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NUMERICAL INTEGRAL APPROACHES FOR BUCKLING
ANALYSIS OF STRAIGHT BEAMS

Viorel ANGHEL?, Cristinel MARES?

This paper presents two different approaches using an integral approximate
method based on flexibility influence functions (Green’s functions), concerning the
critical buckling load calculation for straight Euler-Bernoulli beams. The integral
formulation solves in fact the differential equation governing the bending behavior
of a beam subjected to compression loads. The integrals are then computed by a
summation using weighting numbers for a chosen number of collocation points on
beam axis. Several examples concerning the pin-ended beams and clamped-free
beams are analyzed. The first approach is formulated using an integral form of the
corresponding differential equation in terms of bending deflection while in the
second approach the differential equation is written in terms of bending slope. The
numerical results show good agreement with the analytical one.

Keywords: Integral Method, Green’s Functions, Beam Buckling, Collocation,
Critical Loads.

1. Introduction

The integral approach based on the use of flexibility influence functions
(Green’s functions), as are they called in [1], was widely used in the structural and
aeroelastic analysis for the fixed large aspect ratio cantilever wing problems in the
works [2-4]. In [5] the differential equation governing the transverse bending
vibration analysis for rotating beams was put in integral form using Green
functions in order to obtain the natural frequencies, highlighting the stiffening
effect due to the centrifugal forces. The approach was then extended to the
coupled bending vibration analysis for pre twisted blades [6]. Then, in [7] was
described the more general case of the coupled bending-bending-torsion vibration
analysis for straight beams and blades. Other applications of the integral
approach in static and dynamic response analysis of beams are described in [8]. In
the case of the dynamic, stability or aeroelastic analysis this method leads to an
eigenvalues and eigenvectors problem [9].
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This paper presents two standard cases of the buckling analysis for pin-
ended and clamped-free beams using the integral forms of the corresponding
differential equations and appropriate Green’s functions. Two approaches are
described: the first one obtains the integral form of the beam equations in terms of
bending deflection, while the second one works with the beam bending slopes.
For both approaches and both beam configurations, numerical applications are
discussed allowing the comparison with known analytical results.

2. Integral and matrix forms for beam differential equations

The differential equation governing the bending behavior for a straight
beam, of length L and subjected to a transverse distributed load force p(x), can be
written as:

[E1 00w }'= p(x). (1)
This can be reformulated in the integral form, [1]:
W(x) = [ G, (x.£) p()d¢ . @)

In this equation, the Green’s function Gw(x,&) are the bending deflections w(x,¢)
measured at distances x due to unit forces applied at distance & (Fig. 1a).

From the Saint VVenant torsional behavior of a straight beam of length L
and subjected to the distributed torsion moment my(x), the differential equation is:

[GI(0)#T+m, (x) =0. (3)
It can take the integral form:
#(x) = [ G, (x.O)m (£)d¢, 4

using the Green’s function G(x,¢) representing the twist deflection angles ¢(x,¢) at
distances x due to unit torsion moments applied at distances & (Fig. 1b).
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Fig. 1. Physical significance of Green’s functions for bending and torsion

In these equations the material of the beam considered isotropic has the
longitudinal elastic modulus E and the shear modulus G. The terms I(x) and J(x)
represent the moment of inertia of the cross-section of the beam, respectively the
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torsional stiffness constant. Choosing n collocation points & with fi = f{&), the
integral forms (2) and (4) can be approximated as:

[ f@de=Y 1w, ©)

where W; are weighting numbers. In this paper the Simpson’s method of
integration was used for an even number n = 2m of equally spaced collocation
points:

IO RO T IERER SR ISTE IO

The equation (1) can take the matrix form:

wi=[G, wfip}- (7
In this relation:
[Gw] is the (n,n) symmetric matrix of the Green’s functions values,
[W] is a (n,n) diagonal weighting matrix corresponding to the Simpson’s method,
{w} and {p} are column vectors of the bending deflections and of the distributed
transverse forces p(&) in the chosen n collocation points respectively.
The equation (4) can also be written in matrix form:

{6} =[GIwJm,}, (8)
where:
[Gy] is the (n,n) symmetric matrix containing Green’s functions values,
{#} and {m¢} are column vectors of the torsion deflections and of the distributed
torsion moments m¢(¢) in the n collocation points respectively.

