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We study a higher order nonlinear difference equation. By making use of the
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1. Introduction

Recently, the theory of nonlinear difference equations have widely occurred as the
mathematical models describing real life situations in computer science, electrical circuit
analysis, economics, neural networks, ecology, cybernetics, biological systems, matrix the-
ory, combinatorial analysis, optimal control, probability theory, and population dynamics.
These studies cover many of the branches of nonlinear difference equations, such as stability,
attractivity, periodicity, homoclinic solutions, oscillation, and boundary value problems, see
(2],[41,[5], [7],[81,[90[10],[11], [12],[18],[19],[20],[21].[22],[23].[24], 25}, 25].26], [30],[31].[32] and
the references therein. For the general background of difference equations, one can refer to
the monographs [1],[3].

Below N, Z and R denote the sets of all natural numbers, integers and real numbers
respectively. T is a positive integer. For any a, b € Z, define Z(a) = {a,a+1,--- },Z(a,b) =
{a,a+1,---,b} when a < b. Besides, * denotes the transpose of a vector.

The present paper considers the following higher order nonlinear difference equation

n
Zri(l‘k_i +xpri) = [k, Trans, Ty s Th—pr),n € Nk € Z(1,T), (1)
i=0
with boundary value conditions
Tlem = To—m = =29 = 0,Zr41 = Try2 =+ = Trym =0, (2)

where r; is a real number, M is a given nonnegative integer, m = max{n, M}, f €
O(R2M+27 R)

When n=1,rg =—1,7 =1 and M =1, (1) can be reduced to the following second
order difference equation

A2Z‘k—1 == f(k7xk+1a 'Ikvxk—l)a k S Z(]‘?T) (3)

Equation (3) can be seen as an analogue discrete form of the following second order differ-
ential equation
d?z
dt?
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= f(t,z(t+1),z(¢),z(t — 1)),t € [1,T]. (4)
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Equations similar in structure to (4) arise in the study of the periodic solutions, homoclinic
orbits of functional differential equations [13],[14],[15],[16],[17],[27],[29].

In 1994, Ahlbrandt and Peterson [2] gave a formulation of generalized zeros and
(n,n)-disconjugacy for even order formally self-adjoint scalar difference equation

S A (vi(k — i) Alu(k — ) =0, (5)
=0

and Peil, Peterson [28] studied the asymptotic behavior of solutions of (5) with ~;(k) = 0 for
1 <i<n-—1. Anderson [4] in 1998 considered (5) for k € Z(a) and obtained a formulation
of generalized zeros and (n,n)-disconjugacy for (5).

In 2014, Deng [10] established some sufficient conditions for the boundary value prob-
lem of the following equation

A? (pr—1A%up—2) — A (Qk (Aukq)d) +rpup = f(k,up), (6)

and gave some new results by using the critical point theory.
By Lyapunov-Schmidt reduction methods and computations of critical groups, Hu
[18] in 2014 proved that the equation

ri(Tk—i + Tpyi) + f(k,z) = 0. (7)
i=0
has four periodic solutions.
Recently, Liu, Zhang and Shi [23] considered the boundary value problem of the
following difference equation

A2 (pn71A2un72) - A (Qn (Aunfl)a) + Tnui = f(nvun)v (8)

by using Mountain Pass Lemma.

To the best of our knowledge, the results on boundary value problems of high order
nonlinear difference equations are very scare in the literature. What’s more, (1) is a kind
of difference equation containing both many advances and retardations. It has important
analog in the continuous case of higher order functional differential equation for which the
evolution of the function depends on its current state, its history, and its future as well. And
the traditional ways of establishing the functional in [5],[18] are inapplicable to our case.

In this paper, we shall study the existence of solutions of the boundary value problem
(1) with (2). First, we shall construct a suitable functional J such that solutions of the
boundary value problem (1) with (2) correspond to critical points of J. Then, by using the
Saddle Point Theorem, we obtain the existence of critical points of J. The motivation for
the present work stems from the recent papers [10],[23].

Throughout this paper, we assume that the symbol F/(u1,-- ,u; - ,ur) defines the
partial derivative of a function F on the i variable.

Our main results are the following theorems.

