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ON COMMON SOLUTION OF A MONOTONE VARIATIONAL

INCLUSION FOR TWO MAPPINGS AND A FIXED POINT PROBLEM

Ferdinard Udochukwu Ogbuisi1

In this paper, we study the operator ResfλT ◦ Af
λ which is the composition of

the resolvent of a maximal monotone operator T and the antiresolvent of a Bregman

inverse strongly monotone operator A with respect λ > 0 and construct an iterative
method for approximating a common solution of a monotone inclusion problem and fixed

point problem. We further state and prove a strong convergence theorem for obtaining a
common solution of a monotone inclusion problem for sum of two operators and a fixed

point problem for a Quasi-Bregman strictly pseudocontractive mapping in a reflexive

Banach space. Our result extends and compliment related results in the literature.
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1. Introduction

Let C be a nonempty, closed and convex subset of a reflexive real Banach space E and let
E∗ be the topological dual of E. Let the norm and the duality pairing between E and E∗

be respectively denoted by ∥.∥ and ⟨., .⟩ and let R be the set of real numbers. A functional
f : E → R ∪ {+∞} is said to be:
(1) proper if its effective domain D(f) = {x ∈ E : f(x) < ∞} ̸= ∅.
(2) convex if f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),∀λ ∈ (0, 1);x, y ∈ D(f).
(3) lower semicontinuous at x0 ∈ D(f) if f(x0) ≤ lim inf

x→x0

f(x) and lower semicontinuous

on the domain D(f) if it is lower semicontinuous at every point in D(f).
The Fenchel conjugate function of f is the convex functional f∗ : E∗ → R defined by

f∗(ξ) = sup{⟨ξ, x⟩ − f(x) : x ∈ E}.
It is clear that when f is proper and lower semicontinuous, then so is f∗. The function f is
said to be cofinite if domf∗ = E∗.
Let f : E → R be a convex function and x ∈ int(domf) where int(domf) stands for the
interior of the domain of f . For any y ∈ E, we define the directional derivative of f at x by

fo(x, y) := lim
t→0+

f(x+ ty)− f(x)

t
. (1)

If the limit as t → 0+ in (1) exists for each y, then the function f is said to be Gâteaux
differentiable at x. In this case, the gradient of f at x is the linear function ∇f(x), which
is defined by ⟨∇f(x), y⟩ := fo(x, y) for all y ∈ E (see [13]). The function f is said to be
Gâteaux differentiable if it is Gâteaux differentiable at each x ∈ int(domf). When the limit
as t → 0 in (1) is attained uniformly for any y ∈ E with ∥y∥ = 1, we say that f is Fréchet
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differentiable at x. In this paper, we will take f : E → R to be an admissible function, that
is, a proper, lower semicontinuous, convex and Gâteaux differentiable function. Under these
conditions we know that f is continuous in intdomf (see [4]).
The function f is said to be Legendre if it satisfies the following two conditions.
(L1) int(domf) ̸= ∅, and the subdifferential ∂f is single-valued on its domain.
(L2) int(domf∗) ̸= ∅, and ∂f∗ is single-valued on its domain.
Bauschke, Borwein and Combettes in [4] was the first to study the class of Legendre functions
in infinite dimensional Banach spaces and their definition is equivalent to conditions (L1)
and (L2) because the space E is assumed to be reflexive (see [4], Theorems 5.4 and 5.6, page
634). In reflexive Banach spaces, it has been established that ∇f = (∇f∗)−1 (see [7], page
83). ∇f = (∇f∗)−1 together with the conditions (L1) and (L2) gives

ran∇f = dom∇f∗ = int(domf)∗and ran∇f∗ = dom∇f = int(domf).

Moreover, f is Legendre if and only if f∗ is Legendre (see [4], Corollary 5.5, page 634) and
the functions f and f∗ are Gateaux differentiable and strictly convex in the interior of their
respective domains.

One important and interesting Legendre function is (
1

p
)∥.∥p with p ∈ (1,∞) when E is a

smooth and strictly convex Banach space (cf. [4], Lemma 6.2, page 639). In this case the
gradient ∇f of f is coincident with the generalized duality mapping of E, i.e., ∇f = Jp(1 <
p < ∞). In particular, ∇f = I the identity mapping in Hilbert spaces.

Definition 1.1. The bifunction Df : domf × int(domf) → [0;+∞), which is defined by

Df (y, x) := f(y)− f(x)− ⟨∇f(x), y − x⟩, (2)

is called the Bregman distance (cf. [6, 13]).

The Bregman distance does not satisfy the well-known properties of a metric, but it does
have the following important property, which is called the three point identity: for any
x ∈ domf and y, z ∈ int(domf)

Df (x, y) +Df (y, z)−Df (x, z) = ⟨∇f(z)−∇f(y), x− y⟩. (3)

In 1967, Bregman[6] first employed the technique of Bregman distance in the process of
designing and analysing feasibility and optimization algorithms . The Bregman distance
approach have since been found invaluable in the design and analysis of iterative methods in
fixed point theory as it offers an effective way to extend results in Hilbert spaces to reflexive
Banach spaces (see, [2, 3] and some the references therein ).

According to [9], Section 1.2, page 17 (see also [8]), the modulus of total convexity of f is
the bifunction vf : int(domf)× [0,+∞) → [0,+∞] which is defined by

vf (x, t) := inf{Df (y, x) : y ∈ domf, ∥y − x∥ = t}.

The function f is said to be totally convex at a point x ∈ int(domf) if vf (x, t) > 0 whenever
t > 0 and is said to be totally convex when it is totally convex at every point x ∈ int(domf)
. Examples of totally convex functions can be found in [9, 12].

Butnariu et al. [10] established connections between uniform convexity at a point, total con-
vexity at a point, uniform convexity on bounded sets and sequential consistency and used
these relations to obtain improved convergence results for the outer Bregman projection
algorithm for solving convex feasibility problems and the generalized proximal point algo-
rithm for optimization in Banach spaces. In 2005, Butnariu and Resmerita [12] introduced
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a Bregman type iterative algorithms and used Bregman type iterative method to solve op-
erator equations. Resmerita [23] studied the existence of totally convex functions in Banach
spaces and obtained continuity and stability properties of Bregman projections.

Remark 1.1. We now make the following observations:
(1) The property of totally convexity of f is less stringent than uniform convexity (see [9],

section 2.3).
(2) The function f is totally convex on bounded subsets if and only if f is uniformly convex

on bounded subsets (see [12], Theorem 2.10).

The function f is called sequentially consistent (see [12]) if for any sequences {xn}∞n=0 and
{yn}∞n=0 in intdomf and domf respectively, such that {xn}∞n=0 is bounded and

lim
n→∞

Df (yn, xn) = 0 =⇒ lim
n→∞

||yn − xn|| = 0.

Let C be a convex subset of intdomf and let T be a self-mapping of C. A point p ∈ C is
said to be a fixed point of T if Tp = p and the set of fixed point of a mapping T will be
denoted by F (T ) in this paper. A point p ∈ C is said to be an asymptotic fixed point of T if
C contains a sequence {xn}∞n=0 which converges weakly to p and lim

n→∞
∥xn − Txn∥ = 0. The

set of asymptotic fixed points of T is denoted by F̂ (T ).

Definition 1.2. [5] Let C be a nonempty, closed and convex subset of E. A mapping
T : C → intdomf is called
(i) Bregman Firmly Nonexpansive (BFNE for short) if

⟨∇f(Tx)−∇f(Ty), Tx− Ty⟩ ≤ ⟨∇f(x)−∇f(y), Tx− Ty⟩ ∀x, y ∈ C.

(ii) Bregman Strongly Nonexpansive (BSNE) with respect to a nonempty F̂ (T ) if

Df (p, Tx) ≤ Df (p, x)

for all p ∈ F̂ (T ) and x ∈ C and if whenever {xn}∞n=0 ⊂ C is bounded, p ∈ F̂ (T ) and

lim
n→∞

(
Df (p, xn)−Df (p, Txn)

)
= 0,

it follows that

lim
n→∞

Df (Txn, xn) = 0.

iii) Bregman relatively nonexpansive if F̂ (T ) = F (T ) ̸= ∅ and

Df (p, Tx) ≤ Df (p, x),∀x ∈ C, p ∈ F (T ).

(iv) Bregman quasi-nonexpansive if F (T ) ̸= ∅ and

Df (p, Tx) ≤ Df (p, x),∀x ∈ C, p ∈ F (T ).

(v) Bregman quasi-k-strictly pseudocontractive (see [25]), if there exists a constant k ∈ [0, 1)
and F (T ) ̸= ∅; such that

Df (p, Tx) ≤ Df (p, x) + kDf (x, Tx),∀x ∈ C, p ∈ F (T ).

