U.P.B. Sci. Bull., Series D, Vol. 74, Iss. 2, 2012 ISSN 1454-2358

GEOMETRICAL AND OPERATIONAL CONSTRAINTS OF
AN ACKERMANN STEERING LINKAGE

Aurel P.STOICESCU'

In lucrare se analizeazad restrictiile geometrice §i functionale ale trapezului
de directie al automobilelor, folosindu-se sistematic Ilungimile raportate ale
elementelor acestuia. Se analizeaza in ce mdsurd functia de transmitere necesard a
mecanismului poate fi realizata folosind la sinteza mecanismului metoda dezvoltarii
in serie Taylor a acestei functii.

In the paper the geometrical and the operational constraints of an
Ackermann steering linkage are analyzed by systematic using of the normalized
lengths of the elements of the mechanism. One analyzes to what extent the necessary
transmission function of the mechanism can be carried out when the synthesis of the
mechanism is performed by method of the Taylor’s series expansion.

Keywords: automobile, Ackermann steering linkage, constraints, steering,
steering angle, vehicle

1. Introduction

The steering system of an automobile with the rigid steering axle (beam
and steering knuckles hinge-connected to the beam with king pins) comprises the
steering mechanism which is represented by the steering trapezium otherwise
known as Ackermann steering linkage. For the kinematical synthesis of an
Ackermann steering linkage analytical and graphical methods are used. In the
beginning of the automobile development graphical methods have been employed.
For the facility of design, on the basis of these methods, tables and diagrams have
been achieved as those by Lutz [1].

The analysis and synthesis of the Ackermann linkage have been tackled in
numerous papers. A comprehensive list of these works together with the essential
ideas and their concise conclusions written before 1977 are presented in
monograph [2]. In [3] the conditions in which the graphs of the transmission
function of the Ackermann steering linkage and the theoretical transmission
function corresponding to the correct steering condition have the same curvature
at origin has been investigated in connection with the synthesis of this
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mechanism. The approximated synthesis of an Ackermann steering linkage using
Taylor’s expansion has been tackled in [2] and again in [4].

In the present paper the geometrical and operational constraints of an
Ackermann steering linkage are minutely investigated using systematically
normalized lengths of its elements. In connection with this fact one analyzes to
what extent the transmission function of the Ackermann steering linkage may be
approximated by the method of Taylor’s series expansion in view of the synthesis
of this mechanism. In the paper we consider the planar Ackermann steering
linkage and the classical condition of correct steering of a vehicle given by the
Ackermann’s relation [2, 5]. In the most works, the mentioned relation is referred
to as Ackermann’s relation, but, curiously, in [1] it does not have a denomination.

2. Elements of geometry and kinematics of the Ackermann linkage

In the sketch of a four-bar mechanism shown in Fig. 1 the points A and D
are fixed on the motor vehicle.

Fig. 1 Geometrical elements of a four-bar mechanism

They represent the intersections of the king pin axes with the mechanism plane,
this being parallel to the ground (the king pin axes are perpendicular to the ground
plane). The elements 1 and 3 are the steering knuckle arms, and element 2 is the
tie-rod. For the present condition it is adequately to define the positioning
elements of the four-bar mechanism in the way shown in Fig.1. The lengths of the
elements 1, 2 and 3 are /}, /; and /3, respectively. The distance between A and D is
l4: it represents the king pin track denoted by E), also.

From triangle ABD we can write the relations

x—1)_h-l 9|
t = cotg—, y+u=mw—o, 1
4:2 j I+l 85 XHH ?1 (1)

from which it follows that

- L=l »
=———+arct —.cotg— | 2
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Applying the cosine theorem in triangles BAD and DBC one can determine the
angle 7. In asimilar way from triangles BAD and DBC one can calculate the angle
o. Further, one can determine the angles ¢, and ¢; using the relations

Q2 =T—X, p3=0+1. )
Putting the normalized lengths

M=014,0 = 14,23 =13/, 4)
taking into account that in the case of the steering trapezium A,=/1;, after
performing above described operations we obtain

