U.P.B. Sci. Bull., Series C, Vol. 82, Iss. 2, 2020 ISSN 2286-3540

TEST DATA GENERATION USING GENETIC ALGORITHMS
AND INFORMATION CONTENT

Ciprian-lonut NUTESCU?, Mariana MOCANU?

An important development cycle for a software product is represented by the
quality assurance phase. In this phase, the software is testing to find out any defects
or issue that might go unresolved into production. Testing usually needs data that
simulates production scenarios. This data is generated manually by quality
assurance engineers or taken from production and transformed into testing data
samples. Even if the process of testing usually is automated using testing
frameworks, data generation for these tests is done manually by quality assurance
engineers. In this paper, we propose a solution to automatically generate testing
data sets from small groups of samples using a modified machine learning genetic
algorithm and information content fitness testing. We will describe the algorithm
found, its hyper-parameters for tuning it for proper results and the performance of
the algorithm using various scenarios. In the last chapter of this paper, we will dis-
cuss further improvements that can be done for this algorithm.

Keywords: Test data management, Genetic algorithms, Machine Learning,
Information content

1. Introduction

Testing is a very important phase in a software development lifecycle
because it checks if the functional and technical specifications of a software
product are met after the development phase. A big challenge for software testing
is gathering and preparing the necessary data for all the test cases. This process is
called test data management. Data provided for testing is usually generated
manually or cloned from production and cleaned manually. This process takes
time and human resources and it is prone to errors due to the human factor. Even
more, being a manual process, the testing data samples generated usually are not
enough to cover the whole test case with all scenarios. The current solutions in the
markets (TDM from Informatica[3]) are generating data using hand-made data
schemas and dictionaries for the values of the data and randomizing various
combinations without taking into consideration data inference (there is no
inherence link between values of the data). In this process, we aim to create a new
algorithm based on machine learning that could generate test case samples

! PhD student Eng., Department of Computer Science, Automatic and Computer Science Faculty,
University POLITEHNICA of Bucharest, Romania, e-mail: cipinutescu@yahoo.com

2 Prof., Department of Computer Science, Automatic and Computer Science Faculty, University
POLITEHNICA of Bucharest, Romania, e-mail: mariana.mocanu@cs.pub.ro



34 Ciprian-lonut Nutescu, Mariana Mocanu

without the intervention of the user. The algorithm is based on genetic algorithm
and information theory. It automatically computes the schema of the data and its
dictionary and generates relevant data from the smaller dataset taking into
consideration data inherence. It uses information content as a fitness function for
the genetic algorithm to determinate the relevancy and usefulness of the testing
samples. [1]

2. Test data management

Test data management refers to all actions that are done to acquire and
produce testing data for a software application. Even if the process of testing is
automated (more and more companies are starting to use automatic testing
software instead of manual testing) or manual (there are people who manual test
the application to see if the requirements are meet and all issues are fixed), the
provision of data is a manual process done by people. A study [2] conducted by
IBM in 2016 shows that 64% of the data is created manually and 34% of the data
is provided by cloning or manually cleansing data sets. The rest of 2% is done by
other means. The Fig. 1[2] shows that it is undeniable evidence that data
preparation is a time-consuming phase of software testing. As said before, even if
the process of testing (we are referring here to the phase when the tests are run) is
totally automated (using various software testing frameworks), the acquisition and
preparation of data are done manually by quality assurance engineers and it is a
time-consuming phase of the software testing.

AVERAGETIMESPENTON TEST DATA|

- ﬁf’IANAGE“=EP:‘T (TD MY :

Fig. 1. Average time spent on test data management
3. The automatic generation of test samples

Nowadays most of the companies are using automatic testing frameworks
to run tests each when needed, but the testing data is provided manually by the
quality assurance engineers. The question is what if we can provide an automatic



Test data generation using genetic algorithms and information content 35

method to generate the sample data for the tests that can be used in any situation
regard-less of the testing data form. We propose to solve this problem with
modified genetic algorithm having as input some testing sample (few in number)
that are able to generate whole datasets from those samples without user
interaction and without any knowledge of the domain in which the testing is done
(we are refer-ring here to the domain where the software application resides:
medicine, military, education, financials, etc.).

