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COVARIANCE BASED MIMO RADAR BEAMFORMING FOR 

PATTERNS WITH DEEP NULLS 

Tohid TONKABONI1, Yaser NOROUZI2, Amirsadegh ROSHANZAMIR3  

Multiple Input-Multiple Output radar is an emerging technology and has 

exclusive advantages and flexibilities. In this paper, we propose a method for beam-

pattern synthesis in order to construct a desired pattern which has specific nulls. It is 

shown that arbitrary cross correlation matrix (R) can be approximated to achieve a 

desired beam-pattern with a null in a specific direction. Besides constrained convex 

optimization problem is investigated and it is shown that reconstructed pattern by this 

matrix requires null at arbitrary angle. Penalty function and barrier methods are 

applied to solve this constrained convex optimization problem. Finally, power and 

advantages of our method for beam-pattern synthesizing has been depicted through 

simulation results.  

Keywords: MIMO Radar Beamforming, Convex Optimization, Penalty Function 

Method, Barrier Method 

1. Introduction 

Multiple input-multiple output radars have attracted researcher’s attention 

in recent years. These radars have been characterized with multi antennas for 

transmitting different waveforms and receiving reflected signals. MIMO radars like 

MIMO communications proposed new approaches in signal processing. Such 

structures have good potentials in fading mitigation, resolution improvement and 

jamming and deception suppression [1]. In this type of radars unlike phased array 

counterpart , signals can be chosen so that the power density near arbitrary target is 

maximized or reflected signal cross correlation is minimized[2, 3]. MIMO radars 

ability causes resolution improvement [3, 4], high sensitivity in low velocity target 

detection [5] and  increasing parameter identifiability [6]. Generally MIMO radars 

are classified into two main categories of MIMO radars with widely separated 

antennas[3] and MIMO radars with collocated antennas[7]. In widely separated 

antenna MIMO radars, transmitters are so far such that each one shows different 

aspect of a target. This Specification of MIMO radars increases spatial diversity [8, 

9]. In the case of collocated antenna MIMO radars, the transmitters are so close to 
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each other that special aspect of a desired target can be shown. High ability in 

interference suppression [10, 11], improvement of parameter identifiability and 

flexibility increasing in waveform designation are some properties of this kind of 

radars [12]. Generally, MIMO radars waveform designing can be divided into three 

main classes. Covariance based methods [13, 14], ambiguity function based 

methods [15, 16] and extended targets based methods [17, 18] are these three 

classes. In covariance based approaches signal cross correlation matrix is 

considered instead of entire waveform. In [15, 16] signal cross correlation matrix 

is designed such that transmitted power is distributed in desired range of angles. In 

addition in [19] cross correlation matrix is designed to control spatial power. In 

contrast with the covariance based approaches, in the second method, the entire 

signal is optimized. These methods try to find a set of signals which construct a 

desired ambiguity function. They are more complicated than covariance based 

methods. Angular resolution, Doppler and range of radar are described with radar 

ambiguity function [20]. Extended target based methods like latter methods use 

ambiguity function unless they estimate and detect extended targets. Another way 

for transmit beampattern designation for MIMO radar is minimizing the radiation 

powers of antenna in the selected directions with optimization variables constrained 

to the waveform phases [21]. Also, the eigen decomposition method is applied to 

calculate the subarray beamforming weights according to optimized correlation 

matrix [22]. In this paper, we focus on covariance based method for waveform 

designing. A convex optimization problem is selected for finding a suitable cross 

correlation matrix. This optimization has two constraints which are equality and 

inequality. This problem is solved with penalty function and barrier methods. In 

section 2 we formulate our problem and show how it is possible to make a beam 

pattern for MIMO radar. Section 3 discusses pattern synthesis and our main 

problem which solved by penalty function and barrier methods. In section 4 

simulation results are demonstrated and performance of our novel method is 

presented while conclusions are brought after that. 

