
U.P.B. Sci. Bull., Series C, Vol. 82, Iss. 2, 2020                                                    ISSN 2286-3540 

TEST DATA GENERATION USING GENETIC ALGORITHMS 
AND INFORMATION CONTENT 

Ciprian-Ionut NUTESCU1, Mariana MOCANU2

An important development cycle for a software product is represented by the 
quality assurance phase. In this phase, the software is testing to find out any defects 
or issue that might go unresolved into production. Testing usually needs data that 
simulates production scenarios. This data is generated manually by quality 
assurance engineers or taken from production and transformed into testing data 
samples. Even if the process of testing usually is automated using testing 
frameworks, data generation for these tests is done manually by quality assurance 
engineers. In this paper, we propose a solution to automatically generate testing 
data sets from small groups of samples using a modified machine learning genetic 
algorithm and information content fitness testing. We will describe the algorithm 
found, its hyper-parameters for tuning it for proper results and the performance of 
the algorithm using various scenarios. In the last chapter of this paper, we will dis-
cuss further improvements that can be done for this algorithm. 

 

 
Keywords: Test data management, Genetic algorithms, Machine Learning, 

Information content 

1. Introduction 

Testing is a very important phase in a software development lifecycle 
because it checks if the functional and technical specifications of a software 
product are met after the development phase. A big challenge for software testing 
is gathering and preparing the necessary data for all the test cases. This process is 
called test data management. Data provided for testing is usually generated 
manually or cloned from production and cleaned manually. This process takes 
time and human resources and it is prone to errors due to the human factor. Even 
more, being a manual process, the testing data samples generated usually are not 
enough to cover the whole test case with all scenarios. The current solutions in the 
markets (TDM from Informatica[3]) are generating data using hand-made data 
schemas and dictionaries for the values of the data and randomizing various 
combinations without taking into consideration data inference (there is no 
inherence link between values of the data). In this process, we aim to create a new 
algorithm based on machine learning that could generate test case samples 
                                                        
1 PhD student Eng., Department of Computer Science, Automatic and Computer Science Faculty, 

University POLITEHNICA of Bucharest, Romania, e-mail: cipinutescu@yahoo.com 
2 Prof., Department of Computer Science, Automatic and Computer Science Faculty, University 

POLITEHNICA of Bucharest, Romania, e-mail: mariana.mocanu@cs.pub.ro 



34                                             Ciprian-Ionut Nutescu, Mariana Mocanu 

without the intervention of the user. The algorithm is based on genetic algorithm 
and information theory. It automatically computes the schema of the data and its 
dictionary and generates relevant data from the smaller dataset taking into 
consideration data inherence. It uses information content as a fitness function for 
the genetic algorithm to determinate the relevancy and usefulness of the testing 
samples. [1] 

2. Test data management 

Test data management refers to all actions that are done to acquire and 
produce testing data for a software application. Even if the process of testing is 
automated (more and more companies are starting to use automatic testing 
software instead of manual testing) or manual (there are people who manual test 
the application to see if the requirements are meet and all issues are fixed), the 
provision of data is a manual process done by people. A study [2] conducted by 
IBM in 2016 shows that 64% of the data is created manually and 34% of the data 
is provided by cloning or manually cleansing data sets. The rest of 2% is done by 
other means.  The Fig. 1[2] shows that it is undeniable evidence that data 
preparation is a time-consuming phase of software testing. As said before, even if 
the process of testing (we are referring here to the phase when the tests are run) is 
totally automated (using various software testing frameworks), the acquisition and 
preparation of data are done manually by quality assurance engineers and it is a 
time-consuming phase of the software testing. 

 

 
Fig. 1. Average time spent on test data management 

3. The automatic generation of test samples 

Nowadays most of the companies are using automatic testing frameworks 
to run tests each when needed, but the testing data is provided manually by the 
quality assurance engineers. The question is what if we can provide an automatic 



Test data generation using genetic algorithms and information content                   35 

method to generate the sample data for the tests that can be used in any situation 
regard-less of the testing data form. We propose to solve this problem with 
modified genetic algorithm having as input some testing sample (few in number) 
that are able to generate whole datasets from those samples without user 
interaction and without any knowledge of the domain in which the testing is done 
(we are refer-ring here to the domain where the software application resides: 
medicine, military, education, financials, etc.). 

We are able to propose this solution because the technology has advanced 
a lot during last year’s regarding artificial intelligence and machine learning. We 
tried to find some solution of algorithms from existing machine learning ones, but 
we were not able to find anything that can solve our problem straight forward. 
The most adjacent regarding solution generation in all machine learning 
algorithms (supervised or unsupervised) are the genetic algorithms that converge 
to a solution for a problem by generating various solution of that problem and 
then testing the solution using a fitness function (that depends from problem to 
problem) and then regenerating the candidate solutions using cross-over and 
mutation if no solution was found in the current iteration. An iteration in genetic 
algorithms is called a generation and possible solution generated is called an 
individual. Each individual (possible solution to the problem) has a DNA-like 
representation called chromosome. The chromosome represents the solution 
parameters represented in an array or DNA like form (for the algorithm to able to 
apply cross-over and mutation). We choose the genetic algorithms as a starting 
point because of their ability to encapsulate various solution candidates in 
chromosome representation and use operate with this representation and the 
generation potential of candidates’ solutions of the algorithms.  

4. Genetic algorithms 

As presented in the last chapter, genetic algorithms iterate sequentially 
through generations of individuals until the most fitted individual is found or the 
iterative process stops from various reasons (maximum number of iterations, 
maximum number or resources consumed, etc.), case in which a fitted individual 
is found that solves the problem with an accounted error. In fig. 2. we have the 
general genetic algorithms phases that we will use to build our own modified 
algorithm for testing samples generation. 



36                                             Ciprian-Ionut Nutescu, Mariana Mocanu 

 
Fig. 2. Genetic algorithm phases 

5. Information content 

The information content or information entropy in our solution represents 
a fitness measurement to determinate how fitted are the individuals generated by 
the genetic algorithm. Let’s consider the following: 

 
O = {o1, o2, o3, ........., on}, the initial object population (1) 

 
A= {a1, a2, a3, ..........., an}, set of object attributes  (2) 

 
V = {v1, v2, v3, ........, vn}, set of values for attribute a (3) 

 
θ(a,vi) = the function that counts the number of occurrences where 

attribute a has value vi in our initial population 
 
The probability that an attribute will have the value vi will be given by the 

following formula (which is the information content): 
 

     (4) 

 
where pxi is the probability of xi (X = {x1 x2, x3, x4, ...}). 
 
 



Test data generation using genetic algorithms and information content                   37 

Combining the two formulas, we get the information content of an object o 
from the initial population O: 

 
    (5) 

 

       (6) 
 
Using this formula, we will determinate how relevant and how much 

information we can obtain from our generated individuals (test samples). If the 
information content of the individual is lower than a value that we are choosing 
called minimum information content threshold, then the individual is rejected 
from the future generation is the selection phase, otherwise, he is chosen to carry 
on. 

6. The algorithm 

In this chapter, we will present the final algorithm that will be used to 
produce testing samples. As it was presented before, we are using a modified 
genetic algorithm to generate the samples. The pseudocode of the algorithm is the 
following: 

 
phase 1 initializations: 
training_data_set = {first generation of the object received as input from 

the user featured as individuals for input} 
current_generation = 0 
probability_of_mutation = 0.3 
minimum_information_content_threshold = 0.2 
maximum_generation = 3 
information_content_map = {<key1, value1> pairs, where key1 is the 

attribute of the object and value1 is another map <key2, value2> where key2 is 
on value of the attribute and value2 the information content for that value of the 
attribute} 

 
phase 2 iterations: 
testing_sample_generation (training_data_set, current_generation) { 
 if (current_generation is equal to maximum_generation){ 
  return training_data_set  
  } 
  new_generation = empty_set 
  for_each pair <p1, p2> in (training_data_set x training_data_set){  



38                                             Ciprian-Ionut Nutescu, Mariana Mocanu 

   apply mutation for cross_over p1, p2 
    compute information_content based on formula and 

information_content_map 
 
    if ( information_content of the individual >= 

minimum_information_content_threshold ){ 
    add above result in new_generation 
     } 
  } 
  testing_sample_generation(new_generation, current_generation+1) 
}  
 
The first phase initialization is where all the algorithm parameters are 

chosen and other auxiliary data structured is processed. The training data set is the 
input set of an object that will be used as archetypes for the new samples testing 
objects to be generated from. These objects are featured as a map of string – 
object, where the string is the name of the attribute and object is the value. This 
feature method is used because we want our algorithm to be able to process any 
kind of objects. The parameter current_generation is initialized with the value 0 
and it will iterate with each recursive call of the algorithm until it is equal to the 
maximum_generation parameter. This parameter is used for maximum iterations 
of the algorithm for the training data set. The parameter probability_of_mutation 
is a genetic algorithm parameter that gives the probability of a mutation 
happening after the cross-over process is applied to an individual’s pair. A very 
important auxiliary data structure processed in this step is the 
information_content_map. This map contains the information content for each 
value for each attribute. We need this kind of information to apply our formula on 
each generated individual to see how fitted it is. A very interesting question we 
ask ourselves when we de-sign the algorithm is why we compute this map at the 
very beginning and not at each iteration. The answer is justified by the nature of 
the information content computing method: by counting occurrences.  We want to 
generate testing samples that will have the same value for the testing scenarios the 
same as the initial samples. If the information_content_map is recomputed at each 
step, then it will add the new occurrences from the newly created generations. 
This means that some values of attributes could appear often (we are using a 
probability of apparitions because the whole genetic algorithm process is based on 
random numbers generations) and will have a higher information content than 
others.  

For example, if our proposed algorithm takes the attribute currency with 
the values USD, EUR, and RON. In our initial samples, we have USD 4 times, 
EUR 2 times and RON 1 time. We want that further generated testing samples to 



Test data generation using genetic algorithms and information content                   39 

have the same distribution of values as the initial ones. If at one step the value 
RON will appear 10 times, and by any changes the individuals holding this value 
will iterate into the new generation, at the next iteration of our algorithm by re-
computing the information_content_map we will have value RON bringing more 
value than value USD, which is incorrect because we don’t want to mess the 
initial distribu-tion and information content of the samples.  

The second phase of the algorithm is the iterative genetic part that 
represents recursively calling testing_sample_generation method until the cur-
rent_generation parameter is equal to the  maximum_generations parameter. The 
stopping condition is checked, and if so then the generation received as a param-
eter is returned as a result because there is no need to iterate more. If the stopping 
condition is not met, then for each pair of individuals taken from the past genera-
tion (received as a parameter), we apply cross-over process and then we apply 
mutation with a probability of mutation_probability parameter. We apply cross-
over for each pair instead of using others existing methods (tournament selection, 
roulette wheel selection, etc..) because we want to maximize the data combination 
between individuals (we don’t want to lose any data combination because the 
result of cross-over can contain high information content values). A new 
individual is created from this process that will be testing in our fitness function. 
The fitness function is represented by computing the information content of the 
newly generated individual and comparing it with the mini-
mum_information_content_threshold. If it passes, then we will be added in the 
new generation and it will help at generating new individuals. 

7. Testing and experimental results 

We implemented the testing samples generation algorithm in Java using 
only the SDK without any other external libraries. The software had the following 
inputs:  

• input testing samples representing first generation 
• information content threshold 
• mutation probability 
• maximum generations (iterations) 
First, we are testing how the time of the processing is influenced by the 

input testing samples and the information content threshold. 
 



40                                             Ciprian-Ionut Nutescu, Mariana Mocanu 

 
Fig. 3. Time elapsed of generating samples data for information content threshold 0.25, maximum 

generation 3, initial testing samples 10 

 

Fig. 4. Time elapsed of generating samples data for information content threshold 0.23, 
maximum generation 3, initial testing samples 10 

 
Between Fig. 3 and Fig. 4, the only modified parameter is the information 

content threshold that is 0.25 for the first figure and 0.23 for the second figure. In 
other words, on the first run, we have been more restrictive with the algorithm 
having only testing samples with information content higher than 0.25 been 
generated, while in the second run we have been less restrictive. For the first case, 
we can see that the points on the graph (Fig. 3) are grouped in a cluster meaning 
that the algorithm on 100 repetitive calls has generated 6000-7000 samples of data 
(out of a maximum of 10000 samples of data, explained in table 1), having the 
processing time around 50-100 milliseconds. This gives a deterministic behavior 
to our algorithm. For the second case, we have done the same experiment having 
the information content threshold low-ered by 0.02. 

 
 



Test data generation using genetic algorithms and information content                   41 

Table 1 
Maximum sample generated determined by current generation and number of initial 

samples 
Number of initial samples  Current generation Maximum samples generated 
10 1 10 
10 2 100 
10 3 10000 
100 1 100 
100 2 10000 
100 3 100000000 

 
This modified the behavior of our algorithm, having most of the data 

centered around 9985 – 10000 point generated (the maximum being 10000) and 
with processing time around 50-100 milliseconds. The processing time has not 
been modified, but the number of generated points has increased from around 
6000-7000 to 9000-10000. This means that the number of generated testing sam-
ples is correlated with the information content threshold. We will redo the same 
scenarios, but with 100 initial testing samples instead of 10. 

 
Fig. 1. Time elapsed of generating samples data for information content threshold 0.25, maximum 

generation 3, initial testing samples 100 

 
Fig. 6. Time elapsed of generating samples data for information content threshold 0.23, maximum 

generation 3, initial testing samples 100 
 



42                                             Ciprian-Ionut Nutescu, Mariana Mocanu 

In Fig. 5 and figure 6, the algorithm has been run 100 times, having an 
initial number of samples 100 and information content 0.25 and 0.23. In the first 
case with information content threshold 0.25, the algorithm has generated around 
7000-9000 samples in about 150-250 milliseconds, while in the second case with 
information content 0.23 the algorithm has generated 700000-740000 samples in 
about 6-12 seconds. We can see that the time of processing has increased consid-
erably from milliseconds to seconds if we need to generate thousands of samples 
data. For the Fig. 5, we have the same behavior as in Fig. 3, when the algo-rithm 
was used for the same parameters but with 10 initial testing samples: on repetitive 
runs, the algorithm has a deterministic behavior given by the cluster of runs of the 
graphic.  For Fig. 4 and Fig. 6, where we used 10 and 100 initial testing samples, 
with information content 2.3, the algorithm tends to generate more testing samples 
approaching to the maximum number of the testing sample generated (given by 
the number of generations and number of initial samples, see table 1). This means 
that with the information content threshold we can decide if we need the 
algorithm to be more restrictive or not.  

 
Fig. 7. The number of samples generated depending on the information content threshold with 

initial testing samples 10 and maximum generations 3 
 
In Fig. 7, the algorithm has been tested using an information content 

threshold from 0.2 to 0.3. As seen from the testing results, if the information 
content threshold is chosen to be very restrictive 0.3, the algorithm starts 
generating 0 samples of data, and if the information content threshold is chosen to 
be less restrictive 0.2, the algorithm generated the maximum number of samples 
possible. 

The number of samples the algorithm is able to generate is given by the 
initial testing samples number, the number of generation we want to run (it will 
give the iterations of the algorithm) and the information content threshold. Even if 
we chose to have a big set of initial testing samples, having a very restrictive 
thresh-old of information content could make the algorithm output 0 samples of 
testing data. This means that the following parameters: number of generations and 
in-formation content threshold must be chosen very carefully after a series of test-
ing and hyper-parameter tuning sessions. We deduced that a 0.25 information 



Test data generation using genetic algorithms and information content                   43 

content can be restrictive but it can still generate testing samples, while 0.3 gen-
erated 0 samples and 0.2 generated all possible testing samples without any fit-
ness testing. So the recommendation is to take the information content 0.23-0.25, 
while the maximum generations should be taken into consideration depending on 
a number of initial testing samples. As presented in table 1, the maximum number 
of the sample generated by the algorithm S is: 

                                                        (1) 

where m is a number of initial samples and n is the number of maximum 
generations. The testing platform used for the algorithm was Windows 10 Pro 64-
bit, Intel i7-6500 CPU, 8 GB Ram. 

8. Comparison with existing TDM solutions 

The only solutions we found in the market comparable with ours 
(generating datasets) were Informatica TDM[3] and Broadcom Test Data 
Manager[4].  Both solutions required manual interaction and creation of the data 
schema (they mainly integrate only to databases, not having the ability to generate 
testing data from a json, xml or csv file). The user has to complete the dictionary 
of what values can a column have in the Informatica case (they generate from 
scratch the dataset, randomizing combinations between data values), but in the 
case of Broadcom TDM the software creates automatically the dictionary where 
you can add more values (they generate from existing dataset only, but 
randomizing all combinations between data values). Both solutions don’t take into 
consideration data inherence (what information links can exist between various 
values of data, generating irrelevant data for testing). There is no state-of-art in the 
existing solutions (not using machine learning or big data techniques, only full 
random combination between values in the dictionaries).  

We tried to overcome those problems in our paper by minimizing the user 
interaction with the software, automatically computing data schema and 
encapsulation in chromosome for the genetic algorithms (the solution proposed 
can take any data into consideration, from SQL tables to json/xml/csv files). 
Another problem we wanted is taking in consideration data inherence; in our 
solution data generated which is not relevant for the testing scenarios is dropped.  

The state-of-art of this paper is using an existing machine learning 
algorithm used for a certain purpose and using its logic and inherence 
computation to serve another purpose.  

9. Conclusions and future improvements 

The algorithm presented in this paper can be used to generated relevant 
testing data for different (research, financial, medical, etc...) applications and can 



44                                             Ciprian-Ionut Nutescu, Mariana Mocanu 

be implemented in various programming languages because it is not depending on 
certain libraries or platforms. The most important parameters of the algorithm are 
a number of generations and information content threshold as demonstrated in the 
section above because with these two parameters the algorithm can be controlled 
to generated more testing samples or less testing samples with relevancy 
proximally equal to the input testing samples. The algorithm is capable of 
generating in 10 seconds approximately 760000 testing samples, but this 
performance can be improved by migrating the algorithm from a serial approach 
using on a single thread to a multithreaded approach. The section that can be very 
easily parallelized is the new individual cross-over, mutation and fitness testing, 
while for each generation iteration is needed a synchronization barrier so all the 
elements have been generated and tested because the data dependency, in this 
case, is between individuals from different generations, not the same generation 

R E F E R E N C E S 

[1]. Test Data Management in the New Era of Computing, Vinod Khader IBM InfoSphere Optim 
Development, IBM Technical Summit 

[2]. 2. A Comprehensive Test Data Design and Management Guide, June 7, 2018, 
https://www.softwaretestinghelp.com/tips-to-design-test-data-before-executing-your-test-
cases. 

[3].https://docs.informatica.com/data-security-group/test-data-management/10-2-0-hotfix-
2/getting-started-guide/glossary/glossary-of-terms/test-data-management--tdm-.html 

[4]. https://www.broadcom.com/products/software/continuous-testing/test-data-manager 
 

https://www.softwaretestinghelp.com/tips-to-design-test-data-before-executing-your-test-cases�
https://www.softwaretestinghelp.com/tips-to-design-test-data-before-executing-your-test-cases�
https://docs.informatica.com/data-security-group/test-data-management/10-2-0-hotfix-2/getting-started-guide/glossary/glossary-of-terms/test-data-management--tdm-.html�
https://docs.informatica.com/data-security-group/test-data-management/10-2-0-hotfix-2/getting-started-guide/glossary/glossary-of-terms/test-data-management--tdm-.html�
https://www.broadcom.com/products/software/continuous-testing/test-data-manager�

