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BENDING OF A EULER-BERNOULLI CRACKED BEAM 

USING NONLOCAL STRAIN GRADIENT THEORY 

Chao FU1, Xiao YANG2 

Based on nonlocal strain gradient theory, the bending behaviors of the 

cracked microbeams are studied. The expression of the higher-order bending 

moment is established, and the corresponding non-classical boundary conditions 

are obtained. Then, the general analytical expressions for the bending deformation 

of a simply-supported Euler-Bernoulli cracked microbeam subjected to a uniform 

load with two forms of boundary conditions are presented. Numerical results show 

that the influence of the material length scale parameter on the crack effect of the 

microbeam bending is of great significance, while that of the nonlocal parameter is 

not decisive.   

Keywords: nonlocal strain gradient theory; flexibility crack model; scale 

parameter; crack effect; higher-order boundary condition. 

1. Introduction 

Micro/nano-scale systems and devices are receiving extensive attention 

and widespread applications in many engineering fields [1,2]. Due to the 

uncertainty of experimental environment and expensive computational costs of 

numerical simulation, continuum mechanics theory is more appropriate to predict 

material behaviors of the small scaled structures [3]. However, local continuum 

theory has been verified inadequately to capture the size-dependent effect of the 

material properties, i.e., Young’s modulus and bending rigidity [4]. In order to 

overcome these deficiencies, various non-classical continuum models, such as 

nonlocal elasticity theory [5] and strain gradient theory [6-8], have been 

successfully developed and employed [9]. However, the nonlocal elasticity theory 

can only predict the softening effect, while the strain gradient model generally 

shows the stiffening effect. By comparing with these two different properties, Lim 

et al. [3] presented nonlocal strain gradient theory with two scale parameters, 

named as the nonlocal parameter and material length scale parameter.  

With the order increase of the differential governing equations in the non-

classical models, it is needed to pay more attention to the corresponding boundary 

conditions of the non-classical models [10]. Based on nonlocal strain gradient 
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theory, Li and Hu [11], Li et al. [12], and Lu et al. [13] established the equilibrium 

equations and corresponding boundary conditions of the beam using Hamilton 

principle, and analyzed the bending deformation, buckling and free vibration with 

the higher-order displacement boundary conditions. Xu et al. [10] presented the 

new variational-consistent boundary conditions by using the weighted residual 

method and developed the higher-order boundary conditions related to the 

classical stress resultants.  

Up to now, a lot of great achievements of the static and dynamic behaviors 

of the intact micro/nano-scale beam have been gained. Comparatively, only a few 

works have focused on the behaviors of the cracked micro/nano-scale beams. The 

classical analytical approach treats the cracked beam as a system of two intact 

segments connected by an equivalent massless spring (i.e. rotational spring [14], 

torsional spring [15], or extensional spring [16]) located at the cracked section. 

Additionally, the computational costs increase with the number of cracks, and this 

approach is mainly used to study the vibration of the size-dependent cracked 

beam. Recently, Donà et al. [17] presented an exact closed-form bending 

deformations of multi-cracked beams in small scale by employing a mixed 

stress/strain gradient model and the flexibility crack model with an equivalent 

rotational spring assumption. Yang et al. [18] derived a similar crack model with 

considering the discontinuity of the rotation, but this model is limited to the 

classical elasticity problems. Moreover, these works are mainly focused on the 

vibration analysis, and the study of the static bending behaviors of the cracked 

beams due to the size effect is still very limited. 

In this paper, the static bending behaviors of a cracked Euler-Bernoulli 

microbeam are investigated using nonlocal strain gradient theory and the 

flexibility crack model. The non-classical boundary conditions of the higher-order 

bending moment are derived first. Then, the general analytical expressions of the 

bending deformation of a simple-supported cracked microbeam are obtained with 

two forms of the boundary conditions. By some numerical examples, the 

influences of the nonlocal parameter and material length scale parameter, and the 

crack effect on the bending behaviors are examined in detail. 

2. Equilibrium equations and boundary conditions 

2.1. Nonlocal strain gradient theory 

Based on nonlocal strain gradient theory [3], the total stress xxt  on the 

cross-section of the Euler-Bernoulli beam is defined as  
(1).xx xx xxt  = −                                    (1) 

where   is the gradient symbol, for one-dimension problem, d dx = . xx  and 
(1)

xx  denote the classical stress and the higher-order stress, respectively.  
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Suppose that the proper transform conditions [5] are satisfied, the 

differential equations are presented as  
2 2

2 2 (1) 2

0 12 2
,   .

dd d
1 ( ) 1 ( )

d d d
xx

xx xx xxe a E e a El
x x x


  

   
=   

   
− = −      (2) 

where E  is the Young’s modulus, l  is the material length scale parameter 

introduced to determine the effect of higher-order strain gradient. a  is the internal 

characteristic length, such as granular distance and lattice parameter. 0e  and 1e  are 

the nonlocal parameters related to the classical strain and the higher-order strain 

gradient, respectively.  

By assuming 0 1e e e= = ， (2) is rewritten as  
2 2

2 2

2 2
.

d d
1 ( ) 1

d d
xx xxea t E l

x x


   
=   

   
− −             (3) 

Herein, the nonlocal parameter ea  and material length scale parameter l  

are two kinds of scale parameters to account for the size-dependent effect, 

respectively. 

2.2. Governing equations 

We consider a micro/nano-scale rectangular elastic beam with length L (x 

axis), width b  (y axis) and thickness h  (z axis), subjected to the distributed 

transverse load ( )q x . According to the hypothesis of Euler-Bernoulli beam 

theory, the displacements 1u , 2u  and 3u  along x, y and z directions, respectively, at 

a reference point ( , , )x y z  can be expressed as  

1 2 3 .
d ( )

( , , ) ,   ( , , ) 0,   ( , , ) ( )
d

w x
u x y z z u x y z u x y z w x

x
= − = =              (4) 

where ( )w x  denotes the transverse deflection of the beam’s axial line. 

The longitudinal strain ( , , )xx x y z  of the beam is given as  
2

2
.

d ( )
( , , ) ( )

d
xx

w x
x y z z z x

x
 = − = −                (5) 

where 2 2( ) d ( ) dx w x x =  is the axial line curvature of the deformed beam. 

The virtual strain energy of the size-dependent beam is given as  

( )(1)

2 2
(1)

2 20
0 00

.

d

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )d

xx xx xx xx
V

L L L
L

U V

w x w x M x M x
M x M x w x w x x

x x x x

    

   
     
     

    

= + 

   
= − − + −

   




  

   (6) 

where δ is the variational operator; The total bending moment ( )M x  and higher-

order bending moment (1) ( )M x  are defined as follows 
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(1) (1),   .( ) d ( ) dxx xx
A A

M x zt A M x z A= =                       (7) 

The virtual work of the external force is obtained as  

0
.( ) ( )d

L

W q x w x x =                                        (8) 

According to the principle of virtual work, i.e., 0W U − = , and by 

employing (6) and (8), the equilibrium equation and boundary conditions of a 

Euler-Bernoulli intact beam are given as follows 
2

2
.

d ( )
( ) 0

d

M x
q x

x
+ =                                            (9) 

d ( ) d ( )
0  or   ( ) 0,   ( ) 0    or   0.

d d

M x w x
w x M x

x x
 

 
 
 

= = = =        (10) 

2
(1)

2
.

d ( )
( ) 0  or  0

d

w x
M x

x

 
 
 

= =                              (11) 

where (10) and (11) are viewed as the classical boundary conditions and non-

classical boundary conditions, respectively [12,19]. 

By multiplying variable z on both sides of (3) and utilizing integration 

with respect to the cross section A, the bending moment with size effect can be 

obtained as  
22 2

2 2

02 2 2
.

d ( )d d
1 ( ) ( ) ( ) 1

d d d

w x
ea M x EI l

x x x

   
  

   
− = − −                   (12) 

where 0( )EI  is the flexural rigidity of the intact beam. 

2.3. Non-classical boundary condition 

 Generally, it is difficult to derive the explicit expression of the higher-

order bending moment (1) ( )M x . However, motivated by Li et al. [19], the explicit 

expression of the higher-order bending moment (1) ( )M x  and the corresponding 

non-classical boundary conditions are presented as follows. 