Theorem 1.1. Assume that r and F' satisfy the following assumptions:
n
(r1) o+ > |rs| < 0;
s=1
(F1) there exists a function F(t,ups,---,ug) which is continuously differentiable in the
variable from wuy; to ug for every t € Z and satisfies

0

Z F2/+M+i(t+i7uM+i7"' 7ui) :f(t7uM7 , Ug,y * - au—M);
i=—M
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(Fy) there exist constants ¢; > 0, ¢2 > 0 and 1 < 7 < 2 such that

M
F(t,up, -+ yup) < 1 Zu; + ¢, V(t,upr, - - ,ug) € RMT2,
3=0

Then the boundary value problem (1) with (2) possesses at least one solution.

Example 1.1. In (1), let

(=3
2

M
F(k',fl?k-+M, e 71’k) =k (Z:‘C%-}-z)
1=0

where 1 < o < 2. Since

0 71

M M
Z F2’+M+Z-(k A TNy, X)) = QT Z(k -J) (Z wﬁﬂ-j)
; §=0 i=0

i=—M

It is easy to verify that assumptions (r1), (F1), (Fz) are satisfied. By 1.1, the boundary
value problem (1) with (2) possesses at least one solution.

Corollary 1.1. Assume that r and F satisfy (1), (F1) and the following assumption:
(F3) there exist a constant K7 > 0 such that for any (¢, yar,--- ,y0) € RM T2,

|F (tung, - g, yu0)| < Kqy i=2,3,--+, M +2.
Then the boundary value problem (1) with (2) possesses at least one solution.
Remark 1.1. Assumption (F3) implies that there exists a constant K3 > 0 such that
(F3) |F(t,ung, - uo)| < Ko+ Ky % s, V(t, ung, -+ ug) € RMT2,

Jj=0

Theorem 1.2. Assume that r and F satisfy (F}), (F3) and the following assumptions:
n

(r2) > 7 =0;
s=0

M 3
(Fy) for every t € R, F(t,up, -+ ,up) = +00 as (Z u2> — +o0.

=0 '
Then the boundary value problem (1) with (2) possesses at least one solution.

For basic knowledge of variational methods, the reader is referred to [27],[29].

2. Variational structure

Our main tool is the critical point theory. We shall establish suitable variational
structure to study the existence of the boundary value problem (1) with (2). At first, we
shall state some basic notations which will be used in the proofs of our main results.

Let R” be the real Euclidean space with dimension 7. On one hand, we define the
inner product on R” as follows:

T
(x,y> :ijyjavmvyERTv (9)

j=1

by which the norm || - || can be induced by

N

T
||| = Zx? ¥z e R, (10)
j=1
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On the other hand, we define the norm || - ||, on R’ as follows

T
llls = { D lasl* |
j=1

for all z € RT and s > 1.

Since ||z]|s and ||z||2 are equivalent, there exist constants ki, ko such that ks > k; > 0
and

killzllz < llzlls < kollz]2, Yo € RT.

(11)

For the boundary value problem (1) with (2), consider the functional J defined on
R” as follows:

1 T n T
5 § § T :Ck: 7,+:L.k+’b E Fk s Th+My """ 7‘7:16)’ (12)
k=1 i=0 k=1
where
0
12 .
Y Fyappi(k i uni, e yui) = f(kyuar, o ue,ccusn),
i=—M
and
1’17”:1’271\4:...:1'0:07 TTy1 = Tr4o = ":xT+M:0~

It is easy to see that J € C*(R”,R) and for any = = {z}}}_, = (21,22,
using x1_pr =%y = =20 =0, Try1 = Tri2 =
partial derivative as

xT)*7 by

-« = x4y = 0, we can compute the

O <
dxy, B ;ri(xk—i + hpi) = F(Bs Tpgnr, - oy 2e-m), Vh € Z(1,T).

Thus, z is a critical point of J on R” if and only if

> rilwkei + wrgi) = f(ky Tpgars Tk 2o n), Vh € Z(1,T).
1=0

We reduce the existence of the boundary value problem (1) with (2) to the existence of

critical points of J on RY. That is, the functional J is just the variational framework of the
boundary value problem (1) with (2).

For all 2 € RT, J can be rewritten as

T
J(z) = Psca: ZFka:kJrM,---wk),
k=1
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where © = {x3} € R, zy, = (21,29, ,x7)" ,k € Z(1,T), and
2rg ™ T Trn—1 Tn 0 o --- 0 Tn Tp_1 -+ T2
r 2rg T Tneo Tn_1 Tn o .- 0 0 Tn PR
ro  r1 2rg Tne3 Tn—2 Tpn_1 Tp --° 0 0 0 STy
_pP=
T T3 ry - 0 0 0 o .- Tn Tne1 Tn—2 279
re Tre T3 Ty 0 0 0 Tn—1 Tp—2 Tp-3 <" T1

is a T x T matrix. Assume that the eigenvalues of P are A1, A, - -
By [6], the eigenvalues of P are

-, A7 respectively.

n 2j7T l n 2j7T T-1 n 2jl7T
Aj = —2r¢— ;rl {expzT} — ;rl {expzT} = —227‘; cos (T) . (13)
j=1,2---,T.
By (13), it is clear that
n n
—2rg =2 || <A < =20 +2> |ril,j=1,2,---,T.
1=1 1=1
Let V and W be Banach spaces, and U C V be an open subset of V. A function
f: U — W is called Fréchet-differentiable at € U if there exists a bounded linear operator
A, .V — W such that

(14)

(@ +h) = f(x) = As(h)llw
172l
We write Df(x) = A, and call it the Fréchet derivative of f at z.
For convenience, we identify = € RT with z = (x1, 22, ,o7)" .

lim If
h—0

=0.

Definition 2.1. Let E be a real Banach space, J € C'(E,R), i.e., J is a continuously
Fréchet-differentiable functional defined on E. J is said to satisfy the Palais-Smale condi-
tion (P.S. condition for short) if any sequence {m(")}neN C E for which {J (JJ(”))}

bounded and J’ (J:(”)) — 0 (n — o) possesses a convergent subsequence in E.

neN 18

Let B, denote the open ball in £ about 0 of radius p and let 95, denote its boundary.

3. Main lemmas

In this section, we give two lemmas which will play important roles in the proofs of
our main results.

Lemma 3.1. (Saddle Point Theorem [29]) Let E be a real Banach space, E = E; @ Es,
where E; # {0} and is finite dimensional. Assume that J € C!'(E,R) satisfies the P.S.
condition and

(J1) there exist constants y, p > 0 such that

JloB,nE, < 15

1
T2
T3

1
2’1"0
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(J2) there exists e € B, N E; and a constant w > u such that J]eyp, > w.
Then J possesses a critical value ¢ > w, where

= inf
©= ML, )

I'={heC(B,NE,E)|hlop,ne, =id}
and id denotes the identity operator.

Lemma 3.2. Assume that (rg) and (Fy), (F3), (F4) are satisfied. Then the functional J
satisfies the P.S. condition.

Proof. 1t is easy to see that 0 is an eigenvalue of P and £ = ﬁ(l, 1,---,1)* € R7T is an
eigenvector of P corresponding to 0. Let Aj, Ao, -+, Ap_1 be the other eigenvalues of P.
Applying matrix theory, it is obvious that A\; > 0 for all j € Z(1,T — 1).
Let
Amax = max {\;|j = 1,2,--- , T — 1}, (15)
Amin = min {\;|j = 1,2,--- , T —1}. (16)
Set

Z:kerP:{xeRT|Px:O€RT}.

Then
Z = {x eRY|z={c},ce R}.

Let Y be the complement of Z. Let {:c(”)}neN c RT be such that {J (a:(”))}neN is
bounded and J’ (x(")) — 0 as n — oco. Then there exists a positive constant D such that

D< )J (x("))‘ < D,¥n eN.

Let (") = y(") 4+ 2(") ¢ Y 4+ Z. First, on one hand, for n large enough, it follows from

T
ol < (=7 (#) ) = = (P2l w) £ 37 f (koaiag ol oy ) o
k=1

with (F}) and (F3) that

(NN o7 (PR O P 8
k=1

T
LN
k=1

< [(Kl LV + 1} Hy(”)

On the other hand, it is easy to see that

<px(n)7y(”)> _ <py(n)7y(”)> > A Hy<n>H2,

Thus, we have

Il’lll’l

/0 < [+ 0vT ) [y

The above inequality implies that {y(”)}n en 8 bounded.