We are able to propose this solution because the technology has advanced
a lot during last year’s regarding artificial intelligence and machine learning. We
tried to find some solution of algorithms from existing machine learning ones, but
we were not able to find anything that can solve our problem straight forward.
The most adjacent regarding solution generation in all machine learning
algorithms (supervised or unsupervised) are the genetic algorithms that converge
to a solution for a problem by generating various solution of that problem and
then testing the solution using a fitness function (that depends from problem to
problem) and then regenerating the candidate solutions using cross-over and
mutation if no solution was found in the current iteration. An iteration in genetic
algorithms is called a generation and possible solution generated is called an
individual. Each individual (possible solution to the problem) has a DNA-like
representation called chromosome. The chromosome represents the solution
parameters represented in an array or DNA like form (for the algorithm to able to
apply cross-over and mutation). We choose the genetic algorithms as a starting
point because of their ability to encapsulate various solution candidates in
chromosome representation and use operate with this representation and the
generation potential of candidates’ solutions of the algorithms.

4. Genetic algorithms

As presented in the last chapter, genetic algorithms iterate sequentially
through generations of individuals until the most fitted individual is found or the
iterative process stops from various reasons (maximum number of iterations,
maximum number or resources consumed, etc.), case in which a fitted individual
is found that solves the problem with an accounted error. In fig. 2. we have the
general genetic algorithms phases that we will use to build our own modified
algorithm for testing samples generation.



36 Ciprian-lonut Nutescu, Mariana Mocanu

Initialize population

Best solution found for the

problem is the most fitted

invidual at the end of the
iterations

Evaluate populate using a
fitness function

Select only the most fitted
individuals

Apply cross-over and
mutation on selected
individuals

Take new population
individuals as the actual
population and reiterate

Fig. 2. Genetic algorithm phases
5. Information content

The information content or information entropy in our solution represents
a fitness measurement to determinate how fitted are the individuals generated by
the genetic algorithm. Let’s consider the following:

O = {01, 02, 03, ......... , On}, the initial object population (¢D)]
A={a1, a2, a3, ccoeevnne , an}, set of object attributes 2
V={vi, V2, V3, ........ , Vn}, set of values for attribute a 3)

O(a,vi) = the function that counts the number of occurrences where
attribute a has value vi in our initial population

The probability that an attribute will have the value v; will be given by the
following formula (which is the information content):

8(a.vg)
Tizi 8(av))

pla,v;) = (4)

where pyi is the probability of x; (X = {X1 X2, X3, X4, ... }).



Test data generation using genetic algorithms and information content 37

Combining the two formulas, we get the information content of an object o
from the initial population O:

I{0) = — XiETp(a,vy) * logp(a, v,) (5)

i=n

8(a; v;) 8(a; v;)
I{o) = — — * log——
;Ej;faﬁﬂp V;‘) ng;f!?(ap Vj) (6)

Using this formula, we will determinate how relevant and how much
information we can obtain from our generated individuals (test samples). If the
information content of the individual is lower than a value that we are choosing
called minimum information content threshold, then the individual is rejected
from the future generation is the selection phase, otherwise, he is chosen to carry
on.

6. The algorithm

In this chapter, we will present the final algorithm that will be used to
produce testing samples. As it was presented before, we are using a modified
genetic algorithm to generate the samples. The pseudocode of the algorithm is the
following:

phase 1 initializations:

training_data_set = {first generation of the object received as input from
the user featured as individuals for input}

current_generation = 0

probability_of mutation = 0.3

minimum_information_content_threshold = 0.2

maximum_generation = 3

information_content_map = {<keyl, valuel> pairs, where keyl is the
attribute of the object and valuel is another map <key2, value2> where key2 is
on value of the attribute and value2 the information content for that value of the
attribute}

phase 2 iterations:
testing_sample_generation (training_data_set, current_generation) {
if (current_generation is equal to maximum_generation){
return training_data_set
}
new_generation = empty_set
for_each pair <pl, p2> in (training_data_set x training_data_set){