3. Buckling analysis of pin-ended straight beam

In the first case the buckling analysis of a pin-ended straight beam is
carried out. The beam is loaded in compression by a force P. In this boundary
conditions case, the Green’s functions Gw(x,) = w(x,&) are shown in the figure
below:
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Fig. 2. Buckling of a pin-ended straight beam and the corresponding Green function

One starts from the equation governing the bending displacements written as:
El(x)w'=—-Pw;, or[El(xw"]'=-Pw". (9)
The matrix form of the last equations takes the form:
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fw}=-P[G, JW D, fiw} = ~P[G fiw}. (10)
In the previous relation [D] is a differentiating matrix used to obtain the second
derivative of the bending deflection. This is calculated using a central difference
operator. Equation (10) represents an eigenvalue problem having the dimension
given by the number n of collocation points:

[[A ]+ Pl Jiw} = {0} (11)
where [A1] = inv[G]. The eigenvalues of the matrix [A1] are the critical buckling
loads (A = - P¢). The collocation points &; are chosen such that the first point &1 is
near x = 0 and the last point &, is located near the end of the beam (x = L), in order
to avoid the null columns or rows values in the matrix [Gu].

One can reduce the dimension of the eigenvalue problem by using
collocation functions. The displacement w is written in this case as:

w(x) = Zp:Ck -, (%), (12)

where fx(x) are p known functions corresponding to the boundary conditions and
Ck are constant coefficients. One obtains relations of the form:

wi=[Flick Wi=[rJch Wwi=[rlc). (13)
The matrices [F], [F1], [F2] contain the values f,, f,, f, in the collocation points.

Their dimensions are (n, p). An advantage of this formulation is that the
differentiating matrices are no more necessary and (10) can be written as:

[Flc}=-P[G, W]F. c}. (14)
Multiplying left with transpose of matrix [F] one obtains matrix relations as:

[Alict=-p[BJc}, (15)
or:

[B]"[Alic}=-P{c}, (16)
which can be written as an eigenvalue problem:

[A.]+ Pl ]lC} = {o, (17)

where [A2] is now a pxp matrix (p < n), and its eigenvalues represent the critical
buckling loads (A = - P¢).
Another way considered in this paper is using a similar approach but
formulation is written in terms of bending slopes. Starting from (9):
[El(x)w"]=—Pw' (18)
and using the notation w'=¢ for the local bending slope, the above equation
becomes:
[El(x)p']+Po =0 (19)
This equation can be considered of the form (3) and its integral form is similar

with (4) if m(&)=Pg(&):
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(9= [ G, (x.HME)E. (20)

In the above relation, the Green’s function values G,(x, £) represents the bending
deflection slopes ¢(x, &) at distances x due to unit bending moments applied at
distances & (Fig. 3) and m(&) is the distributed bending moment.
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Fig. 3. Green’s functions for bending slope in the case of pin-ended straight beam

In matrix form equation (20) becomes:

o}=Plc, [Wle}, (21)
which is an eigenvalue problem:
[A;]-Pli i} = {0} (22)

with [As] = inv([Ge][W]). The eigenvalues of the matrix [As] determine the
buckling loads (A = P).

As numerical application a beam having the constant bending rigidity EI =
1and L =1 is analyzed. According to [10], the analytical results concerning the
first three critical buckling loads are the followings:

2
chﬂLZEI :7[2; I:)C2:47z-2; Pc3:97[2' (23)

The first critical buckling loads determined using the relation (11) based on the
matrix [Gw] and n collocation points are given in the next table.

Table 1
Results for the pin-ended straight beam - relation (11), collocation points
n=10 n=20 n=40 n=60 n=100 Exact
Pc1 11.246 10.422 10.119 10.03 9.963 n°=9.869
P 50.7 42.848 40.74 40.236 39.894 4n?=39.478
Pes 139.473 100.947 92.668 90.961 89.693 9n? = 88.826

The results are improved by increasing the collocation points number n. The
numerical differentiation is a source of errors, so it is preferable to avoid the
differentiating matrix [D2] using the collocation functions approach. This
approach is especially efficient in the case of the calculation of critical buckling
loads for non-uniform cross-section beams using the real buckling mode shapes
for the uniform beam which are compatible with the boundary conditions. For the
pin-ended straight beam these functions are, [10]:
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w, (x)= sin[kTﬂX] k =1..p. (24)

The next table shows the results for the uniform beam in the case of the use of
relation (22) based on the matrix [G,] and n collocation points.

Table 2
Results for the pin-ended straight beam-relation (22), collocation points
n=10 n=20 n=40 n==60 n =100 Exact
Pc1 10.404 10.171 10.027 9.976 9.934 n?=9.869
Pe 39.959 40.320 40.024 39.868 39.724 4n?=39.478
Pcs 83.214 89.339 89.732 89.563 89.329 9n?= 88.826

The convergence is slow as in this case the matrix [G,] can contain also very
small positive and negative values.