Substituting (5) into (2) leads to  
2 32 2

2 2 (1) 2

2 2 2 3
,   .

d ( ) d ( )d d
1 ( ) 1 ( )

d d d d
xx xx

w x w x
ea Ez ea El z

x x x x
 

   
   
   
− = − − = −        (13) 

Multiplying variable z on both sides of (1) and (13), respectively, and 

utilizing integration with respect to the cross section A， it gets  
(1)

(0) .
d ( )

( ) ( )
d

M x
M x M x

x
= −                            (14) 

2 32 2
2 (0) 2 (1) 2

0 02 2 2 3
,   .

d ( ) d ( )d d
1 ( ) ( ) ( ) 1 ( ) ( ) ( )

d d d d

w x w x
ea M x EI ea M x l EI

x x x x

   
   
   
− = − − = −   (15) 

where (0) ( )M x  is the lower-order bending moment defined as (0) ( ) dxx
A

M x z A=  . 

From (15), one gets  
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(0)
(1) 2

1 2 .
d ( )

( )
d

x ea x eaM x
M x l Ae A e

x
−= + +                        (16) 

Considering 1 2 0A A= =  as presented by Li et al. [19], (16) can be 

rewritten as  
(0)

(1) 2 .
d ( )

( )
d

M x
M x l

x
=                             (17) 

Substituting (17) into (14), one obtains  
2 (0) (0)

2 2
.

d ( ) ( ) ( )

d

M x M x M x

x l

−
=                          (18) 

Substituting (18) into the first equation of (15), it gets  
(0) 2

(0) 2

02 2
.

( ) ( ) d ( )
( ) ( ) ( )

d

M x M x w x
M x ea EI

l x

−
− = −                (19) 

Combining (9) and (12), the total bending moment ( )M x  is given as  
22

2 2

0 2 2
.

d ( )d
( ) ( ) ( ) ( ) 1

d d

w x
M x ea q x EI l

x x

 
 
 

= − − −               (20) 

It is verified that the expression of the bending moment derived by Li and Hu [20] 

is exactly identical to (20) when the kinetic energy and the second-order effect of 

the longitudinal deformation are neglected.  

Combining (17), (19) and (20), the expression of the lower-order bending 

moment and that of higher-order bending moment are obtained, respectively  
4 2 2 2 4

(0)

0 02 2 2 2 2 4
.

( ) ( ) d ( ) ( ) d ( )
( ) ( ) ( )

( ) d ( ) d

ea q x w x l ea w x
M x EI EI

ea l x ea l x
= − − +

− −
                 (21) 

3 2 4 4 2 5
(1) 2

0 03 2 2 2 2 5
.

d ( ) ( ) d ( ) ( ) d ( )
( ) ( ) ( )

d ( ) d ( ) d

w x l ea q x l ea w x
M x l EI EI

x ea l x ea l x
= − − +

− −
      (22) 

By referring to the way of the boundary condition choice as proposed by 

Li et al. [19] to study the longitudinal vibration of the nanobeam, (22) can be used 

to solve the beam bending problems as one possible non-classical boundary 

conditions. 

In the case of a simply supported beam with size effect, the boundary 

conditions at 0x =  and x L=  can be given in two forms, defined as Case I and 

Case II, respectively  

Case I: 
(1) .( ) 0,  ( ) 0,  ( ) 0w x M x M x= = =                        (23) 

Case II: 
2

2
.

d ( )
( ) 0,   ( ) 0,   0

d

w x
w x M x

x
= = =                        (24) 

The former which contains the non-classical boundary conditions (22) by 

incorporating the classical boundary conditions (10) is proposed in this present 
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paper, while the latter takes another non-classical boundary conditions as shown 

in the references [10,12,19]. 

3. Bending deformation of a simple-supported cracked beam 

In the following the bending of the cracked beam subjected to a uniform 

load 0( )q x Q=  will be solved. Assuming that cracks exist at the location 

( 1,2, , )ix x i N= =  and the cracks are always open. The flexibility crack model 

[18] is employed, and the equivalent flexural rigidity EQ( )EI  of the cracked beam 

can be expressed as  

1EQ 0

.
1 1 1

( )
( ) ( )

N

i

i i

x x
EI EI k


=

= + −                      (25) 

where ( )x  is the Dirac’s delta function, and ik  is the equivalent spring rigidity 

associated with the crack severity which should be determined by either ab initio 

studies or molecular dynamics calculations [14]. 

From (9), it gets  
[2]

1 2.( ) ( )M x q x C x C=− − −                        (26) 

in which 1C  and 2C  are the undetermined constants, and the function [ ]( )iq x is 

defined as  
[ ]

0 0
.( ) ( )d di

i

q x q x
 

 =                       (27) 

For a cracked beam, (12) should be revised as  
2 2 4

2 2

EQ2 2 4
.

d ( ) d ( ) d ( )
( ) ( ) ( )

d d d

M x w x w x
M x ea EI l

x x x

 
 
 

− = − −            (28) 

By employing (25), (26) and (28), one obtains  
2 4N

2 [2] 2

i 1 2 2 4
i 10 i

1 1
.

d ( ) d ( )
( ) ( ) ( ) ( )

( ) d d

w x w x
x x ea q x q x C x C l

EI k x x


=

   
     

  
+ − − − − = − − (29) 

Introducing the dimensionless variables and parameters, it gets  

1 22

3 2(1)
(1)* *0

2

0 0 0

, , ,

, .

, , , ,

d ( )
, ,   ,   ( )

( ) ( ) ( ) d

i

i

i

i

xw x h A l ea
w h A l l

L L L L L L L

Q L wML M L
M M Q

EI EI EI k

 


  



 


 








 = = = = = = =

= = = = =

         (30) 

(26) and (29) are converted into the dimensionless equations  
* *[2]

1 2.( )M Q C C =− − −                              (31) 
2 * *[2]2 * *

2 1 2

2 2 2
11 1

.
d ( ) ( )

1 ( )
d

N

i i

i

l Q Q C C

l l

   
  

 =

 
 
 

− − −
− = + −                (32) 

 With employing method of variation of constants, the general solution of 

(32) is derived as  
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1 1

2
* * 2 2

1 2 1 2 2 1

2N
2 * *i i i
2 1 i 2 i*

i 1 i 1 1

.

( )
2

1
sinh ( )

2

l lD e D e Q l l C C

l Q Q C C H
k l l

  
  

   
  

−

=

 
 
 

  
  

   

= + + − + + +

−
+ − − − −

         (33) 

where ( )H x  is the Heaviside function, 1D  and 2D  are the undetermined constants. 

Integrating (33) with respect to the dimensionless variable ξ twice, and 

utilizing the boundary conditions of (23), the dimensionless deflection and the 

rotation angle of a simple-supported cracked beam with the boundary conditions 

Case I are given as  

( )
( ) ( )

( )

( )

2 3 N
i i* * 2

2 i i

i 1

* 2 2

2 1

1 1 1

i i* 2 i
2

1 1

11
( ) 1

24 4 6 2

1 1 1
coth sinh cosh

2 2 2

1 1 1
cosh csch

2

i

i

Q Q l H

Q l l
l l l

Q l l
l l

  
     

 


  


=

−  
= − + + + − − + −      

   

         
+ − − − −          

          

−     −
+ +     

    



( )

N

1 1

i 1 1 1

i i
i 1

1 1

1
cosh sinh( )

1
cosh sinh .

l
l l

H l
l l



  
 

=

   
− −   

    

   − − 
+ − −    

   



          (34) 

( )
( ) ( ) ( )

( ) ( )

( )

3 4 N
i i* * * 2

2 i i i

i 1

*
2 2

2 1 1 1

1 1 1

i i* 2 i
2

1 1

1
( ) 1

24 12 24 2

1
coth cosh 1 sinh 1

2 2

1 1 1
cosh csch

2

i

i

w Q Q l H

Q
l l l l

l l l

Q l
l l

   
       

 
 

  


=

−  
= − + + + − − − −      

   

        
+ − − − − −        

         

−    −
+ +   

  



( )

N

1

i 1 1 1

i i
1 i 1

1 1

1
1 cosh cosh

1
sinh sinh .

l
l l

l H l
l l


 

  
  

=

      
− + −       

        

   − − 
+ − −    

   



(35) 

Similarly, the dimensionless deflection and rotation angle of a simple-

supported cracked beam with the boundary conditions Case II are presented as  

( )
( )

( )

( )
( )

3 2
* * 2

2

1

* 2 2

1 2 1

1 1

* 2

2

1 1 1

11
( ) 1

6 4 24 2

1 1 2 1
sinh sech

2 2 2

1 11
cosh cosh csch sinh

2

N
i i

i i i

i

i i i i

i i

Q Q l H

Q l l l
l l

Q l H
l l l l

  
     