38 Ciprian-lonut Nutescu, Mariana Mocanu

apply mutation for cross_over pl, p2
compute information_content based on formula and
information_content_map

if ( information_content of the individual >=
minimum_information_content_threshold ){
add above result in new_generation
}

}

testing_sample_generation(new_generation, current_generation+1)

}

The first phase initialization is where all the algorithm parameters are
chosen and other auxiliary data structured is processed. The training data set is the
input set of an object that will be used as archetypes for the new samples testing
objects to be generated from. These objects are featured as a map of string —
object, where the string is the name of the attribute and object is the value. This
feature method is used because we want our algorithm to be able to process any
kind of objects. The parameter current_generation is initialized with the value 0
and it will iterate with each recursive call of the algorithm until it is equal to the
maximum_generation parameter. This parameter is used for maximum iterations
of the algorithm for the training data set. The parameter probability of mutation
is a genetic algorithm parameter that gives the probability of a mutation
happening after the cross-over process is applied to an individual’s pair. A very
important auxiliary data structure processed in this step is the
information_content_map. This map contains the information content for each
value for each attribute. We need this kind of information to apply our formula on
each generated individual to see how fitted it is. A very interesting question we
ask ourselves when we de-sign the algorithm is why we compute this map at the
very beginning and not at each iteration. The answer is justified by the nature of
the information content computing method: by counting occurrences. We want to
generate testing samples that will have the same value for the testing scenarios the
same as the initial samples. If the information_content_map is recomputed at each
step, then it will add the new occurrences from the newly created generations.
This means that some values of attributes could appear often (we are using a
probability of apparitions because the whole genetic algorithm process is based on
random numbers generations) and will have a higher information content than
others.

For example, if our proposed algorithm takes the attribute currency with
the values USD, EUR, and RON. In our initial samples, we have USD 4 times,
EUR 2 times and RON 1 time. We want that further generated testing samples to



Test data generation using genetic algorithms and information content 39

have the same distribution of values as the initial ones. If at one step the value
RON will appear 10 times, and by any changes the individuals holding this value
will iterate into the new generation, at the next iteration of our algorithm by re-
computing the information_content_map we will have value RON bringing more
value than value USD, which is incorrect because we don’t want to mess the
initial distribu-tion and information content of the samples.

The second phase of the algorithm is the iterative genetic part that
represents recursively calling testing_sample_generation method until the cur-
rent_generation parameter is equal to the maximum_generations parameter. The
stopping condition is checked, and if so then the generation received as a param-
eter is returned as a result because there is no need to iterate more. If the stopping
condition is not met, then for each pair of individuals taken from the past genera-
tion (received as a parameter), we apply cross-over process and then we apply
mutation with a probability of mutation_probability parameter. We apply cross-
over for each pair instead of using others existing methods (tournament selection,
roulette wheel selection, etc..) because we want to maximize the data combination
between individuals (we don’t want to lose any data combination because the
result of cross-over can contain high information content values). A new
individual is created from this process that will be testing in our fitness function.
The fitness function is represented by computing the information content of the
newly generated individual and comparing it with the mini-
mum_information_content_threshold. If it passes, then we will be added in the
new generation and it will help at generating new individuals.

7. Testing and experimental results

We implemented the testing samples generation algorithm in Java using
only the SDK without any other external libraries. The software had the following
inputs:

* input testing samples representing first generation

* information content threshold

» mutation probability

* maximum generations (iterations)

First, we are testing how the time of the processing is influenced by the
input testing samples and the information content threshold.