1413 - 24 -1 -
@7 (¢pp) = arccos 42 160891 arctg( 1 -cotg(p—lj - M, &)
2/11\/1+/1%—2/1100s¢1 b +1 2 2
1+ 2&12 - /1% — 21 cos gy
24 \/1 + /1% — 241 cos gy

By projecting of the contour ABCD on the direction of AD after that on a
perpendicular direction on same direction one arrives the relationship:
A1 €Os@ + Ay cOs@y + Ay cosgy =1, (7

@3 (¢p;) = arccos

A -1 91, T
+arctg| ——-cotg— |+ ——. 6
g[AIH &) O

},1 sin Q1+ /12 sin ¥y — j‘l sin Q3 = 0. (8)
If the relations (7) and (8) are differentiated with respect to ¢;, then one obtains a
linear system of two equations with two unknowns (the transmission ratios)
iy =dgy /dpy, 31 =dyp3/dg.
Solving this system and performing some trigonometrically transformations one
arrives at the relations
A sinpy +g3) . sin(py —¢1)

: , i3] =— - )
Ay sin(py +@3) sin(p; +¢3)

i) =—

3. Geometrical and operational constraints for the Ackermann linkage

As is known, the Ackermann linkage may be situated either before or at
back of the front axle. Corresponding to the two cases one uses the following
denominations: leading Ackermann linkage and trailing Ackermann linkage.

3.1. Trailing Ackermann steering linkage

Schematically, the disposal of the trailing Ackermann steering linkage is
indicated in Fig.2.



6 Aurel P. Stoicescu

ﬂ B3 A
; A v :
; ,A 10 4 30 %}‘,ﬁ;

U y

Fig. 3. Trailing Ackermann steering linkage-geometrical elements

Supposing that the turning is negotiated to the left (v -motor vehicle velocity), the
outer wheel is turned by angle £, and the inner wheel is turned by angle £.
Inspecting the Fig. 2 one can write the relations:

Be =91 = 910> Bi =910 — 93> (10)
where @=@3 represent the values of ¢, and @3 when the motor vehicle is in a
straight motion. Elementary geometrical considerations yield

cospyg = cosgsg = (1= 1) /(24) . (11)
In the case of the trailing Ackermann linkage /,<l4=E,, so that 1,<1. The existence
condition of the Ackermann linkage is

0<1-24) <24, (4 #0). (12)

Applying the Grashof’s theorem or the variant expounded in [4] one readily
establishes that the trailing Ackermann linkage is double-rocker.

For a large turning angle of the outer wheel the Ackermann linkage may
arrive in critical position when the points B, C and D lie in a straight line. In this
situation the angle ¢, has the value ¢, Applying law cosines for the triangle
formed at mentioned position we obtain

1448 — (g +4p)?

cosgy; = 13
1l 2 (13)
Obviously, the following inequalities must be satisfied
20 <143 = (g +20)% <24, (3 > 0). (14)

The right inequality of (14) becomes after transformations
(12 + 1)(211 + j,z -1)>0.
Because A,+1>0, it results that 24,+4,-1>0, which coincides with the right
inequality of (12). The left inequality of (14) can be written as
(12 - 1)(211 + 12 + 1) <0.
Because A,-1<0, one deduces that 24;+A,+1>0, which is allways satisfied.

Therefore, if the existence conditions (12) for the Ackermann linkage are satisfied
then the inequalities (14) are satisfied.
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Obviously, it is necessary that allways ¢ <¢y;. Taking into account (10), it
follows that
P11 =910 < Bemax (15)
where ., represents the maximum required turning angle of the outer wheel (its
value corresponds to the minimum turning radius). Taking into account (11) and
(13), the relation (15) becomes
143 (4 +7n)? 17,

arccos — arccos
2/ 2/

2 B max - (16)

Obviously it is necessary that
1473 = (3 +1n)? 14
24 24
which, after transformations, becomes Ay(241+4,-1)>000124,+4,-1>0. The
preceding inequality coincides with the inequality associated with the existence
condition of the Ackermann linkage (without the equal sign because otherwise it
would mean that £,,,,=0).

For the bar mechanisms the motion transmitting can be readily achieved if
the pressure angle does not exceed certain admissible value [4]. The transmission
angle, which is complement of the pressure angle, can not be smaller than 20°-30°
in the case of an Ackermann linkage [3]. One can prove that the transmission
angle between the element 2 and the element 3 is given as

V23 = 02 +93. (17)
If 7 is the admissible value of the transmission angle and if we take into account
(5), (6), the first relation in (10) and the relation (17) then the condition of the
motion transmitting is written as

b

2 2 2
1+ 75 =24 cos(Bemax + #10) 1422 =4 =241 c0sBemax + ¢10)
arccos 5 +arccos ;
200\ 1+ 4 =241 c08(Bemax + P10) 2041+ 2 =241 08(Bemax + P10)
2, (08

The expression under root sign in (18) is allways positive. Indeed, from evident
inequality 1+4,>>24; it follows that 1+4,°>24,c08(Bommt@ro) since -
1<cos(Bomaxt@i0)<l. The numerators of the fractions from (18) are allways
positive. Indeed, from evident inequality cos(Bemat @10)<cos@io=(1-1)/(241) it
follows that : 1+4,%-241c08(Bamaxt @10)>Aa+A27>0, 142412 25>-221¢08(Bomaxt ¢10)>
2074 (1-22)>0, (LL1).
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Fig. 3. The graphical representation of the conditions (12), (16) and (18) for the trailing
Ackermann steering linkage : £,,,=35°, 5,=25°

For a given value of S,y the condition (18) is satisfied when A, and A,
are chosen so that the condition (16) without the equal sign is fulfilld. We can
prove that in this conditions the arguments of the functions arccos from (16) are
less than 1 (we readily verify that if in (16) the case of equality is considered the
mentioned arguments are equal to 1).

For given values of £, and y,, the conditions (12), (16) and (18) are
dependent on the normalized lengths 4; and A,. On the plotting plane (4;,4,) with
A1>0, 4,>0, the above mentioned conditions define the domains @, @y, and D,
respectively. Of course, the domain @, has boundary defined by a straight line.
Using a proper program in Mathematica®  the boundaries of the domains @, and
Dy have been constructed. They are shown in Fig. 3. The boundaries are depicted
by B, B, and Bg, respectively. It is found that ®sc®,c®y. One can prove that
the boundary of the domain defined in the first quadrant of the coordinate system
has a horizontal asymptote given by the equation A, =sin S, .. Therefore, the

normalized lengths of the trailing Ackermann linkage should theoretically fulfil
the conditions: Aj€[ Aie, ®), be[sinfemar, 1], where Aj¢ is a positive number
however small but finite. Also, one can prove that the boundary of the domain
defined by (18) in the first quadrant of the coordinate system has a horizontal
asymptote given by equation A,=Sinf,,.,/cosy,, so that A,€[d, ©),
A e[sinfomar/cosy,, 1]. Of course, the values of A; and A, should be chosen
according to design constraints.

3.2. Leading Ackermann steering linkage
Inspecting the Fig. 4 one can write

Be =010 01, Bi =03—010. (19)
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In this case 4,>1 and the existence condition of the trapezium is

1= 2y > =275,(4 # 0,7 >1) (20)
In time, the Ackermann linkage is a double crank mechanism. In critical position
the points B, C and D are collinear (the point C lies on the right side of the point
D). Alike as in the preceding case the expression of the limit angle is obtained as:

1+ 73 —(Jp —1)?

cosgy = 2, (21)
Taking into account the first relation (19) we obtain
1- 1y 148 —(hy — 1)?
arccos 7 —arccos 2 > o max- (22)
One can prove that the transmission angle is given by relation
723 == (9 +03). (23)
In view of the preceding relation the condition of motion transmitting is written as
ocs H72 20010 ~Femax) 1424 — 7 =241 €05010 —Femay)
21 \/ 1+ /1% —2/1 €08@10 ~Pemax) 24 \/ 1+ i% =241 c08@10 ~Pemax)
<T—-y, (29

As in the case of the trailing Ackermann linkage the imposed requirements on the
parameters 4; and A, relating to the relations (21) and (22) are associated with the
existence condition of the trapezium (the proofs is similar). In the same way one
can verify that the expression under sign roots in (24) is positive. To be fulfilled
the inequality (24), A4, and A, should satisfy the strict inequality (22). One can
prove that the moduli of the arguments of the functions arcos in (24) are less 1. If
one considers the equal sign in (22) then the mentioned arguments are 1 and -1
(the order may be inverse).

Following the same considerations as in the case of the trailing
Ackermann linkage, the graphs shown in Fig.5 are obtained. At the same time,
there are the domains @, ®p and Dp. Also, the boundaries of these domains are
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depicted by B, B and Bp, respectively. We can prove that the boundary of the
domain defined by (22) considering that the region marked by 4,>1 has an oblique
asymptote given by the equationl, =24; +c0sf, nax- Also, the boundary

defined by (24) has an oblique asymptote of which slope m satisfies the equation
arccos(0.5m) + arccos(l — O.sz) =m—y,. Itis found that A, should be less than a

certain specified value for a given A;. This condition is opposite to that of the
trailing Ackermann linkage.
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Fig. 5. The graphical representation of the conditions (20), (22) and (24) for the trailing
Ackermann steering linkage : fo=35°, 5,=25°

4. Analysis of the capability of an Ackermann steering linkage
to carry out the condition of correct steering

The condition of correct steering is written as [2, 5]:
cotgf, —cotgh; =E, /L, (25)

where L is the wheel base of the automobile. If it is supposed that £, is the input
quantity and /£ is output quantity then the relation (25) leads to the relation

_ 1gfe
Bi = arctg[l - (Ep /1) 128, ] . (26)

Taylor’s series expansion around the origin of the second part of the relation (26)
yields (obviously, £=0013=0)
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Bi=Be+(E,IL).B7 +(E,IL)*fa +[~(E, L)/3+(E, /L’ 1.8¢ +[~(E, /L)*

+(E, 1LY 1.2 +1(E, 1 L)Y2/45) - 2E , / L)* +(E, L)’ 1.8 + O[p] 1. (27)

If S is the value of f; determined by (26) and £, is the value of the same angle
determined by relation (27) when n terms are retained (n=2, 3, 4, 5, 6), then the
error committed by the relation (27) is defined so

e,=Pin =Pt 100191, 8
it
ey n —: 1.0f 7
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Fig. 6. The influence of the term number of Taylor’s series on the error

From the inspection of the numerical results highlighted by Fig.6 it is found that
the approximation with two terms is better than that with 3 and 4 terms for range
angles greater than 20°-35°( obviously, this angle is dependent on the ratio £,/L).
The retaining of 6 terms provides a high accuracy for the large values of the angle.

The series expansion of the function @3(¢)) is (obviously, @=@0):
2

1 doy 1 d?p 1 d3ps
93(91) =910 + —,—(601— P10)+ ——(¢1— 010)° —'—(601 010)° +
1! d 910 d(l)lo 3! d(l)lo
4
Ol(p1 —010) " |- (29)
The first derivative of the function ¢; is given by relation (9). Taking into account
that @0 ]¢0=0, from (9) it results

dpy _ | dpy __ A sin2pyo (30)

dpyg dpyg Ao singg
Using the expression of the first derivative we get
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d 2(0 sin( d .
29 k) [cos(es 12~ Dysin(ps +3) -
dq)l d(”l sin(g; +(P3) sin” (¢y +¢3) doy
d
~cos(py +93)sin(p ~9)( > 403 | ;"3 ) (31)
l 4|

In considerations on (30), after a succession of transformations, we arrive at the
relation

d? p
5= CO8P10 (2 cosgyg +1). (32)
dq)l 0 S @9 }“2
In view of (11) the preceding relation becomes
d? 1-2
493 _ 5 2 _ (33)

2
dply  agn4iF + 200 — 23 -1
In a similar way one proceeds for the third order derivative and the result is
written as

d? p p A
_523 =-2 i——§+2 3—21+i cos @y +iCOS2§010 +2 ; COSZA, (34)
dop; ZS s YRG! A X5 |sin” g
Finally, in consideration on (11) we get
e AT Rl g + 3)
2 2 24
doly  I3[-423+(-1+29)%]
Substituting ¢3(¢r) given by (29) into the second relation (10) and taking into
account the first relation (10), and (30), (32), (33), we arrive at the expression

1_12 2 2 ( 1+ﬂ,2)( 1+j,2 "r‘l
“Pe
2,52 3 21472
/12\/411 +75 +2/p —1 B4 + (14 2)°]

(335)

2 B3 + O[B4 1,(36)

Bin =Be +

where S is the angle achieved by the trailing Ackermann linkage for the inner
wheel. Comparing the relations (27) and (36) it is found that the linear terms are
the same. Therefore, the Ackermann linkage provides the condition of correct
steering to the squared terms (exclusively) of the turning angle S, regardless the
design characteristics. There is the ideal case when the expansions (27) and (36)
would be identical, which is impossible because only two independent parameters
are available (4; and A,). Therefore we may set the condition that the terms of 3,
and ﬂf be identical, namely :
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3 B4R +(-1+4)°]

L

3 2
1- 7, Ep 2 (Cl+h)(-l+h+4 _[Epj 37
L’ '

daJ42 + 23 427 —1

From system (37), 4; and A, might be determined, but, generally, this system has
no real positive solutions. To illustrate this, in Fig.3 the curves corresponding to
the two equations (37) are also shown. It is found that the curves do not intersect
into the domain which is of practical interest. Moreover, the curve for 3 degree
term which is located within the domain does not yield £,>35°. The condition for
the two degree term can be fulfilled but it does not assure the condition of the
motion transmitting.

In the case of the leading Ackermann linkage the relations (27)-(35)
remain valid. In consideration of (19) we get finally the expression

1- 2y ' 2_2'(—1+/12)(—1+/12+/1%
e
A2+ +2y -1 3 B (14 2)

where £, is the angle achieved by the leading Ackermann steering linkage for the
inner wheel. So we arrive at a system similar to (31) and the representation of the
associated curves is shown in Fig. 5. And in this case the system does not have
real positive solutions. The curve for two degree term is enough near to the limit
curve for the motion transmitting. The curve corresponding to the 3 degree term is
located into the admissible domain.

From the above results it follows that the graph of the transmission
function of the Ackermann steering linkage has at origin the same tangent as the
graph of the theoretical transmission function corresponding to the correct
steering condition. In [3] the conditions in which the two mentioned graphs have
the same curvature at origin has been investigated. The determination of the
second derivative of the transmission function has been carried out by the
acceleration method, which is more intricate than that presented here. The
obtained result has a form which differs from that given in this paper, but one can
prove that the proper result is not different (one can directly prove starting from
(32)). The above mentioned method cannot be applied for determination of the
third derivative, what explain probably the reason for which the question has not
been tackled.

The applied method for the approximate synthesis in [2, 4] is different
than that used in the present paper. In the implicit expression of the transmission
function the angle £, is substituted for the terms to third degree term of S from
the Taylor’s series expansion, after that a succession of approximations are made.
Further, [, and A, being chosen one determines ¢o. For example [4], for

Bit = Be - B2 +0B21, 39)
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E,/L=0.40 and 1,=0.30 the result is 4,=0.80. This result leads to S.n.=31°, which
is enough small.

Considering different values of E,/L we can conclude that, generally, the
approximate synthesis of the Ackermann linkage by the series expansion method
cannot carried out only to at the most the square outer turning angle.

5. Conclusions

The relations established in the paper allow defining the admissible
domains of the normalized lengths of the Ackermann steering linkage elements
corresponding to the critical position of the mechanism and the admissible
transmission angle. These domains are not dependent on the automobile
characteristics. The mentioned relations render evident the fact that the constraints
of the Ackermann steering linkage are hard enough. Also, these relations can be
straightway used to optimize the Ackermann steering linkage, which we shall do
in a next paper.

The synthesis of the Ackermann linkage using Taylor’s series expansion
has an important limitation because only the linear terms of the transmission
function expansion can be exactly reproduced by the mechanism.
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