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ON COMMON SOLUTION OF A MONOTONE VARIATIONAL
INCLUSION FOR TWO MAPPINGS AND A FIXED POINT PROBLEM

Ferdinard Udochukwu Ogbuisi*

In this paper, we study the operator Res{T o A{ which is the composition of
the resolvent of a mazimal monotone operator T and the antiresolvent of a Bregman
inverse strongly monotone operator A with respect A > 0 and construct an iterative
method for approrimating a common solution of a monotone inclusion problem and fixed
point problem. We further state and prove a strong convergence theorem for obtaining a
common solution of a monotone inclusion problem for sum of two operators and a fized
point problem for a Quasi-Bregman strictly pseudocontractive mapping in a reflexive
Banach space. Our result extends and compliment related results in the literature.
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1. Introduction

Let C be a nonempty, closed and convex subset of a reflexive real Banach space E and let

E* be the topological dual of F. Let the norm and the duality pairing between E and E*

be respectively denoted by ||.|| and (.,.) and let R be the set of real numbers. A functional

f:E — RU{+o0} is said to be:

(1) proper if its effective domain D(f) = {z € E : f(z) < oo} # 0.

(2) comvex if f(Az + (1 — Ay) < M () + (1 A)f{y), %A € (0, 1)s2,y € D).

(3) lower semicontinuous at zg € D(f) if f(z) < lirg inf f(«) and lower semicontinuous
T—To

on the domain D(f) if it is lower semicontinuous at every point in D(f).
The Fenchel conjugate function of f is the convex functional f*: E* — R defined by

f7(€) = sup{(&,z) — f(z) : x € E}.
It is clear that when f is proper and lower semicontinuous, then so is f*. The function f is
said to be cofinite if domf* = E*.
Let f : E — R be a convex function and z € int(domf) where int(domf) stands for the
interior of the domain of f. For any y € F, we define the directional derivative of f at = by

Fola.y) = tim LEEW I (1)

t—0+ t
If the limit as ¢ — 07 in (1) exists for each y, then the function f is said to be Gateaur
differentiable at x. In this case, the gradient of f at x is the linear function V f(x), which
is defined by (Vf(z),y) := f°(z,y) for all y € E (see [13]). The function f is said to be
Gateauz differentiable if it is Gateaux differentiable at each x € int(domf). When the limit
as t — 0 in (1) is attained uniformly for any y € E with ||y|| = 1, we say that f is Fréchet
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differentiable at x. In this paper, we will take f : E — R to be an admissible function, that
is, a proper, lower semicontinuous, convex and Gateaux differentiable function. Under these
conditions we know that f is continuous in intdomf (see [4]).

The function f is said to be Legendre if it satisfies the following two conditions.

(L1) int(domf) # (), and the subdifferential df is single-valued on its domain.

(L2) int(domf*) # 0, and Jf* is single-valued on its domain.

Bauschke, Borwein and Combettes in [4] was the first to study the class of Legendre functions
in infinite dimensional Banach spaces and their definition is equivalent to conditions (L1)
and (L2) because the space F is assumed to be reflexive (see [4], Theorems 5.4 and 5.6, page
634). In reflexive Banach spaces, it has been established that Vf = (Vf*)~! (see [7], page
83). Vf = (Vf*)~! together with the conditions (L1) and (L2) gives

ranV f = domV f* = int(domf)*and ranV f* = domV f = int(domf).

Moreover, f is Legendre if and only if f* is Legendre (see [4], Corollary 5.5, page 634) and
the functions f and f* are Gateaux differentiable and strictly convex in the interior of their
respective domains.

1
One important and interesting Legendre function is (=)|[.||? with p € (1,00) when E is a

smooth and strictly convex Banach space (cf. [4], Lemma 6.2, page 639). In this case the
gradient V f of f is coincident with the generalized duality mapping of E, i.e., Vf = J,(1 <
p < 00). In particular, V f = I the identity mapping in Hilbert spaces.

Definition 1.1. The bifunction Dy : domf x int(domf) — [0; +00), which is defined by

Dy(y,x) := f(y) = [(x) = (V[(2),y — @), (2)
is called the Bregman distance (cf. [6, 13]).