40 Ciprian-lonut Nutescu, Mariana Mocanu

Timeelapsed of generatingsamplesdata

250

200

iy
wn
o

iy
(=]
(=]

Time elapsed{ms)

w
(=]

oD

<
£
G

(=]

0 1000 2000 3000 4000 5000 6000 7000 8000

Number of sample generated

Fig. 3. Time elapsed of generating samples data for information content threshold 0.25, maximum
generation 3, initial testing samples 10

Time elapsed of generating samples
data

5 200 o3
© <
glOO Lo > )&2\%

F 5o o ° o TV °6cégooo%

9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 10000 10005

Generated samples

o

Fig. 4. Time elapsed of generating samples data for information content threshold 0.23,
maximum generation 3, initial testing samples 10

Between Fig. 3 and Fig. 4, the only modified parameter is the information
content threshold that is 0.25 for the first figure and 0.23 for the second figure. In
other words, on the first run, we have been more restrictive with the algorithm
having only testing samples with information content higher than 0.25 been
generated, while in the second run we have been less restrictive. For the first case,
we can see that the points on the graph (Fig. 3) are grouped in a cluster meaning
that the algorithm on 100 repetitive calls has generated 6000-7000 samples of data
(out of a maximum of 10000 samples of data, explained in table 1), having the
processing time around 50-100 milliseconds. This gives a deterministic behavior
to our algorithm. For the second case, we have done the same experiment having
the information content threshold low-ered by 0.02.



Test data generation using genetic algorithms and information content 41
Table 1
Maximum sample generated determined by current generation and number of initial
samples
Number of initial samples Current generation | Maximum samples generated
10 1 10
10 2 100
10 3 10000
100 1 100
100 2 10000
100 3 100000000

This modified the behavior of our algorithm, having most of the data

centered around 9985 — 10000 point generated (the maximum being 10000) and
with processing time around 50-100 milliseconds. The processing time has not
been modified, but the number of generated points has increased from around
6000-7000 to 9000-10000. This means that the number of generated testing sam-
ples is correlated with the information content threshold. We will redo the same
scenarios, but with 100 initial testing samples instead of 10.

Time elapsed

me elapsed of generatingsamplesdata

1000 2000 3000 4000

Samples generated

Fig. 1. Time elapsed of generating samples data for information content threshold 0.25, maximum

Time elapsed(ms)]

generation 3, initial testing samples 100

lime elapsed of generating samples data

Generated samplas

Fig. 6. Time elapsed of generating samples data for information content threshold 0.23, maximum

generation 3, initial testing samples 100



42 Ciprian-lonut Nutescu, Mariana Mocanu

In Fig. 5 and figure 6, the algorithm has been run 100 times, having an
initial number of samples 100 and information content 0.25 and 0.23. In the first
case with information content threshold 0.25, the algorithm has generated around
7000-9000 samples in about 150-250 milliseconds, while in the second case with
information content 0.23 the algorithm has generated 700000-740000 samples in
about 6-12 seconds. We can see that the time of processing has increased consid-
erably from milliseconds to seconds if we need to generate thousands of samples
data. For the Fig. 5, we have the same behavior as in Fig. 3, when the algo-rithm
was used for the same parameters but with 10 initial testing samples: on repetitive
runs, the algorithm has a deterministic behavior given by the cluster of runs of the
graphic. For Fig. 4 and Fig. 6, where we used 10 and 100 initial testing samples,
with information content 2.3, the algorithm tends to generate more testing samples
approaching to the maximum number of the testing sample generated (given by
the number of generations and number of initial samples, see table 1). This means
that with the information content threshold we can decide if we need the
algorithm to be more restrictive or not.

Infermation content threshold

Mumber of samples generated

Fig. 7. The number of samples generated depending on the information content threshold with
initial testing samples 10 and maximum generations 3

In Fig. 7, the algorithm has been tested using an information content
threshold from 0.2 to 0.3. As seen from the testing results, if the information
content threshold is chosen to be very restrictive 0.3, the algorithm starts
generating 0 samples of data, and if the information content threshold is chosen to
be less restrictive 0.2, the algorithm generated the maximum number of samples
possible.

The number of samples the algorithm is able to generate is given by the
initial testing samples number, the number of generation we want to run (it will
give the iterations of the algorithm) and the information content threshold. Even if
we chose to have a big set of initial testing samples, having a very restrictive
thresh-old of information content could make the algorithm output 0 samples of
testing data. This means that the following parameters: number of generations and
in-formation content threshold must be chosen very carefully after a series of test-
ing and hyper-parameter tuning sessions. We deduced that a 0.25 information



Test data generation using genetic algorithms and information content 43

content can be restrictive but it can still generate testing samples, while 0.3 gen-
erated 0 samples and 0.2 generated all possible testing samples without any fit-
ness testing. So the recommendation is to take the information content 0.23-0.25,
while the maximum generations should be taken into consideration depending on
a number of initial testing samples. As presented in table 1, the maximum number
of the sample generated by the algorithm S is:

§=m?"

(1)

where m is a number of initial samples and n is the number of maximum
generations. The testing platform used for the algorithm was Windows 10 Pro 64-
bit, Intel i7-6500 CPU, 8 GB Ram.

8. Comparison with existing TDM solutions

The only solutions we found in the market comparable with ours
(generating datasets) were Informatica TDM[3] and Broadcom Test Data
Manager[4]. Both solutions required manual interaction and creation of the data
schema (they mainly integrate only to databases, not having the ability to generate
testing data from a json, xml or csv file). The user has to complete the dictionary
of what values can a column have in the Informatica case (they generate from
scratch the dataset, randomizing combinations between data values), but in the
case of Broadcom TDM the software creates automatically the dictionary where
you can add more values (they generate from existing dataset only, but
randomizing all combinations between data values). Both solutions don’t take into
consideration data inherence (what information links can exist between various
values of data, generating irrelevant data for testing). There is no state-of-art in the
existing solutions (not using machine learning or big data techniques, only full
random combination between values in the dictionaries).

We tried to overcome those problems in our paper by minimizing the user
interaction with the software, automatically computing data schema and
encapsulation in chromosome for the genetic algorithms (the solution proposed
can take any data into consideration, from SQL tables to json/xml/csv files).
Another problem we wanted is taking in consideration data inherence; in our
solution data generated which is not relevant for the testing scenarios is dropped.

The state-of-art of this paper is using an existing machine learning
algorithm used for a certain purpose and using its logic and inherence
computation to serve another purpose.

9. Conclusions and future improvements

The algorithm presented in this paper can be used to generated relevant
testing data for different (research, financial, medical, etc...) applications and can



44 Ciprian-lonut Nutescu, Mariana Mocanu

be implemented in various programming languages because it is not depending on
certain libraries or platforms. The most important parameters of the algorithm are
a number of generations and information content threshold as demonstrated in the
section above because with these two parameters the algorithm can be controlled
to generated more testing samples or less testing samples with relevancy
proximally equal to the input testing samples. The algorithm is capable of
generating in 10 seconds approximately 760000 testing samples, but this
performance can be improved by migrating the algorithm from a serial approach
using on a single thread to a multithreaded approach. The section that can be very
easily parallelized is the new individual cross-over, mutation and fitness testing,
while for each generation iteration is needed a synchronization barrier so all the
elements have been generated and tested because the data dependency, in this
case, is between individuals from different generations, not the same generation

REFERENCES

[1]. Test Data Management in the New Era of Computing, Vinod Khader IBM InfoSphere Optim
Development, IBM Technical Summit

[2]. 2. A Comprehensive Test Data Design and Management Guide, June 7, 2018,
https://www.softwaretestinghelp.com/tips-to-design-test-data-before-executing-your-test-
cases.

[3].https://docs.informatica.com/data-security-group/test-data-management/10-2-0-hotfix-
2/getting-started-guide/glossary/glossary-of-terms/test-data-management--tdm-.html

[4]. https://www.broadcom.com/products/software/continuous-testing/test-data-manager


https://www.softwaretestinghelp.com/tips-to-design-test-data-before-executing-your-test-cases�
https://www.softwaretestinghelp.com/tips-to-design-test-data-before-executing-your-test-cases�
https://docs.informatica.com/data-security-group/test-data-management/10-2-0-hotfix-2/getting-started-guide/glossary/glossary-of-terms/test-data-management--tdm-.html�
https://docs.informatica.com/data-security-group/test-data-management/10-2-0-hotfix-2/getting-started-guide/glossary/glossary-of-terms/test-data-management--tdm-.html�
https://www.broadcom.com/products/software/continuous-testing/test-data-manager�

