 0.
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At k = 0, it is evident that

lim
‖U0−V0‖→0

E [‖U0 −V0‖p] = 0.

By combining the two aforementioned equations, we obtain

lim
‖U0−V0‖→0

E

[
sup
k≥0
‖Uk −Vk‖p

]
= 0.

Therefore, we have established stability in p-th moment of system (1). This concludes the
theorem.

Theorem 3.2. If uncertain singular system (1) is stable in p-th moment, then it is stable
in measure.

Proof From Definition 3.1, for two solutions Uk and Vk with different initial values
U0 and V0, respectively. Then it follows from the definition of stability in p-th moment that

lim
‖U0−V0‖→0

E

[
sup
k≥0
‖Uk −Vk‖p

]
= 0,∀p > 0. (6)

By Markov inequality, for any given real number ε > 0, we have

lim
‖U0−V0‖→0

M{‖Uk −Vk‖ > ε} ≤

lim
‖U0−V0‖→0

E[‖Uk −Vk‖p]
εp

≤

lim
‖U0−V0‖→0

E

[
sup
k≥0
‖Uk −Vk‖p

]
εp

→ 0,∀k ≥ 0.

Therefore, from Definition 2.6, p-th moment stability implies the stability in measure. This
concludes the theorem.

Theorem 3.3. For any two real numbers p1 and p2 (0 < p1 < p2 < +∞), if uncertain
singular systems (1) is stable in p2-th moment, then it is stable in p1-th moment.

Proof From Definition 3.1, for two solutions Uk and Vk with different initial values
U0 and V0, respectively. Then it follows from the definition of stability in p2-th moment
that

lim
‖U0−V0‖→0

E

[
sup
k≥0
‖Uk −Vk‖p

]
= 0,∀p > 0.

According to Holder’s inequality, we have

E[‖Uk −Vk‖p1 ]

=E[‖Uk −Vk‖p1 · 1]

≤ p2/p1

√
E[‖Uk −Vk‖p1·p2/p1 ] · p2/(p2−p1)

√
E[1p2/(p2−p1)]

= p2/p1
√
E[‖Uk −Vk‖p2 ],∀k > 0.

Thus, stability in p2-th moment implies stability in p1-th moment when p1 < p2. This
concludes the theorem.

4. Numerical example

To demonstrate the effectiveness of Theorem 3.1, a numerical example will be pro-
vided.
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Example 4.1. We will now examine the uncertain singular system given by:{
FdUk = g(k)AUkdk + h(k)BUkdCk,
U|k=0 = U0, k ≥ 0,

(7)

where

g(k)=2e−
k
3 , h(k) =

1

10
e−

k
2 ,

and

F=

1 0 −1
0 0 1
0 0 0

 , A=

 1 −1 0
1 0 1
−1 1 −1

 ,
B =

 1 −1 0
−1 0 1
0 0 0

.
Applying a similar methodology as demonstrated in Example 1 of Ref [36], it can be deter-
mined that the system (1) possesses a unique and sample-continuous solution. Furthermore,

we observe that 2e−
k
3 is integrable over the interval [0,+∞), and 1

10e
− k2 satisfies∫ +∞

0

1

10
e−

s
2 ds =

1

5
<

π√
3p‖B1‖

=
4
√

3π

27p
,

where

B1 =

[
1 − 1

4
0 −1

]
, 0 < p <

20
√

3π

27
.

Consequently, utilizing Theorem 3.1, we can conclude that system (1) is stable in p-th mo-
ment. Upon matrix calculations, we obtain

PFQ =

1 0 0
0 1 0
0 0 0

 , PAQ =

1 1
4 0

0 1 0
0 0 1

 , PBQ =

1 − 1
4 0

0 −1 1
0 0 0

 ,
where

P =

0 1
4 0

1 1 1
0 0 −1

 , Q =

0 1 0
4 1 −1
4 0 0

 .
Letting

Uk = Q

[
U1,k

U2,k

]
for all k > 0, where U1,k ∈ R2 and U2,k ∈ R, system (1) can be expressed as

[
1 0
0 1

]
dU1,k = 2e−

k
3

[
1 1

4
0 1

]
U1,kdk

+ 1
10e
− k2

{[
1 − 1

4
0 − 1

]
U1,k +

[
0
1

]
U2,k

}
dCk,

0 = e−kU2,kdk,

or 
dU1,k = 2e−

k
3

[
1 1

4
0 1

]
U1,kdk

+ 1
10e
− k2

[
1 − 1

4
0 − 1

]
U1,kdCk,

0 = U2,k,
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for all k ≥ 0. The aforementioned equations can be expressed in the form of the following
system of equations: 

du1(k) = 2e−
k
3 [u1(k) +

1

4
u2(k)]dk

+ 1
10e
− k2 [u1(k)− 1

4u2(k)]dCk

du2(k) = 2e−
k
3 u2(k)dk − 1

10
e−

k
2 u2(k)dCk,

(8)

where Uk = [u1(k), u2(k)]T for all k ≥ 0. According to Definition 2.4, the corresponding
ODEs of Eq.(8) are

duα1 (k) = 2e−
k
3 [uα1 (k) +

1

4
uα2 (k)]dk

+ 1
10e
− k2 | uα1 (k)− 1

4u
α
2 (k) |

√
3
π ln 1−α

α dk

duα2 (k) = 2e−
k
3 uα2 (k)dk

+ 1
10e
− t2 | uα2 (k) |

√
3
π ln 1−α

α dk, k ≥ 0.

(9)

In FIGURE.1, when (u0.21 (0), u0.22 (0)) = (1, 1), the trajectories of u0.21 (k) and u0.22 (k)
are represented by u1 and u2, respectively. When (u0.21 (0), u0.22 (0)) = (1.01, 1.01), the trajec-
tories of u0.21 (k) and u0.22 (k) are denoted by u∗1 and u∗2, respectively.

In FIGURE.2, when (u0.41 (0), u0.42 (0)) = (1, 1), the trajectories of u0.41 (k) and u0.42 (k)
are represented by u1 and u2, respectively. When (u0.41 (0), u0.42 (0)) = (1.01, 1.01), the trajec-
tories of u0.41 (k) and u0.42 (k) are denoted by u∗1 and u∗2, respectively.

As depicted in the aforementioned figures, if the variation in initial values is suffi-
ciently small, the solutions of Eq.(9) under different belief degrees that correspond to these
initial values will be closer and closer as time increases. The aforementioned phenomenon
indicates the stability of Eq.(9). Therefore, it can be inferred that Eq.(8) and system (1) are
stable in p-th moment.
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Figure 1. Trajectories of uα1 (k), uα2 (k) when α = 0.2
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Figure 2. Trajectories of uα1 (k), uα2 (k) when α = 0.4
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5. Conclusions

In this paper, we investigated the stability in p-th moment of an uncertain singular
system, building upon the concept of stability in p-th moment and exploring the system’s
behavior across different p values. By making suitable assumptions, we derived sufficient
conditions for determining the stability in p-th moment. In addition, the relationships among
stability almost surely, stability in measure, and stability in p-th moment for the uncertain
singular systems are also discussed. To illustrate our findings, we provided an example that
verifies the stability of the system. This analysis reveals the intrinsic nature of the system’s
stability across different moments and provides valuable insights for further research.
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