2. Problem Formulation 

Consider a collection of N transmitters which are located at known 

coordinate 1 2 3( , , ) ( , , )i i i ix x x x y z x  as shown in  

Fig. 1. In this paper we use spherical coordinate in which system elevation 

  is the angle made by ν  with the equatorial x y  plane. Each T\R module is 

driven by a different signal with wavelength  .  Then the normalized power density 

( )P   which is the summation over all transmitted waveforms in watts per steradian 

(W/ster) is [12]: 

1
( ) ( ) ( )

4

H
P   


 a Ra  

(1) 
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In this quadratic form of normalized power density, R  is cross correlation matrix 

of transmitted signals. Note that electrical angle ( )k   and direction vector are 

defined as [12]:  

2
( ) sin( )k

k

z
  


  

(2) 
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kz  is distance between array elements. The normalized power density ( )P   is 

exactly the beam that we want to synthesis. Besides, power density units are watts 

per steradian which ensures that    
/2

2 P( ) cos( ) ( )
/2

d Tr N


   
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 

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Fig. 1. T\R modulus and spherical coordinate[12] 

 

By selection of optimum R, the desired pattern can be constructed, therefore an 

optimization problem should be derived such that optimum R is obtained. As stated 

in [12] the cost function used for this problem is : 
2

2 dJ ( ) P ( ) ( ) ( ) cos( )
H

d


     R a Ra  
(5) 

 

That is a weighted squared error metric and cos( )  is weighting function. It can be 

shown that optimizing (5) can be rewritten as a convex optimization problem. Using 

a single linear matrix inequality (LMI) R  can be written as the weighted sum of 

basis matrices kF and G [12]. Mentioned LMI is as follow: 
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Where 0X  indicates that X is positive semi definite. 
1 2, ,..., Nx x x  are 

components of coefficient vector which makes linear combination of basis 

matrices. Note that 
NG I . Dropping the first N basis matrices, vector space will 

be 
( 1)

1 2 ( 1)( , ,..., ) N N

N Nx x x 

 x and thus 
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1

0
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k k
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Therefore, the problem is the following squared error constrained optimization [12] 

: 
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(8) 

 

Barrier method has been proposed as a solution approach for this problem [12,23-

25]. Now suppose we want to force some deep nulls to our desired pattern. For 

example, 
0  is a desired angle. Therefore, we have  

0 0( ) ( ) ( ) ( )
H

H  x a F x a  (9) 

 

Therefore, there is a new optimization problem with equality and inequality 

constraints. Now we form an optimization problem as follow:  

2
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(10) 

 

Penalty function and barrier methods are employed jointly to solve this 

problem [23-25]. First, penalty function method is applied to convert problem to an 

inequality constraint one and then barrier method solves our optimization problem 

which had one inequality constraint.  

Fig. 2 shows a simple flow chart for analytic solution of problem proposed in (10). 
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Fig. 2. Flow chart of solving problem 

3. Solving problem  

Methods which use penalty function, transform a constrained problem into a 

single unconstrained problem or into a sequence of unconstrained problems. The 

constraints are placed into the objective function via a penalty parameter in order 

to penalize any violation of the constraints. For solving the problem proposed in 

(10), penalty function method should be used. We should minimize a cost function 

like 2 ( ) ( )J x x  instead of a complicated problem as (10). ( ) x  should be chosen 

so that 2 ( ) ( )J x x  becomes a convex function [23]. As we have proved 2 ( )J x  is 

a convex function [12], our attention must be focused on choosing an ( ) x  suitable 

function so that cost the function remains convex. Since there are two constraints, 

( ) x is as follow: 

( ) ( ( )) ( ( ))H   x F x x  (11) 

 

Note that   and   should have the following conditions [23]: 

( ) 0 0 ( ) 0 0

( ) 0 0 ( ) 0 0

y y and y y

y y and y y

 

 

   

   
 

(12) 

 

Generally, a proper penalty function must incur a positive penalty for infeasible 

points and no penalty for feasible points. Applying constraints mentioned in (12) 

make 2 ( ) ( )J x x  a convex function. For this problem, we have chosen   and   

as follows: 
4
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Therefore equation (10) transforms to: 

2min J ( ) ( ( ( )) (H( )))   R x F x x  (14) 

 

Note that, since ( )H x  is a scalar so ( ( ))H x is scalar. ( )F x  is a matrix then ( ( )) F x  

will be a matrix. Solving this problem by rewriting (14) results to: 
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2 3min {J ( ) (H( )} ( ( ( )) J ( ) ( ( ( ))      R x x F x x F x  (15) 

 

Now for explaining novelty of our work, by comparing (15) with a standard 

optimization problem which is solved in (8), a new objective function and constraint 

can be defined as follows: 
2
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(16) 

 

