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PARISIAN RUIN PROBABILITY FOR THE CLASSICAL RISK MODEL

WITH TWO-STEP PREMIUM

Yifan Zhou1, Jingmin He2, Jing Zhao3

This paper mainly investigates the Parisian ruin probability for the clas-

sical risk model with two-step premium, which arises when the surplus process below

0 longer than a fixed amount of time. By using Strong Markov property, an expres-

sion for the Parisian ruin probability is derived. And then the explicit form of Parisian

ruin probability is obtained when the claims satisfy exponential distribution. Finally, a

numerical example is given to illustrate the Parisian ruin probability.
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1. Introduction

The classical risk model X(t) with two-step premium is described by

X(t) = u+

∫ t

0

c(X(s))ds−
N(t)∑
i=1

Zi, (1)

where u denotes the initial reserve, and c(x) is the rate of premium income per time unit,

c(x) = c1 for x ≥ 0 and c(x) = c2 > c1 for x < 0. For a fixed value t > 0, the random variable

N(t) denotes the number of claims in the interval (0, t], {N(t), t > 0} is a Poisson process

with parameter λ, the sequence {Zi, i ≥ 1} are claim sizes which are positive, independent

and identically distributed random variables with common distribution function G(x) and

a finite mean µ. It is assumed that c1 > λµ to ensure

lim
t→∞

X(t) =∞.

The classical ruin probability is defined by

Ψ(u) = P (τ0 <∞|X(0) = u) = Pu(τ0 <∞),

where

τ0 =

inf{t ≥ 0 : X(t) < 0},

∞, if X(t) ≥ 0 for all t > 0.
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For an arbitrary level a > u, let the hitting time τa to be

τa =

inf{t ≥ 0 : X(t) = a},

∞, if X(t) < a for all t > 0.

The deficit at ruin F (u, y) is

F (u, y) = P (|X(τ0)| < y, τ0 <∞|X(0) = u).

The expression for Ψ(u) can be obtained from Rolski et al. (1999). And the hitting time τa

can be obtained from Gerber (1990), and the expression for F (u, y) can be obtained from

Gerber and Shiu(1998).

The concept of Parisian ruin originated from Parisian option (see Dassions and Wu

(2008a, 2008b)), which allows the surplus process to stay below level zero for a longer period

than d > 0 before ruin is recognized. Define the Parisian ruin probability to be

Ψd(u) = P (τd <∞|X(0) = u),

where

τd = inf{t > 0 : t− sup{s < t : X(s) ≥ 0} ≥ d,X(t) < 0}.

In recent years, the Parisian ruin has attracted the attention of many scholars. Czarna

and Palmowski (2011) focused on a general spectrally negative Lévy process, and derived an

expression for probability. Loeffen et al. (2013) gave a compact formula for the Parisian ruin

probability which involves only the scale function of the spectrally negative Lévy process

and the distribution of the process at time Parisian ruin time. Wong and Cheung (2015)

provided the joint distribution of the number of periods of negative surplus that is of duration

more than d and less than d, and the Laplace transform of the occupation time were given

when the surplus is negative. Czarna et al. (2016) proposed a new iterative algorithm

of calculating the distribution of the Parisian ruin time and the number of claims until

Parisian ruin. Krzysztof et al. (2016) investigated the probability of the Parisian ruin, and

obtained the tail asymptotic behaviour. Bai and Luo (2017) obtained an approximation

of the Parisian ruin probability in the Brownian motion risk model with constant force of

interest. Peng and Luo (2017) found that if the time length required by the Parisian ruin

tends to zero as the initial reserve goes to infinity, the Parisian ruin probability and the

classical one are the same in the precise asymptotic behavior. Lkabous and Renaud (2018)

introduced their risk measure which is based on cumulative Parisian ruin, and gave some

of its properties. Bladt et al. (2018) provided an method for calculating different kinds

of Parisian ruin probabilities, with particular emphasis on variations over Parisian type of

ruin. Renaud (2019) considered the De Finetti’s control problem in a spectrally negative

Lévy process with exponential Parisian ruin, gave necessary and sufficient condition for the

barrier strategy at level zero to optimal.

