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PLANE WAVES IN GENERALIZED MAGNETO-THERMO-
MICRO-STRETCH ELASTIC SOLID FOR MODE-I CRACK 

PROBLEM 

Mia OTHMAN1 , Sarhan Y. ATWA2
, Adnan JAHANGIR3

, Aftab KHAN4
 

The aim of this paper is to study the effect of magnetic field on wave 
propagation in generalized thermo micro-stretch for a homogeneous isotropic 
elastic half space solid whose surface is subjected to a mode-I crack. The normal 
mode analysis is used to obtain the exact expressions for the field variables i.e., 
displacement components, temperature distribution, force stress and microstress in 
the presence of magnetic field. It is seen that on the displacement, temperature and 
normal stress distribution magnetic field has decreasing and increasing effect in 
with and without energy dissipation respectively. 

Keywords: Green and Naghdi theory. Energy dissipation. Thermoelasticity. 
Magnetic field. Microstretch. Mode-I crack. 

1. Introduction 

  The effect of magnetic field on wave propagation in elastic solid was 
introduced by using Maxwell’s equations. In the context of generalized 
thermoelasticity Nayfeh and Nemat-Nasser [1] studied the propagation of plane 
waves in solid under influence of electromagnetic field. Choudhuri [2] extended 
these results to rotating media.  
  Eringen [3] introduced the theory of microstretch elastic solids. That 
theory is a generalization of the theory of micropolar elasticity [4-6]. The material 
points of microstretch elastic solids can stretch and contract independent of their 
transformations. The microstretch is used to characterize composite materials and 
various porous media [7]. The basic results in the theory of microstretch elastic 
solids were obtained in the literature [8-10]. The theory of thermo-microstretch 
elastic solids was introduced by Eringen [11]. The asymptotic behavior of the 
solutions and an existence result were presented by Bofill and Quintanilla [12]. A 

                                                            
1 Prof., Department of Mathematics, Zagazig University, P.O. Box 44519, Zagazig,  Egypt, e-mail: 
m_i_othman@yahoo.com 
2 Higher Institute of Engineer, Dep. of Eng. Math. And Physics, Shorouk Academy, Egypt 
3 Department of Mathematics, COMSATS, Institute of Information Technology, Islamabad, 
Pakistan 
4 Department of Mathematics, COMSATS, Institute of Information Technology, Islamabad, 
Pakistan 



60                                    Mia Othman, Sarhan Atwa, Adnan Jahangir, Aftab Khan 

reciprocal theorem and a representation of Galerkin type were presented by De 
Cicco and Nappa [13]. De Cicco and Nappa [14] extended the linear theory of 
thermo-microstretch elastic solids to permits the transmission of heat as thermal 
waves at finite speed. The theory is based on the entropy production inequality 
proposed by Green and Laws [15]. In [14], the uniqueness of the solution of the 
mixed initial-boundary-value problem is also investigated. The basic results and 
an extensive review on the theory of thermo-microstretch elastic solids can be 
found in [11]. 
The normal mode analysis was used to obtain the exact expression for the field 
variables that are displacement components, temperature, stresses and microstress 
distributions.  
The purpose of the present paper is to check the effect of magnetic field on the 
field variables. The problem of generalized thermo-microstretch in an infinite 
space weakened by a finite linear opening mode-I crack is solved for the above 
field variables. The distributions of the considering field variables are represented 
graphically. A comparison is carried out for both with and without energy 
dissipation and these effect was known as Green Naghdi theories [16, 17] named 
GN-II [17] and GN-III [16] for the propagation of waves in semi-infinite 
microstretch elastic solids. 

2. Formulation of the Problem: 

The region z 0≥ is occupied by linear isotropic microstretch elastic solid. 
We use a rectangular coordinate system(x, y, z) having origin on the 
surface y 0= and z-axis pointing vertically into the medium. A magnetic field with 
intensity 0(0,H ,0)=H , acting parallel to the boundary plane (taken as the direction 
of the y-axis). The surface of the half-space is subjected to a thermal shock which 
is a function of z and t . Thus, all the quantities considered will be functions of the 
time variable t, and of the coordinates x and z . We begin our consideration with 
linearized equations of electro-dynamics of slowly moving medium [18]. 
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The equation of motion in the presence of Lorentz force is as follows. 
, ,uim m i iFσ ρ+ =  (2) 

when                            0 ( ) , 1,2,3.J Hi iF iμ ×= =  (3) 
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The basic governing equations of linear generalized thermo-elasticity in the 
absence of body forces are taken from [19] 
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where 0μ  is magnetic permeability; 0ε  is electric permeability; h  is the induced 
magnetic field vector; E is the induced electric field vector, J  is the current 
density vector; T  is the temperature above the reference temperature 0T   chosen so 
that 0 0(T T ) T 1− < , λ, μ  are the counterparts of Lame’s parameters, the 
components of displacement vector u are iu , t is the time, ijσ  are the components 

of stress tensor, e is the dilatation, ije  are the components of strain tensor, j  is the 
micro inertia moment, , , ,k α β γ  are the micropolar constants, 0 0 1, ,α λ λ  are the 

microstretch elastic constants, *ϕ  is the scalar microstretch,ϕ is the rotation 
vector, mij  is the couple stress tensor, ijδ is the Kronecker delta, ijrε  is the 

alternate tensor, the mass density is ,ρ  the specific heat at constant strain is EC , the 

thermal conductivity is ( 0) K ≥  and *K is the material  characteristic. 
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Where
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For convenience, the following non-dimensional variables are used: 
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Using Eq. (7), Eqs. (4) become (dropping the bar for convenience) 
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Assuming the scalar potential functions ( , , )R x z t and ( , , )x z tψ defined by the 
relations in the non-dimensional form: 
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Using Eq. (9) in Eqs. (8), we obtain. 
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3. Solution of the Problem by Normal Mode Analysis: 