Next, we shall prove that {z(”)}neN is bounded. It comes from

D>-J (x(”)) = —% <Px(”),:1c(")> ZF( , k+M7"' ,a:,(c"))
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T
L (pa, ) 4 37 [F (sl )~ F (e A7)

=1

T
+ZF (k,z,i’i)M7 A ,z,gn))

Eo

that

ZT:F (kv Zl(jr)M7 T 7zl(cn))

1

=~
Il

<D+ L (P Y+ i\ F (ke af) — F (ko)

1 wl? . s~ |2 (k A ey + ay,i’”) (n)
§D+§)\max y +Z auz yk+M+
oF (k z,(:j_)M + ozy,(g_)M, . (n) + ay,(c")) )
* Ounri1 ke
<D+ )\max o|* 4 g1 Hy(”)

where a € (0,1). It follows that

T
{32 (et )
k=1
is bounded.

Assumption (Fy) implies that {z(")} is bounded. Assume, for the sake of contra-
diction, that Hz(")H — 400 as n —» oo. Since there exist ¢ € RT, k € N, such that
20 = (M e 7C(n))* € R”, then

T N T N
~(SRe) = (k) =vrper
k=1 k=1

o

— 400

as n — 0o. Since

F(k ;(Ji)M z,(j”) :F(ko ,c<”)),1§k§T,

then F (k z,(CZ)M, e ,(Cn)) — 400 as n — oo. This contradicts the fact that

T
(S kot )
k=1

is bounded and hence the proof of Lemma 3.2 is completed. |
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4. Proof of the main results

In this section, we shall prove that Theorems 1.1, 1.2 hold respectively via the varia-
tional methods.

Proof of Theorem 1.1. For any = = (1,22, ,x7)* € RT, combining with (F3), it is easy
to see that

MH

1
J(z) = §<Px,x> F(k, Cryrry- 5 2k)

~
Il
-

1 T M
2
> iAmionH —c ZZ |2t — 2T

k=1 3=0

mln”fE” -G Z Z |xk+] — T

1
> §Amin||x|\2 —c1 (M 4+ DEZ|z||” — coT — +o0

as ||z|| — +oo. By the continuity of J(z), we have from the above inequality that there
exist lower bounds of values of the functional J(z). And this implies that J(z) attains its
minimal value at some point which is just the critical point of J(x) with the finite norm.
The proof of Theorem 1.1 is finished. |

Remark 4.1. Due to 1.1, the conclusion of Corollary 1.1 is obviously true.

Proof of Theorem 1.2. By (r2), we have that the matrix P is positive definite. First, it fol-
lows from Lemma 3.2 that J satisfies the P.S. condition. Next, we shall prove the conditions
(J1) and (Jz). For any y € Y, by (Fj%),

T
1
—J(y) = ) (Py,y) + E F(k,Yryrr, - Uk)
k=1

T M

1
S *5/\min“y||2 + TK2 + Kl Z Z |yk+j|
k=1 j=0

1
< =5 Amin[y* + TRy + Ky (M + )T ly|| — —o0
as ||ly|| — +o0o. Therefore, it is easy to see that the condition (J7) is satisfied. For any z € Z,
z = (21,22, -+ ,27)*, there exists ¢ € R such that z; = ¢, for all n € Z(1,T). From (Fy),
we have that there exists a constant p > 0 such that F(k,0,---,¢) > 0 for k € Z(1,T) and
le| > p/vVM + 1. Let K3 = min F(k,0,---,¢), K4y = min{0, K5}. Then
n€Z(1,T),|c|<p/VM+1
F(k,0,---,¢) > Kg,¥(k,c,--- ,¢) € Z(1,T) x RMT1,

Therefore, we have

T

T
_J(Z):ZF(kazk+1Wv'”7 ZF >TK47VZ€Z
k=1 k=1

So all the assumptions of the Saddle Point Theorem are satisfied and the proof of Theorem
1.2 is complete. O
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