The Bregman distance does not satisfy the well-known properties of a metric, but it does
have the following important property, which is called the three point identity: for any
x € domf and y, z € int(domf)

Dy(z,y) + Ds(y,2) — Dy(x,2) = (Vf(2) = V(y), x = y). (3)

In 1967, Bregman[6] first employed the technique of Bregman distance in the process of
designing and analysing feasibility and optimization algorithms . The Bregman distance
approach have since been found invaluable in the design and analysis of iterative methods in
fixed point theory as it offers an effective way to extend results in Hilbert spaces to reflexive
Banach spaces (see, [2, 3] and some the references therein ).

According to [9], Section 1.2, page 17 (see also [8]), the modulus of total convexity of f is
the bifunction vy : int(domf) x [0, +00) — [0, +00] which is defined by

vi(z,t) :=inf{Ds(y,x) : y € domf, |y —z|| =t}

The function f is said to be totally convex at a point x € int(domf) if v¢(z,t) > 0 whenever
t > 0 and is said to be totally conver when it is totally convex at every point = € int(domf)
. Examples of totally convex functions can be found in [9, 12].

Butnariu et al. [10] established connections between uniform convexity at a point, total con-
vexity at a point, uniform convexity on bounded sets and sequential consistency and used
these relations to obtain improved convergence results for the outer Bregman projection
algorithm for solving convex feasibility problems and the generalized proximal point algo-
rithm for optimization in Banach spaces. In 2005, Butnariu and Resmerita [12] introduced
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a Bregman type iterative algorithms and used Bregman type iterative method to solve op-
erator equations. Resmerita [23] studied the existence of totally convex functions in Banach
spaces and obtained continuity and stability properties of Bregman projections.

Remark 1.1. We now make the following observations:

(1) The property of totally convexity of f is less stringent than uniform convexity (see [9],
section 2.3).

(2) The function f is totally convex on bounded subsets if and only if f is uniformly convex
on bounded subsets (see [12], Theorem 2.10).

The function f is called sequentially consistent (see [12]) if for any sequences {z,}52, and
{yn}22, in intdomf and domf respectively, such that {x,,}52, is bounded and

lim D¢(yn,zn) =0 = lim ||y, —z,|| =0.

n—oo n—oo
Let C be a convex subset of intdomf and let T be a self-mapping of C. A point p € C is
said to be a fixed point of T if Tp = p and the set of fixed point of a mapping T will be

denoted by F(T) in this paper. A point p € C is said to be an asymptotic fized point of T if
C' contains a sequence {x,}°2 ; which converges weakly to p and lim ||z, — Tx,|| = 0. The
n—oo

set of asymptotic fixed points of T is denoted by EF(T).

Definition 1.2. [5] Let C' be a nonempty, closed and convex subset of E. A mapping
T :C — intdomf is called
(i) Bregman Firmly Nonexpansive (BFNE for short) if

(Vf(Tz) =V [(Ty), Tz = Ty) < (Vf(z) =V [(y), Tz -Ty)  Ve,yeC.
(ii) Bregman Strongly Nonezpansive (BSNE) with respect to a nonempty F(T) if
Ds(p,Tx) < Ds(p, x)
for all p € F(T) and x € C and if whenever {x,}>, C C is bounded, p € F(T) and

lim (D;(p, ) = Dy(p, Twn)) =0,
it follows that
lim Df(TSCnyxn) =0.

n-r00
iii) Bregman relatively nonezpansive if F(T) = F(T) # 0 and
Dy(p,Tz) < Ds(p,x),Vz € C,p € F(T).
(iv) Bregman quasi-nonezpansive if F(T) # 0 and
Dy(p,Tx) < Dy(p,x),Yz € C,p € F(T).

(v) Bregman quasi-k-strictly pseudocontractive (see [25]), if there exists a constant k € [0, 1)
and F(T) # 0; such that

D¢(p,Tx) < Dy(p,z) + kDy(z,Tx),Vz € C,p € F(T).

(vi) closed if for any sequence {x,}5>, C C with x,, — x € C and Tx,, -y € C asn — oo,
then Tx = y.

Let B : E — E* be a single-valued nonlinear mapping and A : E — 27" be a set-valued
mapping. Then the Variational Inclusion Problem (VIP) (for the sum of the two mappings)
is to find & € E such that

0" € A(z) + B(z). (4)
The solution set of problem (4) is denoted by VIP(A, B).
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The VIP (4) has been applied to solving problems arising in mechanics, optimization, non-
linear programming, economics, finance, applied sciences, etc (see for example [1, 14, 15, 24]
and the references therein). However, most of the existing iterative schemes for approxi-
mating zeros of the sum of two monotone operators are mainly found in the frame work of
Hilbert spaces, whereas many important problems related to practical problems are generally
defined in Banach spaces. For example, the maximal monotone operator related to elliptic
boundary value problem has Sobolev space W1P(Q), (Q C R") as its natural domain of
definition [17]. Thus the need to extend the problem of finding zeros of monotone operators
to real Banach spaces.