The remainder of the paper is organized as follows. By using strong Markov property,

an expression of Parisian ruin probability is derived in section 2. An explicit expression for

the Parisian ruin probability in a special case is obtained in section 3. Numerical example

is given to illustrate the Parisian ruin probability in section 4.
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2. Parisian ruin probability

In this section, in the classical risk model with two-step premium rate, the explicit

formula for expression of Parisian ruin probability is obtained by using strong Markov prop-

erty.

Lemma 2.1. For the classical risk model with premium rate c2, and any δ > 0, the Laplace

transform of the time to hit the level a given that the initial state u < a is given by

Eu[e−δτa ] = eν
+
δ (u−a),

where ν+δ is defined to be the unique positive root of

−δ + c2ν + λ(Ĝ(ν)− 1) = 0,

and Ĝ(ν) is the Laplace transform of the density function of claims

Ĝ(ν) =

∫ ∞
0

e−νydG(y).

The proof is omitted. More details can be found in Gerber and Shiu (1998).

The sequence of zero points on the time scale of surplus process is showed as following:

γ0 = 0,

γk =

inf{t > γk−1 : X(t) = 0},

∞, if the set is empty,

and

βk =

inf{t > γk−1 : X(t) = 0},

∞, if the set is empty.

If βk <∞ and let

Tk = γk − βk , k = 1, 2, 3, 4, . . . ,

Then T1, T2, T3, ... are the duration of the negative surplus, as shown in Figure. 1.
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Figure. 1. The surplus process

Lemma 2.2. For u ≥ 0, the number N of the negative surplus has the following probability

function

Pu(N = n) = P (N = n|X(0) = u) =

1−Ψ(u), n = 0,

Ψ(u)[Ψ(0)]n−1[1−Ψ(0)] n = 1, 2, 3, . . . .

Proof. When n = 0, it is easy to check that

Pu(N = 0) = Pu(X(t) ≥ 0, for all t ≥ 0) = 1−Ψ(u).

When n ≥ 1, from definition and the strong Markov property of the surplus process, it

follows that

Pu(N = n)

= Pu(γ1 <∞, γ2 <∞, · · · , γn <∞, X(γn + t) ≥ 0, for all t ≥ 0)

= Pu[γ1 <∞, γ2 <∞, · · · , γn <∞, Pu(X(γn + t) ≥ 0, for all t ≥ 0|Fγn)]

= Pu(γ1 <∞, γ2 <∞, · · · , γn <∞)P0(X(t) ≥ 0, for all t ≥ 0)

= Pu(γ1 <∞, γ2 − γ1 <∞, · · · , γn − γn−1 <∞)[1−Ψ(0)]

= Pu[γ1 <∞, γ2 − γ1 <∞, · · · , γn−1 − γn−2 <∞, Pu(γn − γn−1 <∞|Fγn−1
)][1−Ψ(0)]

= Pu(γ1 <∞, γ2 − γ1 <∞, · · · , γn−1 − γn−2 <∞)P0(γn − γn−1 <∞)[1−Ψ(0)]

= Pu(γ1 <∞)P0(γ2 − γ1 <∞) · · ·P0(γn − γn−1 <∞)[1−Ψ(0)]

= Pu(γ1 <∞)[P0(γ1 <∞)]n−1[1−Ψ(0)]

= Ψ(u)[Ψ(0)]n−1[1−Ψ(0)].

This ends the proof. �
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Theorem 2.1. The Parisian ruin probability Ψd(u) is given by

Ψd(u) =
Ψ(u)

H0(d)Ψ(0)− 1

(
Hu(d)(1−Ψ(0)) +H0(d)Ψ(0)− 1

)
, (2)

where Hu(d) is the probability of that excursion less than d with initial surplus u, and H0(d)

is the probability of that excursion less than d without initial surplus

Hu(d) = P (Tk < d|X(γk−1) = u),

H0(d) = P (Tk < d|X(γk−1) = 0). (3)

hu(t) is density of excursion Tk with initial surplus u, and h0(t) is density of excursion Tk

without initial surplus

hu(t) = L −1δ

(
E[eδTk |X(γk − 1) = u]

)
,

h0(t) = L −1δ

(
E[eδTk |X(γk − 1) = 0]

)
.