Decompose the physical variables in terms of normal mode analysis 
method as follows, 
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Where 2
*[ , , , , , , , ]( )il il zR m T zψ ϕ φ σ λ the amplitudes of the functionsω  is a 

complex and b is the wave number, by using Eq. (12), Eqs. (10) become, 
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Where, 2 ( 1, 2,3, 4,5)rk r = are the roots of the characteristic equation of Eqs. (14). 
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By using Eq. (13) solution of Eq. (14), has the form  
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4. Boundary Condition for Mode-I Crack: 

The plane boundary subjects to an instantaneous normal point force and 
the boundary surface is isothermal, the boundary conditions at the vertical plan 
y 0=  and in the beginning of the crack, at z 0= are as follows: 

(1) Mechanical boundary condition is that the surface of the half-space 
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(2) Thermal boundary condition is that the surface of the half-space subjects 
to a thermal shock,  

( ),T f z az= <  (19b) 
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We obtain the non-dimensional expressions for the displacement components, 
force stress, coupled stress and temperature distribution of the microstretch 
generalized thermoelastic medium as follows, 
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Applying the boundary conditions (19) at the surface 0z =  of the plane, we obtain 
a system of five equations. These equations can be represented in matrix form as 
under,  
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By applying inverse matrix operation one can find the values of unknown 
constants ,  1, 2, 3, 4, 5M nn =  and hence, obtain the expressions for the field 
variables. 
 

5. Particular Cases: 

Case-1: Micropolar Effect without Stretch: 

 The corresponding equations for the medium can be obtained by putting, 

0
*

0 1 0α λ λ φ= = = = . (23) 
Case 2: Without Micropolar Effect: 

 To find field variables for without micropolar thermoelastic medium 
adjust the constants as, 

 0k α β γ= = = = . (30) 
Proceeding on the same way as we did one can find the field. 

6. Application and Discussions 

   We take a magnesium crystal [4] as the model material. Since,ω  is a complex 

constant, we take 0 iω ω ζ= + and set 0 2.5ω −= and 1ζ = . The physical constants 

used are: 

33 3 21 11 1 21.74 , 0.2 10 , 9.4 10 , 293 ,010    j m T Kkg m kg m sρ λ− − − −= = × = × =×
11 1 2 11 1 2 8 24.0 10 , 1 10 , 0.779 10 , 1      1.78,kkg m s kg m s kg m sμ γ ε− − − − − −= × = × = × =

* 3 1 1 4 1 10.1 10 , 1.3 10 ,2 31.1, 0.4, 1.3,K W m K K W m K zε ε − − − − − −= × = ×= = =

0
11 1 2 9 1 2 4 1 20.5 10 , 0.1 10 , 0.779 101 0      ,kg m s kg m s kg m sλ λ α− − − − − − −= × = × = ×

1.2, 0.1 , 0.08, 1.0.p t s f b= − = = =  
To check the effect of magnetic field on considered variables we chose at random 
two different intensities of magnetic field i.e.,

0
0 and 1000H = . Also with and 

without energy dissipation i.e., under Green Naghdi theories II and III are 
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considered and showed their behavior in the graphs. The following graphs shows 
the behavior of displacement component w , temperatureT , normal stress xxσ  and 
microstress zλ in the presence and absence of magnetic field i.e.,

0
0 and 1000H = in 

the context of GN-II and GN-III. Solid line and dashed line for GN-II 
at

0
0 and 1000H = , dashed with dot and dotted line are for GN-III 

at
0

0 and 1000H = respectively 
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It is observed that magnetic field has increasing effect on , and xxw T σ for GN-II and 
decreasing effect for the case of GN-III. For the case of microstress distribution 
magnetic field has dual effect. 
Case-1: Micropolar Effect without Stretch 
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These curves are representing the case of without stretching parameters, magnetic 
field has decreasing effect on displacement component and temperature 
distribution. Amplitude of normal stress distribution increased by increasing the 
influence of magnetic field. The microstress distribution does not exist. 
Case-2: Without Micropolar affect 
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Magnetic field has decreasing effect on displacement component and temperature 
distribution for both the theories of GN. Where as normal stress xxσ and 
microstress zλ has increasing effect in GN-II and decreasing effect in GN-III. 

 6. Conclusion 

 In this paper the effect of magnetic field on plane waves in a generalized 
thermo-microstretch elastic media is studied. In this paper effect of 

0
H  is also 

been investigated for material i) without microstretch and ii) without micropolar 
effect. The importance of this paper is to consider effect of magnetic field for 
mode-I crack, taken as particular example for each case. We can obtain the 
following conclusions according to the analysis above. The problem considering 
effect of magnetic field in generalized thermo-microstretch elastic media can be 
described by two characteristic equations of order six and four. Distributions of all 
physical quantities throughout the medium depend on the nature of material. 
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Variable quantities have a dual nature for magnetic field in majority of cases its 
presence is having an increasing effect. All the curves obtained converge to zero 
representing decaying of each and every field variable as distance from edge of 
crack increases. 
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