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MEAN RUPTURE DEGREE OF GRAPHS

Ersin ASLAN', Goksen BACAK-TURAN?

The vulnerability shows the resistance of the network until communication
breakdown after the disruption of certain stations or communication links. We
introduce a new graph parameter, the mean rupture degree. Let G be a graph of
order p and S be a subset of V(G). The graph G—=S contains at least two components
and if each one of the components of G-S have orders p,, p,,...,pi, then

k2
m(G—S) = ?Ij—l?. Formally, the mean rupture degree of a graph G, denoted
i=1F1

mr(G), is defined as mr(G)=max{aw(G-S)—|S|-m(G-S): ScV(G), o(G—S)>1}
where a(G—S) denote the number of components.

In this paper, the mean rupture degree of some classes of graphs are
obtained and the relations between mean rupture degree and other parameters are
determined.

Keywords: Graph Theory, Connectivity, Integrity, Mean integrity,
Rupture degree.

1. Introduction

Graphs are often used to model real world problems, such as problem in a
communication network. In a communication network, the vulnerability measures
the resistance of the network to disruption of operation after the failure of certain
stations or communication links. The analysis of vulnerability in networks
generally involves some questions about how the underlying graph is connected.
When some vertices of a graph are deleted, one wants to know whether the
remaining graph is still connected. Moreover if the graph is disconnected, the
determination of the number of its components or their orders (the number of
vertices of components) is useful. To measure the vulnerability we have some
parameters which are connectivity, integrity [2], mean integrity [5], rupture
degree [12].

Terminology and notation not defined in this paper can be found in [4]. Let
G be a finite simple graph with vertex set V(G) and edge set £(G).

The integrity of a graph G, I/(G), is defined to be
1(G)=min{|S|+ m(G—S): ScV(G) }
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where m(G—S) is maximum order of the components of G—S [2].

Let G be a graph of order p and S be a subset of V(G). When the elements
(vertices) of § are deleted from G, the remaining graph is denoted by G—S. The
graph G—S contains at least one component and if each one of the components of
z:{'(=1 piz

G—S have orders pj, ps,..., pr, then m(G —S) = SE
i=1 Vi

. Formally, the mean

integrity of a graph G, denoted J(G), is defined as
J(6)= min { | S|+ m(G-S)}.

It was introduced as a measure of graph vulnerability by Chartrand, Kapoor,
McKee and Oellermann [5].

The rupture degree of a noncomplete connected graph G is defined to be

H(G)=max{a(G=S8)~|S|- m(G=S): SCN(G), AG—5)>1}
where @& G—S) denote the number of components and m(G—S) denote the order of
a largest component in G—S [12].

We now introduce a new stability measure. The mean rupture degree is very
similar to rupture degree in that vertices are deleted and the number of remaining
connected subnetworks. However instead of looking only at size of the largest
remaining component, mean rupture degree takes into account sizes of all
remaining components, replacing the size of the largest component with the
weighted average of all components.

Let G be a graph of order p and S be a subset of V(G). The graph G—S
contains at least two components and if each one of the components of G—S have

k 2
orders p;, pa,..., pr, then m(G — S) = ?;—1? . Formally, the mean rupture degree
i=1Pi
of a graph G, denoted mr(G), is defined as
mr(G)=max{a(G—S)—|S|—- m(G—S): ScV(G), a G—S)>1}
where aXG—S) denote the number of components. We see that, mr(K,)=1-n. A
set SCV(G), is said to be the mr-set of G, if mr(G)= aG—S)—|S|— m(G-S).

Let G, and G, be graphs. Now one can ask the following question: Is the
mean rupture degree a suitable measure of stability? In other words, does the
mean rupture degree distinguish between G, and G,?

We can find that many examples of graphs which suggest that mr(G) is a
suitable measure of stability in that it is able to distinguish between graphs. For
example, consider the graphs in Fig. 1.

Using the results from Table 1, we have r(G;) =r(G3) =0 and I(G,) =
1(G3) = 4. Hence, the integrity and rupture degree does not distunguish between
graphs G; and G; but mr(G,) # mr(G;) and the mean rupture degree distinguish
between graphs G; and Gs. In other words, the mean rupture degree takes into
account what remains after the graph has been disconnected. So the mean rupture
degree gives a better result than the integrity and the rupture degree.
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Similarly,

J(G1) =](Gz) = 4

X b s

Fig. 1. We also give the table for stability parameters for graphs in Fig. 1 (see Table I)

Table 1.
1 ] r mr
G, 4 4 0 0
G, 4 4 -1 -1
G 4 3,56 0 0,44

i.e., the mean integrity does not distunguish between graphs G; and G,. But the
mean rupture degree distinguish between graphs G; and G,, while mr(G;) #
mr(G,).

The comparison of mean rupture degree to integrity, mean integrity and
rupture degree of graphs G;, G, and G5 indicates that the mean rupture degree can
be a useful measure of graph stability. Therefore the mean rupture degree gives
us more knowledge about the network to disruption.

2. Mean rupture degree of several classes of graphs

In this section, we consider the mean rupture degree of some graphs.
Theorem 2.1. For n>3, then,

0,if nis odd,
mr(P,) = -4
—— ,if nis even.

Proof. Let S be a cut set of P, and |S|= 7. We have the following two cases,
depending on n.
Case 1. We consider the case when n is odd. Removing r vertices from P, leaves

. n—r : n—r
r+1 components and these components must be size of [ J or of size [ | —‘ .
r+ r+
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el s
Therefore, if < nT_l, then &(P,—S) < r+1 and m (P,—S)> r+1 r+l1

Hence,

r+1 | r

2 2
n—r n—r
L 4 J
oAP,~S) ~|S|-A(P,~S)< r+l-r- -
—-r

2 r 2
n—r n—r
s +
{F+1J r+lw

n—r

oAP,—S) —| S| - mP,~S) < 1-

. . . n—1
the function f{r) takes its maximum value at » = N and we get

oP,—S) —| S| - m(P,~S) < 1-1=0. (1)

. . * * n—1
It is easy to see that there is a cut set S such that |s"| = > then

a(P,— S*) . ;1 and m(P,— S*)=1. From the definition of mean rupture degree,
we have
mr(Py) > P8y — | 87| - (P87 =" _ ”2_1 ~1=0. (2)

Ifr> n7+1 , then @a(P,—S) < n—r and m(P,—S) > 1. Hence
AP—S) | S| - m(P,~S)<n—r—r—1=n—2r—1
the function f{r) takes its maximum value at » = nTH and we get

n+l

AP,—S) | S| - m(P—S)< n—2. |

o(P,~S) | S|-m P,~S)<-2 (3)
By (1), (2) and (3) we have mr(P,)=0.

Case 2. We consider the case when 7 is even. If 7< % —1, then & P,—S) <r+1 and

2 2
n—r n—r
r{ 1J { J
v+ r
F(P,—S)>

n—r

. Therefore,
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2 2
n—r n—r
”L 1 % 11
AP~S)~|S|-m (P~S)< re1-p- L LT
—-r

2 r 2
n—r n—r
r +
{F+1J r+1}

n—r

o(P,—S)—|s|-m@P,~S)<1-

. . : n
the function f{r) takes its maximum value at » = 5 —1 and we get

-4
n+2’

oP,~S) —| S| - m(P,~S) < 4)

It is easy to see that there is a cut set S" such that | s | = % —1then axP,— S*) = g

n+6

and m(P,— S")= . From the definition of mean rupture degree, we have

n+

n j_n+6: -4 5)

*. * *. n
mr(P,) > &(P,—S)—|S |-m(P,—S)=——-| —-1 .
(Pr) 2 X ) | | ( ) 2 (2 n+2 n+2
Ifr > g then @(P,—S) < n—r and M(P,—S) > 1. Hence
a)(Pn—S)—|S|—rTl(Pn—S)En—r—r—1=n—2r—1

. . : n
the function f{r) takes its maximum value at » = 5 and we get

AP,—S) | S| - M(P,—S) < n— 2%—1

o(P,~S)—|S|-m(P,~$) <1 (6)
By (4), (5) and (6) we have mr(Pn)=_T42. i
n

Theorem 2.2. For n>4, then,
n+5 £ is odd
— ,if nis odd,
mr(C,) = n+l °
-1 ,if niseven.

Proof. The proof is very similar to that of Theorem 2.1. I
Theorem 2.3. Let K,,, be a complete bipartite graph . Then,

m—n-—1ifn<m,
mr(Km_n) - {n —m-—1,if n>m.
Proof- Assume n <m. Let S be a cut set of K, , and | S| =r.
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If » < n, then we have o K,,,—S)=1. So it contradicts to the definition of
mean rupture degree.
If » > n, then oKy, ,—S) < m+ n—r and m(K,,,,—S) >1. Hence
AKpn—S) — | S| = (Ko n=S) < m+ n—r — r —1= m+ n—2r —1
the function f{r) takes its maximum value at r = n and we get
X Ky,n=S) — | S | = M(Ky,—=S) <m+n—2n—1
AKoni=S) = | S| = MK ,=S) < m=n—1.
It is easy to see that there is a cut set S" such that | s | = n then
X Kpp— S) =m and M(K,,,— S") =1. From the definition of mean rupture degree,
we have
mr(Km,n) > a)(Km,n_S) - | S | -m Km,n_S) =m—n— 1.
This implies that mr(K,, ,) = m— n— 1.
By symmetry, when n>m, mr(K,,,) = n— m— 1.
Finally, we have
m—-n—1ifn<m,
mr(Km'n) - {n -m-—1,ifn=m. I
It is obvious that we can give the following equlity for the mean rupture
degree of K .
e The mean rupture degree of the star K , is n—2.
The wheel graph with n spokes, W,, is the graph that consists of an n-cycle
and one additional vertex, say u, that is adjacent to all the vertices of the cycle. In
Figure 2, we display Ws.

Fig. 2. The wheel graph W,
Theorem 2.4. Let W, be a wheel graph of order n(>4). Then

2n+6

11 ,if nis odd,
mr(W,) =
(Wr) -2 ,if niseven.

Proof. The graph W, has a subgraph C, and K; .. Let S be a cut set of W,,. If ugS§,
then e W,—S)=1. So it contradicts to definition of mean rupture degree. If ues,
then we get o(W,—S) = C,. So we have

mr(Wy) = mr(C, ) —1. i
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The comet C,, to be the graph obtained by identifying one end of the path

P, with the center of the star K.

Theorem 25, Let C,, be a comet  graph
2ri+tr—r—t—>5 f tis odd
,if tisodd,
mr(C,,) = 2r+t+1

r—1 ,if tiseven.

Then,

Proof. Let S be a cut set of C;, and | S|= 5. We have the following two cases,

depending on ¢.
Case 1. We consider the case when ¢ is odd.
-1

If SST, then we have (C,—S)<s+r and m(C,,—S)

2 2 2
LRl 4D 427

So,

t+r—s
2 2 2
a’(C’r’_S)_|S|_m(cz,r—S)Ss+r—s _rlT+ (-1 +2
t+r—s
r17 4+ (s —D1* +2°

t+r—s

oAC,—S) — | S| - m(C,-8) < r -
. . * * - 1
It is easy to see that there is a cut set S such that |S"| = tT then

RS NEIPE

Cl)(Ct,r_ S*) = t—_l +7and TTL(C[’,_S*) = 2 = . From
2 t+r——
2
definition of mean rupture degree, we have
mr(CtJ) > C((C[,r_S*) - | S* - TT‘L(C[J—S*) =r _M
2r+t+1

Ifs >%, then i C;,—S) <r+t—sand m(C,,— S)=1. Hence
AC,—8) —| S| -m(C,/=S)<r+i—s—s—1=r+1-2s—1

. . : t—1
the function f{r) takes its maximum value at » = - +1 and we get

AC,i5) | S|~ (C,5) Sr+t—2.(%+1j—1
ACy=S) = | S| —m(C,,—S)<r—4

_ 2r2+tr-r—t-5

By (7), (8) and (9) we have mr(Ct,T) =~
Case 2. We consider the case when ¢ is even.