(vi) closed if for any sequence {xn}∞n=0 ⊂ C with xn → x ∈ C and Txn → y ∈ C as n → ∞,
then Tx = y.

Let B : E → E∗ be a single-valued nonlinear mapping and A : E → 2E
∗
be a set-valued

mapping. Then the Variational Inclusion Problem (VIP) (for the sum of the two mappings)
is to find x ∈ E such that

0∗ ∈ A(x) +B(x). (4)

The solution set of problem (4) is denoted by V IP (A,B).
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The VIP (4) has been applied to solving problems arising in mechanics, optimization, non-
linear programming, economics, finance, applied sciences, etc (see for example [1, 14, 15, 24]
and the references therein). However, most of the existing iterative schemes for approxi-
mating zeros of the sum of two monotone operators are mainly found in the frame work of
Hilbert spaces, whereas many important problems related to practical problems are generally
defined in Banach spaces. For example, the maximal monotone operator related to elliptic
boundary value problem has Sobolev space W 1,p(Ω), (Ω ⊂ Rn) as its natural domain of
definition [17]. Thus the need to extend the problem of finding zeros of monotone operators
to real Banach spaces.

Let A : E → 2E
∗
be a mapping. Then A is said to be a monotone if for any x, y ∈ domA,

we have

ξ ∈ Ax and η ∈ Ay =⇒ ⟨ξ − η, x− y⟩ ≥ 0, (5)

and A is said to be maximal monotone if A is monotone and the graph of A is not properly
contained in the graph of any other monotone mapping. Let A : E → 2E

∗
be a maximal

monotone mapping, then for any λ > 0 the resolvent of A associated with λ is the operator

ResfλA : E → 2E defined by

ResfλA = (∇f + λA)−1 ◦ ∇f. (6)

It is known that ResfλA is a BFNE operator, single-valued and F(ResfλA) = A−1(0) (see [5]).
If f : E → R is a Legendre function which is bounded, uniformly Fréchet differentiable on

bounded subsets of E, then ResfλA is BSNE and F̂ (ResfλA) = F (ResfλA) (see [19]).

Let C be a nonempty closed and convex subset of a reflexive Banach space E, a mapping
A : E → E∗ is called single valued Bregman inverse strongly monotone (BISM) on the set
C if

C ∩ (int domf) ̸= ∅ (7)

and for any x, y ∈ C ∩ (int domf), we have

⟨Ax−Ay,∇f∗(∇f(x)−Ax)−∇f∗(∇f(y)−Ay)⟩ ≥ 0. (8)

Remark 1.2. (see [16]). The class of BISM mappings is more general than the class of
firmly nonexpansive operators in Hilbert spaces. Indeed, if f = 1

2 ||.||
2, then ∇f = ∇f∗ = I,

where I is the identity operator and (8) becomes

⟨Ax−Ay, x−Ax− (y −Ay)⟩ ≥ 0, (9)

that is

||Ax−Ay||2 ≤ ⟨x− y,Ax−Ay⟩. (10)

For more details on BISM see [11, 20] and the references therein. The anti-resolvent Af
λ :

E → E associated with a mapping A : E → E∗ and λ > 0 is defined by

Af
λ := ∇f∗ ◦ (∇f − λA). (11)

If the Legendre function f is uniformly Fréchet differentiable and bounded on bounded

subsets of E; then the anti-resolvent Af
λ is a single-valued BSNE operator which satisfies

F (Af
λ) = F̂ (Af

λ) (cf. [19]).

Let E be a real Banach space. A mapping T : E → 2E is called accretive if for each x, y ∈ E,
there exists j(x− y) ∈ J(x− y) (J is the normalised duality mapping), such that

⟨j(x− y), u− v⟩ ≥ 0, ∀ u ∈ Tx, v ∈ Ty.
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Clearly, the accretive operators and the monotone operators on Banach spaces are two dis-
tinct extensions of the monotone operators from Hilbert spaces to Banach spaces but it is
the problem of finding the zeros of accretive operators that have been given much attention
in the literature. On the other hand, finding the zeros of monotone operators in Banach
spaces are still not so popular and even the very few that existed only considered the case
for a single operator i.e., 0 ∈ Bx instead of 0 ∈ (B +A)x.

Inspired and motivated by the fact that the study of monotone variational inclusion problems
for sum of two operators has mainly been restricted to Hilbert spaces, we design an iterative
algorithm for approximating a fixed point of Bregman quasi-k-strict pseudo-contraction
mappings, which is also a solution of a monotone variational inclusion problem for sum of
two mappings A and B where A is a maximal monotone mapping and B is a Bregman
inverse strongly monotone mapping on a real reflexive Banach space. Our result extend and
compliment some related results in the literature for example [22, 26, 27, 28, 29, 30].

2. Preliminaries

Lemma 2.1. (see [22], Proposition 8). Let A : E → 2E
∗
be a maximal monotone operator

such that A−1(0∗) ̸= ∅. Then

Df

(
u,ResfλA(x)

)
+Df

(
ResfλA(x), x

)
≤ Df (u, x), (12)

for all λ > 0, u ∈ A−1(0∗) and x ∈ X.

Lemma 2.2. (see [16], Proposition 11). Let A : E → E∗ be a BISM mapping such that
A−1(0∗) ̸= ∅. Let f : E → R be a Legendre function which satisfies the range condition, ran
(∇f − λA) ⊂ ran (∇f). Then the following hold:

(i) A−1(0∗) = F (Af
λ),

(ii) the anti-resolvent Af
λ is a BFNE operator. In addition,

Df (u,A
f
λx) +Df (A

f
λx, x) ≤ Df (u, x)

for any u ∈ A−1(0∗) and for all x ∈ dom Af
λ.

Lemma 2.3. ([9]). The function f : E → R is totally convex on bounded sets if and only if
it is sequentially consistent.

Lemma 2.4. ([21]). If f : E → R is uniformly Fréchet differentiable and bounded on
bounded subsets of E, then ∇f is uniformly continuous on bounded subsets of E from the
strong topology of E to the strong topology of E∗.

Lemma 2.5. ([16]). Assume that f : E → R is a Legendre function which is uniformly
Fréchet differentiable and bounded on bounded subset of E. Let C be a nonempty closed and
convex subset of E. Let {Ti : 1 ≤ i ≤ N} be BSNE operators which satisfy F̂ (Ti) = F (Ti)
for each 1 ≤ i ≤ N and let T := TN ◦TN−1 ◦ · · · ◦T1. If ∩{F (Ti) : 1 ≤ i ≤ N} and F (T ) are

nonempty, then T is also BSNE with F (T ) = F̂ (T ).

The Bregman projection (see, [6]) with respect to f of x ∈ int(domf) onto a nonempty,

closed and convex set C ⊂ int(domf) is defined as the necessarily unique vector ProjfC(x) ∈
C, which satisfies

Df (ProjfC(x), x) = inf{Df (y, x) : y ∈ C}. (13)

Let C be a nonempty, closed, and convex subset of E. Let f : E → R be a Gâteaux
differentiable and totally convex function and let x ∈ E. It is known from [12] that z =

ProjfCx if and only if

⟨∇f(x)−∇f(z), y − z⟩ ≤ 0, ∀y ∈ C. (14)
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We also have,

Df (y, ProjfC(x)) +Df (ProjfC(x), x) ≤ Df (y, x), ∀x ∈ E, y ∈ C. (15)

Proposition 2.1. Let f : E → R be a convex, Legendre and Gâteaux differentiable function.
In addition, if f : E → (−∞; +∞] is a proper lower semi-continuous function, then f∗ :
E∗ → (−∞,+∞] is a proper weak∗ lower semi-continuous and convex function (see [18]).
Hence Vf is convex in the second variable. Thus, for all z ∈ E,

Df (z,∇f∗(

N∑
i=1

ti∇f(xi)) ≤
N∑
i=1

tiDf (z, xi). (16)

where {xi}Ni=1 ⊂ E and {ti} ⊂ (0, 1) with
∑N

i=1 ti = 1.

Lemma 2.6. ([21]). If f : E → R is uniformly Fréchet differentiable and bounded on
bounded subsets of E, then ∇f is uniformly continuous on bounded subsets of E from the
strong topology of E to the strong topology of E∗.

Lemma 2.7. ([9]). The function f is totally convex on bounded sets if and only if it is
sequentially consistent.

Lemma 2.8. ([22]). Let f : E → R be a Gâteaux differentiable and totally convex function.
If x0 ∈ E and the sequence {Df (xn, x0)}∞n=1 is bounded, then the sequence {xn}∞n=1 is also
bounded.

Lemma 2.9. ([25]). Let f : E → R be a Legendre function which is uniformly Fréchet
differentiable on bounded subsets of E. Let C be a nonempty, closed, and convex subset of
E and let T : C → C be a Bregman quasi-strictly pseudocontractive mapping with respect to
f . Then F (T ) is closed and convex.

Lemma 2.10. ([25]). Let f : E → R be a Legendre function which is uniformly Fréchet
differentiable on bounded subsets of E. Let C be a nonempty, closed, and convex subset of E
and let T : C → C be a Bregman quasi-strictly pseudocontractive mapping with respect to f.
Then, for any x ∈ C, p ∈ F (T ) and k ∈ [0, 1) the following holds:

Df (x, Tx) ≤
1

1− k
⟨∇f(x)−∇f(Tx), x− p⟩.

3. Main Results

Theorem 3.1. Let C be a nonempty, closed and convex subset of a reflexive real Banach
space E and Let f : E → R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E such that C ⊂
int(domf). Let B : E → E∗ be a BISM mapping and A : E → 2E

∗
be a maximal monotone

operator. Let T : C → C be a closed and Bregman quasi-k-strict pseudo-contraction such

that Γ = F (T ) ∩ F (ResfλA ◦ Bf
λ) ̸= ∅. Let {xn} be the sequence generated iteratively as

follows.

x0 ∈ C = C0

yn = ∇f∗(αn∇f(xn) + (1− αn)[(1− γn)∇f(xn) + γn∇f(Txn)])

un = ∇f∗(βn∇f(yn) + (1− βn)∇f(ResfλA ◦Bf
λ(yn)))

Cn+1 = {z ∈ Cn : Df (z, yn) +Df (xn, un)
≤ 1+k

1−k ⟨∇f(xn)−∇f(Txn), xn − z⟩+ ⟨∇f(Txn)−∇f(un), xn − z⟩}
xn+1 = PCn+1x0, n ≥ 0.

(17)

Let αn, βn and γn be sequences in (0, 1) such that lim inf
n→∞

(1−αn)γn > 0 and lim inf
n→∞

(1−βn) >

0. Then {xn} converges strongly to x∗ = P f
Γx0.
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Before we start the proof of the theorem, let us make the following important observation: It

is known that ResfλA and Bf
λ are BSNE operators and since F (ResfλA)∩F (Bf

λ) = F (ResfλA◦
Bf

λ) = (A + B)−10 ̸= ∅, it then follows from Lemma 2.5 that ResfλA ◦ Bf
λ is BSNE and

F (ResfλA ◦Bf
λ) = F̂ (ResfλA ◦Bf

λ). Moreover, F (ResfλA ◦Bf
λ) = (A+B)−10.

Proof. We partition the proof into 4 steps.
Step 1. Γ ⊂ Cn for all n ≥ 0.

It has been shown that F (T ) is closed and convex (see Lemma 2.9). Moreover, ResfλA◦Bf
λ is

a Bregman strongly nonexpansive mapping and therefore F (ResfλA◦B
f
λ) is closed and convex

(see, [19]). Hence, we have that Γ is nonempty, closed and convex and that P f
Γ is well defined.

Next we show that Cn is closed and convex ∀ n ≥ 0. From the statement of Theorem 3.1,
we have that C0 = C is closed and convex. Now suppose that Cj is closed and convex for
some j ≥ 1. Let z ∈ Cj+1, then

Df (z, yj) +Df (xj , uj) ≤ Df (z, xj) +
1 + k

1− k
⟨∇f(xj)−∇f(Txj), xj − z⟩

+⟨∇f(Txj)−∇f(uj), xj − z⟩, (18)

which is the same as

2f(xj)− f(yj)− f(uj) ≤ ⟨∇f(uj), xj − uj⟩+ ⟨∇f(yj), z − yj⟩ − ⟨∇f(xj), z − xj⟩

+
1 + k

1− k
⟨∇f(xj)−∇f(Txj), xj − z⟩

+⟨∇f(Txj)−∇f(uj), xj − z⟩. (19)

Therefore, Cj+1 is closed and convex and then we conclude that Cn is closed and convex for
all n ≥ 0.

We now show that Γ ⊂ Cn ∀ n ≥ 0. Obviously, Γ ⊂ C0 = C. Assume that Γ ⊂ Cj for some
j ∈ N. Let z ∈ Γ, then from (17), we have

Df (z, uj) = Df (z,∇f∗(βj∇f(yj) + (1− βj)∇f(ResfλA ◦Bf
λ(yj)))

≤ βjDf (z, yj) + (1− βj)Df (z,ResfλA ◦Bf
λ(yj))

≤ βjDf (z, yj) + (1− βj)Df (z, yj)

= Df (z, yj). (20)

Also,

Df (z, yj) = Df (z,∇f∗(αj∇f(xj) + (1− αj)[(1− γj)∇f(xj) + γj∇f(Txj)]))

≤ αjDf (z, xj) + (1− αj)(1− γj)Df (z, xj) + (1− αj)γjDf (z, Txj)

≤ αjDf (z, xj) + (1− αj)(1− γj)Df (z, xj) + (1− αj)γjDf (z, xj)

+(1− αj)γjkDf (xj , Txj)

≤ αjDf (z, xj) + kDf (xj , Txj)

≤ αjDf (z, xj) +
k

1− k
⟨∇f(xj)−∇f(Txj), xj − z⟩. (21)

Moreover, from the three point identity (3), we have

Df (z, uj) = Df (z, xj) +Df (xj , uj) + ⟨∇f(xj)−∇f(uj), z − xj⟩. (22)
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From (21) and (22), we obtain that

Df (xj , uj) = Df (z, uj)−Df (z, xj) + ⟨∇f(xj)−∇f(uj), xj − z⟩
≤ Df (z, yj)−Df (z, xj) + ⟨∇f(xj)−∇f(uj), xj − z⟩

≤ Df (z, xj)−Df (z, xj) +
k

1− k
⟨∇f(xj)−∇f(Txj), xj − z⟩

+⟨∇f(xj)−∇f(uj), xj − z⟩

≤ Df (z, xj)−Df (z, xj) +
1

1− k
⟨∇f(xj)−∇f(Txj), xj − z⟩

+⟨∇f(Txj)−∇f(uj), xj − z⟩. (23)

Therefore, from (21) and (23), we get that

Df (z, yj) +Df (xj , uj) ≤ Df (z, xj) +
1 + k

1− k
⟨∇f(xj)−∇f(Txj), xj − z⟩

+⟨∇f(Txj)−∇f(uj), xj − z⟩. (24)

Hence z ∈ Cj+1 and thus Γ ⊂ Cn ∀ n ≥ 0.

Step 2. xn → x∗ for some x∗ ∈ C.

Since xn = P f
Cn

x0 and xn+1 = P f
Cn+1

x0 ∈ Cn+1 ⊂ Cn, then

Df (xn, x0) ≤ Df (xn+1, x0), n ≥ 1. (25)

Again from (15), we have

Df (xn, x0) = Df (P
f
Cn

x0, x0)

≤ Df (z, x0)−Df (z, xn)

≤ Df (z, x0). (26)

Combining (25) and (26), we conclude that lim
n→∞

Df (xn, x0) exists.

Furthermore, since xm = P f
Cm

x0 ∈ Cm ⊂ Cn for m > n, then from (15), we have

Df (xm, xn) = Df (xm, P f
Cn

x0)

≤ Df (xm, x0)−Df (P
f
Cn

x0, x0)

= Df (xm, x0)−Df (xn, x0) → 0, n,m → ∞. (27)

Since f is totally convex on bounded subsets of E, then it follows from Lemma 2.7 that f
is sequentially consistent. Thus ||xm − xn|| → 0,m, n → ∞, which means that {xn} is a
Cauchy sequence. Since C is a closed subset of a reflexive Banach space E and {xn} is a
Cauchy sequence in C, then there exists x∗ ∈ C such that xn → x∗, n → ∞.

Step 3. x∗ ∈ F (T ) ∩ F (ResfλA ◦Bf
λ).

Clearly, since {xn} is a Cauchy sequence, then

lim
n→∞

Df (xn+1, xn) = 0, (28)

which implies

||xn+1 − xn|| → 0, n → ∞. (29)

Again, from xn+1 = P f
Cn+1

x0 ∈ Cn+1, and (17), we have

Df (xn+1, yn) +Df (xn, un) ≤ Df (xn+1, xn) +
1 + k

1− k
⟨∇f(xn)−∇f(Txn), xn − xn+1⟩

+⟨∇f(Txn)−∇f(un), xn − xn+1⟩ → 0, n → ∞. (30)
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Thus Df (xn+1, yn) → 0, n → ∞ and Df (xn, un) → 0, n → ∞.
Therefore, ||xn+1 − yn|| → 0 and ||xn − un|| → 0.
Furthermore,

||yn − xn|| ≤ ||yn − xn+1||+ ||xn+1 − xn|| → 0, n → ∞, (31)

and

||xn+1 − un|| ≤ ||xn+1 − xn||+ ||xn − un|| → 0, n → ∞. (32)

Also,

||yn − un|| ≤ ||yn − xn||+ ||xn − un|| → 0, n → ∞. (33)

Since f is uniformly Fréchet differentiable and bounded on bounded subsets of E, we have
from Lemma 2.6 that ∇f is uniformly continuous on bounded subsets of E. Thus it follows
from (31) and (32) respectively that ||∇f(yn)−∇f(xn)|| → 0 and ||∇f(un)−∇f(yn)|| → 0.
But from (17), we have

||∇f(yn)−∇f(xn)||
= ||αn∇f(xn) + (1− αn)[(1− γn)∇f(xn) + γn∇f(Txn)]−∇f(xn)||
= ||αn(∇f(xn)−∇f(xn)) + (1− αn)[(1− γn)∇f(xn) + γn∇f(Txn)−∇f(xn)]||
= (1− αn)||(1− γn)(∇f(xn)−∇f(xn)) + γn(∇f(Txn)−∇f(xn))||
= (1− αn)γn||∇f(Txn)−∇f(xn))||, (34)

which gives

||∇f(Txn)−∇f(xn))||

=
1

(1− αn)γn
||∇f(yn)−∇f(xn)|| → 0, n → ∞. (35)

Similarly,

||∇f(un)−∇f(yn)|| = (1− βn)||∇f(ResfλA ◦Bf
λ(yn)−∇f(yn)||, (36)

which implies

||∇f(ResfλA ◦Bf
λ(yn)−∇f(yn)|| =

1

(1− βn)
||∇f(un)−∇f(yn)|| → 0, n → ∞. (37)

Since ∇f∗ is uniformly norm-to-norm continuous on bounded subset of E∗, we have from
(35) and (37) respectively that

lim
n→∞

||Txn − xn|| = 0, (38)

and

lim
n→∞

||ResfλA ◦Bf
λ(yn)− yn|| = 0. (39)

It follows from (38), the fact that T is closed and xn → x∗ that x∗ ∈ F (T ). Again, since

ResfλA ◦ Bf
λ is a Bregman strongly nonexpansive mapping such that F̂ (ResfλA ◦ Bf

λ) =

F (ResfλA ◦ Bf
λ) and yn → x∗, then it follows from (39) that x∗ ∈ F (ResfλA ◦ Bf

λ). Thus

x∗ ∈ F (T ) ∩ F (ResfλA ◦Bf
λ).

Step 4. x∗ = P f
Γx0.

From xn = P f
Cn

x0 and (14), we have

⟨∇f(x0)−∇f(xn), xn − z⟩ ≥ 0, ∀z ∈ Cn.

Thus since Γ ⊂ Cn, we have

⟨∇f(x0)−∇f(xn), xn − p⟩ ≥ 0, ∀p ∈ Γ. (40)
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Taking limit as n → ∞ in (40), we obtain that

⟨∇f(x0)−∇f(x∗), x∗ − p⟩ ≥ 0, ∀p ∈ Γ, (41)

which implies from the characterisation of the Bregman projection that x∗ = P f
Γx0. �

Corollary 3.1. Let C be a nonempty, closed and convex subset of a reflexive real Banach
space E and Let f : E → R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E such that C ⊂
int(domf). Let A : E → 2E

∗
be a maximal monotone operator and let T : C → C be a

closed and Bregman quasi-k-strict pseudo-contraction such that Γ1 = F (T )∩F (ResfλA) ̸= ∅.
Let {xn} be the sequence generated iteratively as follows.

x0 ∈ C = C0

yn = ∇f∗(αn∇f(xn) + (1− αn)[(1− γn)∇f(xn) + γn∇f(Txn)])

un = ∇f∗(βn∇f(yn) + (1− βn)∇f(ResfλA(yn)))
Cn+1 = {z ∈ Cn : Df (z, yn) +Df (xn, un)

≤ 1+k
1−k ⟨∇f(xn)−∇f(Txn), xn − z⟩+ ⟨∇f(Txn)−∇f(un), xn − z⟩}

xn+1 = PCn+1x0, n ≥ 0.