The next example concerns the calculation of the first critical buckling
loads for a non-uniform stepped cross-section beam having the total length L. (see

fig. 4).
»| %ﬁﬂ IE2
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Fig. 4. Non-uniform pin-ended stepped cross-section beam

The idea is to use the approach with collocation points and the collocation
functions representing in fact the buckling mode shapes for the uniform beam
given by (24). The table 3 presents the results obtained for n = 100 collocation
points and p = 5 collocation functions, in comparison with those of [10], in terms
of the parameter A calculated using the formula giving the first critical buckling
load:

AEI
o )
The results obtained in the present work show good agreement when compared
with those of [10]. This reference obtains the buckling loads based on the
resolution of transcendental equations.

P, =

C

Table 3
A values for pin-ended stepped beam -relation (17), collocation functions

11/l a/L=0.2 alL=0.4 a/L=0.6 | a/L=0.8 | Source
0.01 0.15 0.27 0.60 2.26 [10]

) 0.150 0.271 0.601 2.287 present
01 1.47 2.40 4.50 8.59 [10]

' 1.468 2.406 4.508 8.670 present
0.2 2.80 4.22 6.69 9.33 [10]

' 2.796 4.228 6.700 9.346 present
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04 5.09 6.68 8.51 9.67 [10]

' 5.089 6.680 8.510 9.675 present
06 6.98 8.19 9.24 9.78 [10]

' 6.979 8.185 9.243 9.782 present
08 8.55 9.18 9.63 9.84 [10]

' 8.550 9.175 9.630 9.836 present

4. Buckling analysis of clamped-free straight beam

A clamped-free straight beam compressed with the force P and the
corresponding Green’s functions values Gw(x,&) = w(x,&) are shown in Fig. 5.
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Fig. 5. Buckling of a clamped-free straight beam and the used Green function

In this case, the equation governing the bending behavior can be written as:

El(x)w"=—P[w—w(L)] (26)
Comparing equations (26) and (9), it has a supplementary term, the bending
moment Pw(L). After a first differentiation with respect to x this equation
becomes:

[El(x)W"]= —P[w'—w'(L)] (27)
where the supplementary term Pw'(L)can be considered as a transverse tip
concentrated force. The second differentiation with respect to x leads to:

[EI(x)w"]'= —P[w'-w'" (L)] (28)
Neglecting the term inw''(L), the integral form of the equation (28) regarded as
of the form (1) becomes:

W(X) = —PIOLGW(X, W' (E)AE+P -G, (x,L)-w'(L) (29)
where the second term of (29) gives the influence of the concentrated tip
transverse force Pw'(L) from (27) before the second differentiation. The relation
(29) takes the following matrix form:

w}=—P[c, WD, Jiw}+Plo; D Jiw}, (30)
where

[D1] is a differentiating matrix used to obtain the first derivative of the bending
deflection,
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[G;;]is a (n,n) correction matrix used only to obtain the terms containing the first

derivative of the bending deflection w'(L) at beam end, considered as given by the
relation:

w(L) = w(l)-w(L-Ax) W, -W,,

AX X, — X, 4

The collocation points & are chosen equally spaced with the step AS = L/n, the
first point &1 being near x = 0 and the last point & = L being exactly at the tip of
the beam. The Green functions can be computed using the formula:

f (X - §1Xé;—fl)d§1
LS El(&
G, (x.¢&)= i (x—&)NE-&)dé,
0 El(fl)

Following a similar procedure one can consider the equation written in
terms of bending deflection slopes. Starting from (26) written with w'= ¢ one can

obtain:

(31)

for £ < x
(32)

for x<¢&

[E1(x)}p'1+Pp—Py'(L)=0 (33)
Neglecting the last term, the integral form of (33) is the same as (20):
p(0) = [ G, (x.HM(£)de (34)

but now the Green’s function values G,(x,&) are the bending deflection slopes
o(x,¢) according to Fig. 6 and m(&) is the distributed bending moment.
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Fig. 6. Green’s functions for bending deflection slope in the case of clamped-free straight
beam

The matrix form is similar to equation (21) with a different matrix [G,(x,£)]. This
represents an eigenvalue problem allowing the buckling loads determination. In
this case, the Green functions can be computed using the formula:

j% for &£ <x
G, (xe)=1" Elle (35)

X dfl
L El(g-’l) for x<¢&
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As numerical application a beam having the constant bending rigidity EI = 1 and
L = 1 is considered. In this case, the first three critical buckling loads are
according to [10]:
2 2 2 2
Pclzﬂ-—Ezl_ﬂ._; Pczzgﬂ- , Pc3:25—7['
4L 4 4 4
The first three critical buckling loads determined using the relation (30) based on
the matrix [Gw] and n collocation points are given in table 4.