In simple expression, an optimization problem with an objective function and two 

constraints which are equality and inequality is transformed to a simpler 

optimization problem with another objective function which is inequality constraint 

and can be solved by barrier method easily. In other words for constructing a pattern 

with some specific nulls one can minimize 2 ( ) ( ( ))J Hx x  instead of 2 ( )J x  and 

obtain a rather deep null with minimum error. This helps to synthesizing a pattern 

which is similar to a desired pattern and we can have our special nulls in special 

angles. To solve (16) using barrier method, a barrier function ( ( )) F x  is chosen that 

is strictly convex over the feasible region of the problem. We choose log-det 

function which is a well-known one [23-25]. We use here: 
1

log(det( ( ))) ( ) 0
( ( ))
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Gradient and Hessian of the barrier function can be derived as follow [24]: 

1
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
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Also, we have 

3 22
'

( ) ( ) ( ( )) ( ) ( ( )) ( )J J H J H H          x x x x x x  (20) 

 

2 2 2

3 2

2 2

2

( ) ( ) ( ( ))

' ''
( ) ( ( )) ( ) ( ( )) ( ) ( )

T

J J H

J H H H H H

 

 

    

      

x x x

x x x x x x

 
(21) 

 

Note that  
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and
2

( ) 0H x . Also, gradient and hessian of 2 ( )J x  can be calculated as follow [24]: 
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i d di
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According to proposed derivations, we summarize steps of solving (16) .Note that 

the barrier function is multiplied by a constant factor 1/ t  and as t  approaches to 

 , barrier term diminishes.  

• Select initial point 0x  and 0t   , 1   and 0  . 

• 
*

2( ) arg min ( ( )) ( ( )) (1 / ) ( ( ))t J H t   x F x x F x .  

•  Set and *

1 ( )i t x x . 

• Repeat step 2 using 1ix  as initial point until  

1 12 2( ( )) ( ( )) ( ( )) ( ( ))i i i iJ H J H      F x x F x x  

In fact, the cost function which we optimize in step 2 is described in (26).We did 

this optimization with Newton iterations because of its good convergence 

properties. 

3G( ) J ( ) (1 / ) ( ( ))t  x x F x  (26) 

 

Newton solutions for unconstraint optimization problem in step 2 are given by  
2 1

1 [ G( )] G( )k k k k



    x x x x  (27) 

 

where  
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In the implementation of our method selection of t  and   values must be 

cared. For large values of , number of Newton iterations may be more than usual 

for unconstraint optimization problem in step 2. Also, large t yields the fixed point 

solution in step2. The result of barrier method optimization is a vector as

1 2( , ,..., )Nx x xx . By using this vector components and their corresponding basis 

matrices, minimum mean square signal cross correlation matrix 
MSER can be 

constructed which optimally generates a pattern that is close to our desired beam 

pattern.  

4. Simulation Results 

The array configuration in all simulations of this paper, is uniform linear 

array (ULA) of 10N   sensors with / 2  sensor spacing.  

Fig. 3 shows a desired pattern which is constructed by cross correlation 

matrix of signals and has a null in 0 44.4  .  

 
 

Fig. 3. Synthesized pattern for one null 

 

Also, you can see reconstructed pattern and ability of this method for 

creation a deep null in this angle. 

We used minimum square error criterion as a cost function for our beam 

pattern matching problem. This criterion has a specific property in this kind of 

problems. 
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In this problem MSE cost function causes the synthesized pattern does not 

converge to our desired pattern rapidly. Because of this low rate of convergence, 

one can see additional nulls besides desired nulls. The most important subject for 

us is the location of the desired null which is so important in many applications. 

One of the abilities of our novel method is its capability for creation of multi 

nulls in a desired angle.  

Fig. 4 shows that this method has no restriction for beam-pattern 

synthesizing and creating multi nulls. This fact is true because of the characteristics 

of penalty function method. If one increase number of equality constraints in this 

optimization, objective function will have little changes while its convexity does 

not change. Just new objective function will be sum of new penalty functions. This 

robustness helps us in many applications which we need multi nulls in multi 

directions. 