Let A: E — 28" be a mapping. Then A is said to be a monotone if for any z,y € domA,
we have

§€A$andﬂ€Ay:><§*777$*y>Zoa (5)
and A is said to be maximal monotone if A is monotone and the graph of A is not properly
contained in the graph of any other monotone mapping. Let A : E — 25" be a maximal

monotone mapping, then for any A > 0 the resolvent of A associated with X is the operator
Res] , : E — 27 defined by

Res!, = (Vf+AA)" 1o V] (6)

It is known that Res{A is a BFNE operator, single-valued and F(Res{\A) = A71(0) (see [5]).
If f: F — Ris a Legendre function which is bounded, uniformly Fréchet differentiable on
bounded subsets of E, then ResiA is BSNE and F(Resf\‘A) = F(Res{A) (see [19]).

Let C' be a nonempty closed and convex subset of a reflexive Banach space E, a mapping
A : E — E* is called single valued Bregman inverse strongly monotone (BISM) on the set
Cif

C N (int domf) # 0 (7)
and for any =,y € C'N (int domf), we have
(Az — Ay, V*(Vf(x) — Az) = Vf*(Vf(y) — Ay)) > 0. (8)

Remark 1.2. (see [16]). The class of BISM mappings is more general than the class of
firmly nonexpansive operators in Hilbert spaces. Indeed, if f = %||||2, then Vf=Vf*=1,
where I is the identity operator and (8) becomes

(Az — Ay,x — Az — (y — Ay)) > 0, 9)
that is
| Az — Ay|[* < (z —y, Az — Ay). (10)
For more details on BISM see [11, 20] and the references therein. The anti-resolvent Af\c :
E — E associated with a mapping A : E — E* and X\ > 0 is defined by
Al .= V"o (Vf—AA). (11)

If the Legendre function f is uniformly Fréchet differentiable and bounded on bounded
subsets of E; then the anti-resolvent A{ is a single-valued BSNE operator which satisfies
F(A]) = F(A]) (cf. [19).

Let E be a real Banach space. A mapping 7 : E — 2¥ is called accretive if for each z,y € E,
there exists j(z —y) € J(x — y) (J is the normalised duality mapping), such that

(Gl —y),u—v) >0, VueTz,veTy.
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Clearly, the accretive operators and the monotone operators on Banach spaces are two dis-
tinct extensions of the monotone operators from Hilbert spaces to Banach spaces but it is
the problem of finding the zeros of accretive operators that have been given much attention
in the literature. On the other hand, finding the zeros of monotone operators in Banach
spaces are still not so popular and even the very few that existed only considered the case
for a single operator i.e., 0 € Bz instead of 0 € (B + A)z.

Inspired and motivated by the fact that the study of monotone variational inclusion problems
for sum of two operators has mainly been restricted to Hilbert spaces, we design an iterative
algorithm for approximating a fixed point of Bregman quasi-k-strict pseudo-contraction
mappings, which is also a solution of a monotone variational inclusion problem for sum of
two mappings A and B where A is a maximal monotone mapping and B is a Bregman
inverse strongly monotone mapping on a real reflexive Banach space. Our result extend and
compliment some related results in the literature for example [22, 26, 27, 28, 29, 30].

2. Preliminaries

Lemma 2.1. (see [22], Proposition 8). Let A: E — 25" be a mazimal monotone operator
such that A=1(0%) # (0. Then

Dy (u, Res{A(x)) + Dy (Res{A(x),:r> < Dy(u, z), (12)
for all A\ >0, ue A=1(0%) and x € X.

Lemma 2.2. (see [16], Proposition 11). Let A : E — E* be a BISM mapping such that
ATH0*) £ 0. Let f: E — R be a Legendre function which satisfies the range condition, ran
(Vf—XA) C ran (Vf). Then the following hold:

(i) A71(0%) = F(4]),

(ii) the anti-resolvent Af\c is a BFNE operator. In addition,

Dy (u, Af\cx) + Df(Aix,x) < Dy(u,z)
for any u € A=1(0*) and for all x € dom AJ;.

Lemma 2.3. ([9]). The function f: E — R is totally convex on bounded sets if and only if
it 1is sequentially consistent.

Lemma 2.4. ([21]). If f : E — R is uniformly Fréchet differentiable and bounded on
bounded subsets of E, then V f is uniformly continuous on bounded subsets of E from the
strong topology of E to the strong topology of E*.

Lemma 2.5. ([16]). Assume that f : E — R is a Legendre function which is uniformly
Fréchet differentiable and bounded on bounded subset of E. Let C' be a nonempty closed and
convex subset of E. Let {T; : 1 <1i < N} be BSNE operators which satisfy F(T;) = F(T})
foreach1 <i< N andletT :=TyoTn_10---0oTy. IfN{F(T;):1<i< N} and F(T) are
nonempty, then T is also BSNE with F(T) = F(T).
The Bregman projection (see, [6]) with respect to f of x € int(domf) onto a nonempty,
closed and convex set C' C int(domf) is defined as the necessarily unique vector Projé(x) €
C', which satisfies

Dy (Projl(z),z) = inf{Ds(y,x) : y € C}. (13)
Let C' be a nonempty, closed, and convex subset of E. Let f : E — R be a Gateaux
differentiable and totally convex function and let € E. It is known from [12] that z =
Projéx if and only if

(Vf(z) = V[f(z),y —2) <0, Vy € C. (14)
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We also have,
Dy(y, Projl(z)) + Dy(Projl(z), ) < Dy(y,x), Vx € E,y € C. (15)

Proposition 2.1. Let f : E — R be a convex, Legendre and Gateauz differentiable function.
In addition, if f : E — (—o00;+00] is a proper lower semi-continuous function, then f* :
E* — (—o00,+00] is a proper weak* lower semi-continuous and convex function (see [18]).
Hence Vy is convex in the second variable. Thus, for all z € E,

N N
Df(Z,Vf*(ZtZVf(IZ)) < Ztin(z,xi). (16)

where {x;}N.| C E and {t;} C (0,1) with Zi\il t; = 1.

Lemma 2.6. ([21]). If f : E — R is uniformly Fréchet differentiable and bounded on
bounded subsets of E, then V f is uniformly continuous on bounded subsets of E from the
strong topology of E to the strong topology of E*.

Lemma 2.7. ([9]). The function f is totally convex on bounded sets if and only if it is
sequentially consistent.

Lemma 2.8. ([22]). Let f : E — R be a Gateauz differentiable and totally convex function.
If xg € E and the sequence {Dy(xy,x0) 52, is bounded, then the sequence {x,}5%; is also
bounded.

Lemma 2.9. ([25]). Let f : E — R be a Legendre function which is uniformly Fréchet
differentiable on bounded subsets of E. Let C be a nonempty, closed, and convex subset of
E and let T : C — C be a Bregman quasi-strictly pseudocontractive mapping with respect to
f. Then F(T) is closed and conver.

Lemma 2.10. ([25]). Let f : E — R be a Legendre function which is uniformly Fréchet
differentiable on bounded subsets of E. Let C be a nonempty, closed, and conver subset of E
and let T : C — C be a Bregman quasi-strictly pseudocontractive mapping with respect to f.
Then, for any x € C,p € F(T) and k € [0,1) the following holds:

Dy, To) € ——(Vf(z) = VF(Ta),x ).

3. Main Results

Theorem 3.1. Let C be a nonempty, closed and convexr subset of a reflexive real Banach
space E and Let f : E — R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E such that C C
int(domf). Let B: E — E* be a BISM mapping and A: E — 28" be a mazimal monotone
operator. Let T : C' — C be a closed and Bregman quasi-k-strict pseudo-contraction such
that ' = F(T) N F(Res{A o B/J\t) # 0. Let {x,} be the sequence generated iteratively as
follows.

zoeC = (Cy
Yn = V" (anVf(zn) + (1 —an)[(l = m)Vf(@n) + 1V f(Tzn)])
up = VBV ) + (1= BV f (Res 4 0 B (yn)) (a7)
Chy1 = {2€C,:Dy(2z,yn) + Dy(zp,un)
< %(Vf(%n) = Vf(Txn),vn —2) +(Vf(T2n) = Vf(un), zn — 2)}
Tp41 = Pc,,,7o,n 2> 0.
Let o, Bn and 7y, be sequences in (0, 1) such that iminf(1—a, )y, > 0 and liminf(1-3,) >

n—oo n—o0

0. Then {x,} converges strongly to x* = Plfxg.
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Before we start the proof of the theorem, let us make the following important observation: It
is known that ResiA and B{ are BSNE operators and since F(Res{A)ﬂF(Bf) = F(Res{Ao
B{) = (A+ B)~'0 # 0, it then follows from Lemma 2.5 that Res{A o B{ is BSNE and
F(Res] , o B]) = F(Res] , o B]). Moreover, F(Res{ , o B]) = (A + B)~'0.

Proof. We partition the proof into 4 steps.

Step 1. I' C C,, for all n > 0.

It has been shown that F/(T') is closed and convex (see Lemma 2.9). Moreover, Res{ A OB£ is
a Bregman strongly nonexpansive mapping and therefore F (Res{ 40B { ) is closed and convex
(see, [19]). Hence, we have that T" is nonempty, closed and convex and that Plf is well defined.

Next we show that C,, is closed and convex V n > 0. From the statement of Theorem 3.1,
we have that Cy = C is closed and convex. Now suppose that C; is closed and convex for
some j > 1. Let z € C;11, then

Dy(e,5) + Dy(egoug) < Dylaag) + 10wV flag) ~ VF(Tg) 2~ 2)
(VS (Tx;) = V), 2; — 2), (18)

which is the same as

2f(xj) = fyj) — f(ui) < AV f(ug), x5 —uy) +(Vf(ys). 2 —y) — (Vflx)), 2 — z5)

+g(Vf(xj) —Vf(Tz;),z; — z)
HVf(Txj) = V(uj),zj —2). (19)

Therefore, Cj41 is closed and convex and then we conclude that C,, is closed and convex for
all n > 0.

We now show that I' C C,, V n > 0. Obviously, I' C Cy = C. Assume that I' C C; for some
j € N. Let z € T, then from (17), we have

Dy(z,u;) = Dy(2,Vf*(B;Vf(y;) + (1 — B;)Vf(Resi, o B{(y;)))
< BiDy(z,y;) + (1= B;)Ds(2, Res{ 4 o B (y;))
< BiDs(z,y;) + (1 = B;)Ds(z,y;)
= Dg(z,y;) (20)
Also,
Di(z,y5) = Dp(2, VI (a;Vf(x) + (1 —a)[(1=v)Vf(z;) +vVI(Tz;)]))
< a;Dg(z,xj) + (1 — ay)(1 —v5) Dy (2, 25) + (1 — o)y Dy (2, Tx;)
< a;Dy(z,25) + (1 — aj)(1 — 7)) Dy(z,25) + (1 — a;)v; Dy (2, x5)
+(1 — a;)vkDs(xj, Tz;)
< aij(z,xj) + k‘Df(xj,Ta?j)
< 0iDp(z ) + —(Vf(;) — VI (Tay), 05— 7). (21)

1—-k
Moreover, from the three point identity (3), we have

Dg(z,u;) = Dy(z,2;) + Dp(xj,uy) +(Vfzg) — V(uy), 2 — x5). (22)
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From (21) and (22), we obtain that

Dy(xj,uj) = Dy(z,u;) = Dy(z,25) + (Vf(z;) = VI(u),z; — 2)
< Dg(z,y5) — Dy(z,25) + (Vf(x;) = VI(uy), 2 — 2)
< Dylem) ~ Dylesay) + 1o (V) — VI (Tay), 25— 2)
HVf(z) = V(ug), x5 — 2)
< Df(zvxj)—Df(2>$j)+i<vf($j)—Vf(Tﬂfj)7ij—Z>

1—k
VI (Txj) = V() x5 —2). (23)
Therefore, from (21) and (23), we get that

k
Df(z7yj) +Df(xj7uj) < Df(zvxj) + %<Vf($j) - Vf(TQSj)ij _Z>

HVf(Tx;) = VI (us), x5 = 2). (24)
Hence z € Cj41 and thusI' € C,, V.n > 0.

Step 2. x, — z* for some z* € C.
Since x,, = Pénmo and x,41 = Pgnﬂmo € Cpy1 C Cp, then

Dy(zp,x0) < Dy(zpt1,%0), n > 1. (25)
Again from (15), we have
Df(Pénmo,xo)
Dy(z,20) — Dy(z, xn)
Dy (z,20). (26)
Combining (25) and (26), we conclude that nli_)rI;ODf(xn,mo) exists.

Df(xnv‘ro)

INIA

Furthermore, since x,, = Pcf,maco € C,, C Cy, for m > n, then from (15), we have

Di(zm, ) = Df(xm,Pénxo)
< Df(anvJCO) - Df(ngnImIo)
= Dys(xm,z0) — Ds(xn,x0) = 0,n,Mm — 00. (27)

Since f is totally convex on bounded subsets of E, then it follows from Lemma 2.7 that f
is sequentially consistent. Thus ||z, — .|| = 0,m,n — oo, which means that {x,} is a
Cauchy sequence. Since C is a closed subset of a reflexive Banach space E and {x,} is a
Cauchy sequence in C, then there exists z* € C such that z,, = z*,n — oo.

Step 3. z* € F(T) N F(Res!] , o B]).
Clearly, since {z,} is a Cauchy sequence, then

ILm D¢(zp41,2n) =0, (28)
which implies
H'Tn+1 - fn” - 07” — 0. (29)

Again, from x, 1 = Pénﬂsco € Cpy1, and (17), we have

1+k

Df(xn-i-lvyn)_‘_Df(mnyun) S Df(-rn-i-laxn) + m<vf(xn) _Vf(Txn)7xn _xn+1>

HVf(Tz,) — Vf(un),zn — pt1) = 0,n — 0. (30)
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Thus D¢(zp11,yn) = 0,n — o0 and Dy (zp,u,) — 0,n — 0.
Therefore, ||Zn+1 — Ynl|| = 0 and ||z, — uy|| — 0.

Furthermore,
lyn = 2nll < lyn = Znpall + [|2n41 — 20| = 0,n — o0, (31)
and
|1 = unll < [[2ni1 — 2|l + [J2n — unl| = 0,n — oo (32)
Also,
yn — unll < llyn = 2nll + llzn — un|| = 0,7 — occ. (33)

Since f is uniformly Fréchet differentiable and bounded on bounded subsets of F, we have
from Lemma 2.6 that V f is uniformly continuous on bounded subsets of E. Thus it follows
from (31) and (32) respectively that ||V f(y,) — Vf(z,)|| — 0 and ||V f(u,) — V f(yn)|| — 0.
But from (17), we have

oV f(zn) + (1= an)[(1 = m)Vf(@n) + 1V (Tzn)] = V(@)

llon(Vf(zn) = Vf(zn)) + (1 = an)[(1 = 1)V f(@n) + 1wV f(Tan) = Vf(2)]ll
(1= )| = ) (V) = V() + (VS (Tn) = 9 )|

= (1 0l VS (Ta) V)l (34)

which gives

= m”vﬂyn)—Vf(zn)H—>O,n—>oo. (35)

Similarly,

IV (un) = VIl = Q= B)lIVF(Resl, 0 B{(yn) — VI ya)ll, (36)

which implies

IV F(Resdy 0 B{(yn) — V(yn)ll = IV f(un) = VIya)ll = 0,n — 00, (37)

_
(1 - ﬁn)
Since V f* is uniformly norm-to-norm continuous on bounded subset of E*, we have from
(35) and (37) respectively that

nl;rréo | T2, — x,|| =0, (38)
and
- oo nfin ) 1l —
n11—>r1<;lo ||R€S)\A o B)\ (yn) yn” 0. (39)

It follows from (38), the fact that T is closed and x,, — z* that z* € F(T). Again, since
Res{ 4 © B{\ is a Bregman strongly nonexpansive mapping such that F(Res{\ 4 © B{) =
F(Resf\A o B{) and y, — x*, then it follows from (39) that z* € F(ResﬁA o Bf) Thus
a* € F(T) N F(Res] , o B)).
Step 4. z* = Plfajo.
From z,, = Pgnxo and (14), we have

(Vf(zo) = Vf(xn),xn—2) >0, Vz € C.