The cumulative distribution function of Tk for k = 1, 2, 3, . . . , k is given by

Hu(d) =

∫ d

0

hu(t)dt =

∫ d

0

L −1δ

(∫ ∞
0

e−ν
+
δ ydF (u, y)

)
dt,

H0(d) =

∫ d

0

h0(t)dt =

∫ d

0

L −1δ

(∫ ∞
0

e−ν
+
δ ydF (0, y)

)
dt.

Proof. The Laplace transform of Tk for k = 2, 3, · · · , k is given by

E[e−δTk |X(γk − 1) = u] = E[e−δ(γk−βk)|X(βk) = −y, T <∞]

=

∫ ∞
0

e−ν
+
δ ydF (u, y).

Likewise,

E[e−δT1 |X(γk − 1) = 0] = E[e−δ(γ1−β1)|X(0) = 0]

=

∫ ∞
0

e−ν
+
δ ydF (0, y).

Then

Hu(d) =

∫ d

0

L −1β

(∫ ∞
0

e−ν
+
δ ydF (u, y)

)
dt,

H0(d) =

∫ d

0

L −1β

(∫ ∞
0

e−ν
+
δ ydF (0, y)

)
dt. (4)

Let L to be the largest ever excursion below zero, such that

P (L ≤ d) =1−Ψ(u) +

∞∑
i=0

Hu(d)H0(d)iΨ(u)(1−Ψ(0))Ψ(0)i

=1−Ψ(u) +
Hu(d)Ψ(u)(1−Ψ(0))

1−H0(d)Ψ(0)
.
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Hence, the expression of the Parisian ruin probability is found

Ψd(u) = 1− P (L ≥ d) =
Ψ(u)

H0(d)Ψ(0)− 1

(
Hu(d)(1−Ψ(0)) +H0(d)Ψ(0)− 1

)
. (5)

�

Remark 2.1. It can be obtained that the classical ruin probability Ψ(u) is similar to the

limit of the Parisian ruin probability Ψd(u)

lim
d→0

Ψd(u) = Ψ(u) = Ψ(0)e−Ru.

3. Parisian ruin with exponential claims

In this section, claims following the exponential distribution with parameter β are

considered. An explicit expression for the Parisian ruin probability is derived by using

Excursion theory.

From Rolski(1999) and Gerber and Shiu(1998) it followed the classical ruin probability

Ψ(u) and deficit distribution function F (u, y). Assuming that the claim size Zi has density

βe−βx, one obtained

Ψ(u) =
λ

βc1
e−Ru,

R = β − λ

c1
,

F (u, y) =
λ

βc1
e−(β−

λ
c1

)u(1− e−βy).

The adjustment coefficient ν+δ for the excursion below 0 is obtained from Lundberg’s formula

−δ + c2νδ + λ(
β

β + νδ
− 1) = 0,

which has two roots

ν+δ =
1

2c2

(
δ + λ− βc2 +

√
δ2 + (2βc2 + 2λ)δ + β2c22 − 2βc2λ+ λ2

)
,

ν−δ =
1

2c2

(
δ + λ− βc2 −

√
δ2 + (2βc2 + 2λ)δ + β2c22 − 2βc2λ+ λ2

)
.