(42)

Let αn, βn and γn be sequences in (0, 1) such that lim inf
n→∞

(1−αn)γn > 0 and lim inf
n→∞

(1−βn) >

0. Then {xn} converges strongly to x∗ = P f
Γ1
x0.

Corollary 3.2. Let C be a nonempty, closed and convex subset of a reflexive real Banach
space E and Let f : E → R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E such that C ⊂
int(domf). Let B : E → E∗ be a BISM mapping and let T : C → C be a closed and

Bregman quasi-k-strict pseudo-contraction such that Γ2 = F (T ) ∩ F (Bf
λ) ̸= ∅. Let {xn} be

the sequence generated iteratively as follows.

x0 ∈ C = C0

yn = ∇f∗(αn∇f(xn) + (1− αn)[(1− γn)∇f(xn) + γn∇f(Txn)])

un = ∇f∗(βn∇f(yn) + (1− βn)∇f(Bf
λ(yn)))

Cn+1 = {z ∈ Cn : Df (z, yn) +Df (xn, un)
≤ 1+k

1−k ⟨∇f(xn)−∇f(Txn), xn − z⟩+ ⟨∇f(Txn)−∇f(un), xn − z⟩}
xn+1 = PCn+1

x0, n ≥ 0.

(43)

Let αn, βn and γn be sequences in (0, 1) such that lim inf
n→∞

(1−αn)γn > 0 and lim inf
n→∞

(1−βn) >

0. Then {xn} converges strongly to x∗ = P f
Γ2
x0

Corollary 3.3. Let C be a nonempty, closed and convex subset of a reflexive real Banach
space E and Let f : E → R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E such that C ⊂
int(domf). Let B : E → E∗ be a Bregman quasi-nonexpansive mapping and A : E → 2E

∗
be

a maximal monotone operator. Let T : C → C be a closed and Bregman quasi-nonexpansive

such that Γ3 = F (T ) ∩ F (ResfλA ◦ Bf
λ) ̸= ∅. Let {xn} be the sequence generated iteratively

as follows.

x0 ∈ C = C0

yn = ∇f∗(αn∇f(xn) + (1− αn)[(1− γn)∇f(xn) + γn∇f(Txn)])

un = ∇f∗(βn∇f(yn) + (1− βn)∇f(ResfλA ◦Bf
λ(yn)))

Cn+1 = {z ∈ Cn : Df (z, yn) +Df (xn, un)
≤ ⟨∇f(xn)−∇f(Txn), xn − z⟩+ ⟨∇f(Txn)−∇f(un), xn − z⟩}

xn+1 = PCn+1x0, n ≥ 0.

(44)
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Let αn, βn and γn be sequences in (0, 1) such that lim inf
n→∞

(1−αn)γn > 0 and lim inf
n→∞

(1−βn) >

0. Then {xn} converges strongly to x∗ = P f
Γ3
x0

4. Conclusion

In a real Hilbert space H, A mapping T : C → C, (C is a closed convex subset of H) is said
to be k−demicontractive, if ∃k ∈ [0, 1) and F (T ) ̸= 0 such that

||Tx− p||2 ≤ ||x− p||2|+ k||x− Tx||2,∀x ∈ H, p ∈ F (T ). (45)

Moreover, if we take f = 1
2 ||.||

2 in a real Hilbert space, we have that ∇f = I and

Df (x, y) =
1
2 ||x− y||2, where I is the identity operator of H. Thus, it is easy to see that the

Bregman-k-strictly pseudocontractive mapping is more general than the k-demicontractive

mappings in real Hilbert space. Also, we observe that ResfλA = (I + λA)−1 = JλA and

Bf
λ = (I − λB), which means that ResfλA ◦Bf

λ becomes the resolvent operator JλA(I − λA)
popularly used in approximating VIP (4) for a maximal monotone operator A and an α-
inverse strongly monotone operator B in real Hilbert spaces. Hence our result in this paper
extends the results on finding common solutions of VIP (4) for two operators and fixed
point problems for demicontractive mappings(also quasi nonexpansive mappings) from real
Hilbert space to real reflexive Banach space. We note here that the BISM operator is 1-
inverse strongly monotone in Hilbert space.
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