(7

the

®)

)
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Ifs S% , then we have o(C;,—S) < s+ rand m(C,,—S)>1. So,

xC,,—S) — | S | - mﬁC”_S) <st+r—s-1
AC,=S)—| S|-m(C,=S) < r 1. (10)

. . * * t
It is easy to see that there is a cut set S such that |s"| = Ethen

ACp— S =é+rand m(C,,— S)=1. From the definition of mean rupture

degree, we have

mr(Co) > (Co— S —| §"| - m(C,—S") = é +r —é—l -1 (1D

If s >é , then a)(Ct,r_S) <r+t—sand TTI.(C[,,— S) >1. Hence
AC,=S) = | S| = A(C,=S) <r+t—s5—s—1=r+1-25 -1

. . . t
the function f{r) takes its maximum value at » = 5 +1 and we get

AC,5) | s|-m(C,m5) < r+1- 2(% . 1j—1

AC,=S) ~| S| -m(C,,-$)<r -3 (12)
By (10), (11) and (12) we have mr(C,,)=r— 1. i

3. Relationships between mean rupture degree and other graph
parameters

In this section some lower and upper bounds are given for the mean

rupture degree of a graph using different graph parameters.
Theorem 3.1. Let G be a g-connected graph of order n. Then,

mr(G) <n—2q—1.
Proof. Let S be a cut set of graph G. Then we have |S|> q, AG—S) < n— g and
m(G=8)=1. So

o(G-8) - | |- (G—$) < n—g—¢-1.
mr(G) < n—2q-1. I

Theorem 3.2. Let G be a g-connected graph of order n and [ G) is the covering
number of G. If AG) =q, then mr(G) =n—2q—1.

Proof. Let S be a cut set of graph G. Then we have the following three cases,
depending on S.

Casel. If |S | < g, then we have o(G—S) =1. So it contradicts to definition of
mean rupture degree.
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Case2. If |S|= ¢, then we have (G—S) = n—AG) = a(G) and M(G-S) =1.
Therefore,
AG=S) ~| S|~ M(G-8) = n—q—¢-1
mr(G) =n—2q—1. (13)
Case3. If | S|> ¢, then M(G—S)>1 and { G—S) <n — g. So,
A(G-S) — | S| -M(G-S) < n—g—¢-1.
mr(G) <n—2q—1. (14)
The proof is completed by (13) and (14).
Theorem 3.3. Let G be a connected graph of order n and XG) be the minimum
degree of G. Then,
mr(G) <n—2&G) —1.
Proof. Let S be a cut set of graph G. Then we have |S | > XG), G=S) <n—AG)
and m(G—S)>1. So
AG-S) — | §| - M(G-S) < n-&KG) ~&G) —1.
mr(G) <n—24G) —1.
Theorem 3.4. Let G be a connected graph of order n and KG), a(G) is the
covering number and independent number of G respectively. Then,
mr(G) > A G) — AG)—1.
Proof. 1t is easy to see that there is a cut set S" such that |S"| =A(G) then
o(G—Sy=n—AG)=a(G) and M(G—S)=1. From the definition of mean rupture
degree, we have

mr(G) > o(G-S) —|S" |- m(G-S) > «G) —-AG)-1. |
Theorem 3.5. Let G be a graph of order n. Then mr(G) = n—3 iff A G) =1.
Proof. Let S be an mr-set of G. Since mr(G) = aG—S)— | S | - m(G—S) = n—3 by
the hypotesis, we have | S | =1, o(G—S) = n—1 and m(G—-S) = 1. (Otherwise, if
| S|=2, then G—S)= n—2 and M(G—S) = —1. But m(G—S) must be at least 1 for
every graph G — S). Then
m(G —S) = % =1 and so |p,~ |=1 for every i. That is, each one of
i=1F1

components of
G-S is isolated vertex. Hence S is a cover set and | S| =AG) =1.

On the other hand, If we remove only one vertex, then we have the isolated

2 2 2
vertices by A G)=1. Hence ao(G—S)=n—1, m(G—S)=M =1 and
I+1+...+1
|S| =1. Therefore,
mr(G)y=n—1-1-1=n-3. i
4. Conclusion

A network has often as considerable an impact on network's performance as
the edges or vertices themselves. Performance measures for the networks are
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essential to guide the designer in choosing an appropriate topology. In order to
measure the performance we are interested the following performance metrics:
1. The number of elements that are not functioning,
2. The number of the components of the remaining network,
3. The size of a largest remaining group within which mutual communication
can still occur.

Many graph-theoretical parameters have been used in the past to describe the
stability of communication networks. Most of these parameters do not take into
account what remains after the graph is disconnected. We can say that the
disruption is more successful if the disconnected network contains more
components, and is much more successful if, in addition, the components are
small. We can associate the cost with the number of vertices destroyed to obtain
small components and associate the benefit with the number of components
remaining after destruction.
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