The Laplace transform of the length of the excursion below 0 is

E[e−δTk ] = eν
+
δ x,

where x is deficit, and have distribution F (u, y).
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Hence

E[e−δTk |X(γk − 1) = u] =

∫ ∞
0

e−ν
+
δ ydF (u, y)

=
λ

c1
e−βu−

λu
c1

∫ ∞
0

e−ν
+
δ ye−βydy

=
λ

c1(ν+δ + β)
e−βu−

λu
c1

=
2c2λe

−βu−λuc1

c1

(
δ + βc2 + λ−

√
(δ + βc2 + λ)2 − 4βλc2

) ,
E[e−δTk |X(γk − 1) = 0] =

∫ ∞
0

e−ν
+
δ ydF (0, y)

=
2c2λ

c1

(
δ + βc2 + λ−

√
(δ + βc2 + λ)2 − 4βλc2

) .
Inverting this Laplace transform with respect to δ gives the transition density h0(t) and

hu(t)

hu(t) = L −1δ

(
E[e−δTk |X(γk − 1) = u]

)
=

√
c2λe

−2βu− 2λu
c1

βc21
e−(βc2+λ)tt−1I1

(
2t
√
βλc2

)
,

h0(t) = L −1δ

(
E[e−δTk |X(γk − 1) = 0]

)
=

√
c2λ

βc21
e−(βc2+λ)tt−1I1

(
2t
√
βλc2

)
.

I1 is the first kind of Bessel function

I1(x) = 1
π

∫ π
0
excos(θ)dθ.

The probability that the length of an excursion shorter than d when the initial surplus u or

0 is given by

Hu(d) =

∫ d

0

hu(t)dt,

H0(d) =

∫ d

0

h0(t)dt.

The Parisian ruin probability with exponential claims is obtained

Ψd(u) = −
βc1e

u(λ−βc1)
c1

(
λ+ (βc1 − λ)Hu(d)− βc1H0(d)

)
λ
(
λ− βc1H0(d)

) .

4. Example

In this section, figures and numerical examples are presented to illustrate the Parisian

ruin probability. It shown that the Parisian ruin probability Ψd(u) reacts when the value

of its parameters changes. Assuming c1 = 1.4, c2 = 1.6, λ = 1.2, G(x) = 1− e−x, x ≥ 0, one

obtains the following graph.
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Figure. 2. Parisian ruin probability with level d

The data from Figure 2 show when the level d increase, the Parisian ruin probability de-

creases. The first derivative of Parisian ruin probability increases with level d. When the

level d below 5, the Parisian ruin probability is always greater than 0.639.

Table. 1. Parisian ruin probability with level d

Ψ(u)
Ψd(u)

d = 0 d = 0.5 d = 1 d = 1.5 d = 2 d = 2.5 d = 3 d = 3.5

0.6441 0.6441 0.6428 0.6419 0.6413 0.6408 0.6404 0.6401 0.6398

From Table 1, when d = 0, the Parisian ruin probability is equal to the classical ruin

probability which is illustrated in Remark 2.4.
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Figure. 3. Ruin probability with initial surplus u

From Figure 3, when initial assets increase, the probability of ruin decreases.

Table. 2. Ruin probability with initial surplus u

u = 0 u = 0.2 u = 0.4 u = 0.6 u = 0.8 u = 1.0 u = 1.2 u = 1.4

Ψ(u) 0.8571 0.8330 0.8095 0.7867 0.7646 0.7430 0.7221 0.7018

Ψd(u) 0.7855 0.7849 0.7773 0.7651 0.7501 0.7333 0.7156 0.6974

From Figure 3 and Table 2, for the certainly initial surplus u, the Parisian ruin

probability is lower than the classical ruin probability. When the initial value is small, there

is a great difference between the classical ruin probability and the Parisian ruin probability.

When the initial value is large, the Parisian ruin probability tends to the classical ruin

probability. When the initial surplus of the insurance company is small, the Parisian ruin

probability might be a more appropriate measure of risk than the classical ruin probability

as it gives the insurance company some time to resolve deficits and resume operations.

Moreover, the result of the study can provide information about the Parisian ruin

probability. for the investor, the input option can be selected.
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Risks 7(2019), No.3, 73.

[17] T. Rolski, H. Schmidli, V. Schmidt and J. Teugels, Stochastic Processes for Insurance and Finance,

John Wiley and Sons. 1999.

[18] J. T. Y. Wong and E. C. K. Cheung, On the time value of Parisian ruin in (dual) renewal risk processes

with exponential jumps, Insurance: Mathematics and Economics 65(2015), 280-290.