Thus since I' C C},, we have

<Vf(I0) - v.f(xn)vxn - p> >0, Vpel. (40)
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Taking limit as n — oo in (40), we obtain that
(Vf(zo) = Vf(z"),z" —p) >0, VpeT, (41)
which implies from the characterisation of the Bregman projection that z* = Plf 0. ]

Corollary 3.1. Let C be a nonempty, closed and convex subset of a reflexive real Banach
space E and Let f : E — R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convexr on bounded subsets of E such that C C
int(domf). Let A : E — 2" be a mazimal monotone operator and let T : C — C be a
closed and Bregman quasi-k-strict pseudo-contraction such that Ty = F(T) ﬂF(Res{A) #0.
Let {x,} be the sequence generated iteratively as follows.

o€ C =

Yn Vi (anVf(zn) + (1= an)[(1 =)V I(@n) + %V E(Tzn)])

un = VBV () + (1= Ba) VI (Res) 4 () (42)
Chat {z € C, : Dy(z,yn) + Dy(zpn,un)

Pg,  ,wo,n > 0.

A

Tn41
Let oy, B and 7y, be sequences in (0,1) such that liminf(1—ay,)y, > 0 and liminf(1-4,) >
n—o0 n—oo
0. Then {x,} converges strongly to x* = Plfl Zo.

Corollary 3.2. Let C be a nonempty, closed and convex subset of a reflexive real Banach
space E and Let f : E — R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally conver on bounded subsets of E such that C' C
int(domf). Let B : E — E* be a BISM mapping and let T : C — C be a closed and
Bregman quasi-k-strict pseudo-contraction such that To = F(T) N F(B{) # (. Let {x,} be
the sequence generated iteratively as follows.

o e C =

Yn = Vf (anVf(zy) + (1= )1 =7)Vf(zn) + mVf(Tz,)])

U = VBV () + (1= B V(B (vn)) (43)
Chnt1 {z €, : Dy(z,yn) + Dy(zpn,un)

)
TV f(@n) = V(Tzn), 20 — 2) + (Vf(Tan) = Vf(un), 20 — 2)}
Pe, ,,z0,m > 0.

IA -l

anrl
Let oy, By and 7y, be sequences in (0,1) such that liminf(1—ay,)y, > 0 and liminf(1-4,,) >
n— oo n—oo
0. Then {x,} converges strongly to x* = Pll;xo

Corollary 3.3. Let C be a nonempty, closed and convex subset of a reflexive real Banach
space E and Let f : E — R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E such that C C
int(domf). Let B : E — E* be a Bregman quasi-nonexpansive mapping and A : E — 2E" pe
a maximal monotone operator. Let T : C — C be a closed and Bregman quasi-nonerpansive
such that T's = F(T) N F(Res{A o Bf\c) # (0. Let {x,,} be the sequence generated iteratively
as follows.

e C = (Cy
Yn = V[ Vf(zn) + (1 —an)[l = m)Vf(@n) + 1V f(Tzn)])
wp = VBV () + (1= Ba)V(Res] 4 0 B{(yn)) (44)
Chnt1 = {z2€C,:Ds(z,yn) + Dy(Tn,un)
< (Vf(zp) =Vf(Txn),z, — 2) + (Vf(Txy) — Vf(un),zn —2)}
Tpt1 = Pg,,,w0,n>0.
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Let o, Br and 7y, be sequences in (0,1) such that liminf(1—a, )y, > 0 and liminf(1—23,) >

n—oo n—oo

0. Then {z,} converges strongly to x* = Plfsxo

4. Conclusion

In a real Hilbert space H, A mapping T : C — C, (C is a closed convex subset of H) is said
to be k—demicontractive, if 3k € [0,1) and F(T) # 0 such that

1Tz = pl|* < |lz = pl*| + kllo = Tz||*,Va € H,p € F(T). (45)

Moreover, if we take f = 3||./|> in a real Hilbert space, we have that Vf = I and
Dy(z,y) = 3|z — y||?, where I is the identity operator of H. Thus, it is easy to see that the
Bregman-k-strictly pseudocontractive mapping is more general than the k-demicontractive
mappings in real Hilbert space. Also, we observe that Resf\cA = (I +XA)~! = Jy4 and
B{ = (I — AB), which means that Res{A o Bf\c becomes the resolvent operator Jya(I — AA)
popularly used in approximating VIP (4) for a maximal monotone operator A and an a-
inverse strongly monotone operator B in real Hilbert spaces. Hence our result in this paper
extends the results on finding common solutions of VIP (4) for two operators and fixed
point problems for demicontractive mappings(also quasi nonexpansive mappings) from real
Hilbert space to real reflexive Banach space. We note here that the BISM operator is 1-
inverse strongly monotone in Hilbert space.
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