 
Fig. 4. Synthesized pattern for four nulls 

 

Note that the nulls are located at 1 44.4  , 2 61.6  , 3 35.3    and 

4 51.5   . Now for showing the ability of the method, consider two nulls which 

are located at 1 29.32 
and 2 81.91 

. Suppose two angles are changing and 

they are to be close to each other. Performance of reconstructed pattern can be 

shown in  

 

 
 

Table 1. 
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Table 1 

Comparison Between MSE of Reconstructed Patterns Based on Proximity of Nulls 

First Null Angle Second Null Angle MSE 

29.32 81.91 0.1656 

33.37 77.86 0.0909 

37.41 73.82 0.0922 

41.46 69.77 0.1267 

45.50 65.73 0.1562 

49.55 61.68 0.1204 

53.59 57.64 0.1068 

 

If we admit minimum square error of reconstructed samples as a criterion 

for similarity of reconstructed pattern to desired pattern, according to  

 

 
 

Table 1 one can see reconstructed pattern has tolerable error and can provide 

us an appropriate pattern which is so rival for desired pattern. According to  

 

 
 

Table 1 when nulls are so close to each other the method can construct a 

pattern with tolerable minimum square error. This robustness can help us in special 

applications which we need exact nulls in our patterns and nulls are so close to each 

other. For more description suppose two nulls which are located in 1 53.75   and 

2 57.38  in Fig. 5 . 



Covariance Based MIMO Radar Beamforming for patterns with deep nulls               41 

-100 -80 -60 -40 -20 0 20 40 60 80 100
-60

-50

-40

-30

-20

-10

0

10

20

30

40

(degree)

P
(


)(
d

B
)

Optimized Beampattern(N=10 sensors)

 

Fig. 5 Reconstructed pattern for 1 53.75  and 2 57.38   

 

This Simulation verifies our proposed method ability for constructing nulls 

located in the neighborhood of each other. 
Now consider a different kind of pattern which is constructed with proposed 

method in [12] and proposed in this paper. We should attract your attention to this 

tip that our proposed method works for every pulse shape with a tolerable error that 

can be an advantage for this algorithm.   

Table 2 shows a comparison between three kinds of patterns. For all three 

categories of desired patterns our proposed method can make a better null in jammer 

angle and attenuation is so better than signal cross correlation method proposed in 

[12]. According to  

Table 2 the reconstructed pattern with our proposed method has better 

attenuation in specific nulls than signal cross correlation method proposed in [12]. 

Note that despite of better attenuation in null directions we have tolerable error 

which is little more than signal cross correlation method in [12]. Therefore, this 

proposed method has a tradeoff between minimum square error and attenuation in 

null directions.  
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Fig. 6 Comparing Initial Solution with Our Novel Solution 

 

We should attract your attention to this tip that the solution proposed in [12] 

attenuates 1dB in the null direction but our proposed method attenuates 23dB more 

than in the null direction. Fig. 6 shows this result. Note that MSE error for first 

experiment is 0.23 and for second one is 0.97. 

This ability of proposed method is effective in some applications such as 

deceptive jamming suppression. A deceptive jammer tries to record signals and 

broadcast them with delays. If a MIMO radar can transmit a signal with a deep null 

in jammer direction it can confront against jammer’s operation. 

 

 

 

 
 

Table 2 

Comparison of Signal Cross Correlation Method versus our Method 

Pulse SignalCCMethod  

MSE 

Proposed 

Method MSE 

Signal CC 

Method 

Attenuation(dB) 

Proposed 

Method 

Attenuation(dB) 

R Constructed 0.0112 0.0426 3.0344 32.3757 

Rectangular 3.2263 6.0502 0.2550 30.5725 

Triangular 0.2379 0.9787 1.0518 35.1049 
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5. Conclusion 

In this paper, a transmit beamforming method for multiple input-multiple 

output radar has been proposed where transmitted signals can have arbitrary cross 

correlation matrix R. R can be chosen so that a desired beam-pattern can be 

constructed. Our criterion for constructing desired pattern is minimum mean square 

and then we applied a constraint to our problem. This approach leads to interior-

point methods for a constrained convex optimization problem. We solved this 

optimization problem using penalty function and barrier method. Through the 

simulations it was shown that our proposed method can also synthesize every 

desired beam. One of the advantages of our method is its null depth and it can 

construct a pattern with tolerable error and deep null. Other capability of this 

method is its ability different waveforms and pulse shapes. This characteristic can 

be used in many applications in MIMO radar such as deceptive jamming 

suppression. Much work remains for this problem in choosing different cost 

functions.  
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