(36)

Table 4
Results for the clamped-free beam - relation (30), collocation points
n=10 n=20 n=40 n==60 n =100 Exact
Pc1 2.460 2.465 2.466 2.467 2.467 n?/4=2.467
Pe 21.652 22.069 22.172 22.191 22.201 9n? /4 =22.206
Pcs 57.295 60.620 61.620 61.567 61.642 25n? /4= 61.685

The precision increases with the number of the collocation points number n.
The next table shows the results in the case of the use of relation (22)
based on the matrix [G,] and n collocation points.

Table 5
Results for the clamped-free beam - relation (22), collocation points
n=10 n=20 n=40 n==60 n =100 Exact
P 2.460 2.465 2.466 2.467 2.467 n?/4=2.467
P 21.652 22.069 22.172 22.191 22.201 9n? /4 =22.206
Pes 57.295 60.620 61.620 61.567 61.642 25n? /4= 61.685

The results are in good agreement as in this case, according to the relation (35),
matrix [G,] contains only positive values.

Another example considering a non-uniform beam and using the
collocation function approach is presented next. As appropriate collocation
functions one can take the family of the real vibration mode shapes of a clamped-
free uniform beam, [11]:

wk(x>=T(ﬂk)-u[ﬂk {j—swk)-v(ﬂk %j (37)

with the functions:
chx+cos x shx +sin x
S0)=" T=T
U(x): chx—zcosx’v(x): shx;smx

(38)

and:

B, =1.8751, B, = 4.6941, B, = %zz,k =3..n. (39)
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The example concerns the calculation of the first critical buckling loads for a non-
uniform cross-section clamped-free beam (fig. 7).

Fig. 7. Non-uniform clamped-free beam

The bending stiffness distribution for this example from [10] is in terms of
distances a and y:

El(y)= E|1gjk (40)
Here we will use the variable x, so:

El(x) = Ell(;i_xjk (41)
with El, given at x = 0:

El, :Ell(a;L)k (42)

For given values of 11/l> and k one can obtain the distance a.

The first approach uses the relation (17) with collocation points and the
collocation functions (37). The second one based on bending slopes uses only
collocation points and relation (22).

The table below presents the results obtained for n = 100 points and p = 5
functions, in comparison with those presented in [10] in terms of the parameter A
from the formula:

AEI
Pa ="z (43)
Table 6
)\ values for the clamped-free non-uniform cross section beam

/] k=2 k=4
v [10] (17) (22) [10] (17) (22)
0.1 1.350 1.341 1.3359 1.202 1.194 1.1897
0.2 1.593 1.5829 1.5796 1.505 1.4964 1.4935
0.3 1.763 1.7566 1.754 1.710 1.7026 1.7002
0.4 1.904 1.8974 1.895 1.870 1.8635 1.8614
0.5 2.023 2.0179 2.016 2.002 1.9973 1.9955
0.6 2.128 2.1246 2.123 2.116 2.1129 2.1112
0.7 2.223 2.2211 2.219 2.217 2.2151 2.2135
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0.8 2.311 2.3096 2.308 2.308 2.3072 2.3057
0.9 2.392 2.3918 2.3903 2.391 2.3912 2.3898

The results obtained for both formulations agree well with the analytical ones
obtained in [10] by solutions of Bessel type differential equations.

6. Conclusions

This work presents two simple integral formulations for stability analysis
of straight Euler-Bernoulli beams. These approaches are based on the use of
flexibility influence functions (Green’s functions). These functions are numerically
computed, taking into account the fact that they are displacements in some points
of a beam due to unit forces applied in other points. The symmetric matrix
containing the Green’s functions values is computed in a number of collocation
points. An integration matrix based of Simpson’s method of integration is also
employed. Differentiating matrices are used in order to obtain the first and the
second derivative of the bending deflections. In order to avoid these
differentiating matrices one can use collocation functions depending upon the
boundary conditions. In fact the collocation functions are suitable especially in the
case of non-uniform cross-section beams when the buckling mode shapes or
natural mode shapes of vibrations of uniform beams can be employed.

The second approach based on the use of the buckling differential
equations written in terms of bending slopes is a specific contribution of this
work. This approach is suitable especially for the clamped-free beam critical
buckling loads calculation, as no differentiation matrices or collocation functions
are necessary. In this work the standard cases of the pin-ended beam and of the
clamped-free beam have been analyzed. The Green’s functions are computed
numerically. In the case of the clamped-free beam they are given by simple
relations listed in the text. The numerical examples, for several critical buckling
loads calculations show good agreement with known analytical results obtained
for uniform or non-uniform cross section beams, the accuracy depending on the
number of the used collocation points. Both approaches are in fact matrix
formulations, suitable for Matlab/Octave implementation, an appropriate
calculation software for numerical and data manipulation point of view.
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