    
  

=

 − 
 = − + + + − − −    

   

    −
+ − − +    

     

 −      − −
+ + − −       

      



1 1

.
N

i=

  
  
   



 

(36) 
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( )
( ) ( ) ( )

( )

( )
( )

4 3
* * * 2

2

1

2
* 2 2 2 2

1 2 1 1

1 1

* 2

1 2

1 1

1
( ) 1

24 12 24 2

1 2 1
cosh sech

2 2 2 2

1 1
sinh sinh csch

2

N
i i

i i i i

i

i i i

i i

w Q Q l H

Q l l l l
l l

Q l l H
l l

   
       

  

    
  

=

 − 
 = − + + + − − − −    

   

    −
+ − − + −    

     

 −    −
+ + − −     

    



1 1 1

1
sinh .

N
i

i l l



=

    −
    
     



 

(37) 

4. Numerical examples 

The geometric and material parameters of the rectangular microbeam [21] 

are given as: 17.6 μmh = , 2b h= , and 1.44 GPaE = . The length and two 

dimensionless scale parameters [3] are taken as: 20L h = , 10 0.2l   and 

20 0.2l  . In the following example, a simple-supported microbeam with a 

single open crack subjected to a uniform loads 0Q  is considered. The crack 

location, the equivalent spring rigidity associated with the crack severity [14], and 

the uniform load are given as: 1 2x L= , 1 2k =  and 
0 100 μNQ = . 

In order to verify the numerical results, the bending deflections of an intact 

beam without crack subjected to the uniform load are given in Figure 1, in which 

the dimensionless deflections of (35) and (37) with Case I and Case II, 

respectively, are compared with the results derived with Navier’s method [10]. It 

can be seen that the accuracy of the present solutions is verified to a high degree. 
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Fig. 1. Distributions of dimensionless deflection w*(ξ) of the intact beam 
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Fig. 2. Distributions of dimensionless deflection w*(ξ) of the cracked beam  
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Fig. 3. Distributions of rotation angle φ(ξ) of the cracked beam 

The dimensionless deflections *( )w   and rotation angles ( )   of the 

cracked beam with Case I and Case II, respectively, are presented in Figures 2 and 

3 for different parameters 1l  and 2l , in which the classical solutions are given by 

the bending expressions of the classical elasticity cracked beam [18]. It is found 

that the dimensionless rotation angles with these two different boundary 

conditions are exactly equal, and the differences of the dimensionless deflection 

between Case I and Case II is very small, which may be regarded as a proof to 

verify the correctness of the non-classical boundary conditions derived in this 

present paper.  

Moreover, one may observed that the distributions of the deflection and 

rotation angle of the cracked beam are rather smooth at the crack location. In 

other words, the phenomena of deflection cusp and jump of rotation angle existed 

in the classical elastic theory due to the stiffness varying at the crack location have 
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not appear at all. The possible reasons could be interpreted by taking the rotation 

angle solutions (36) of Case II as an example: it is clear that the last two terms of 

(36) not only reveal the influence of the equivalent spring flexibility on the 

rotation angles of the microbeam, but also play a decisive factor on whether the 

crack effect does work. When 20 0.2l   and 1 0.5 = , it is verified that 2

2l  is 

much less than ( )1 11 2 − ，which means that the nonlocal parameter 2l  plays a 

limited influence on the bending deformation at the crack location. Therefore, 

ignoring the influence of the nonlocal parameter 2l  (i.e., 2 =0l ), the last two terms 

of (36) represent the influences of the material length scale parameter 1l  and the 

classical elasticity theory on the bending deformation at the crack location, 

respectively. Obviously, if only the influence of the classical elastic theory is 

considered (i.e., 1 0l = ), a jumping phenomenon on the rotation angle curves at the 

crack location can be observed which indicates the crack effect is significant. 

While 1 0l  , it is proved that the signs of the rotation angle near the crack 

location from the last two terms of (36) are exactly the opposite, in other words, 

the material length scale parameter 1l  has a weakening effect on the rotation angle 

of the classical elastic theory. Therefore, no significant jumping phenomenon is 

observed. Similar explanations from (37) can also be used to illustrate whether the 

cusp phenomenon of the deflection curve appears.  
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Fig. 4. Distributions of rotation angle of the cracked beam when l1=l2≠0 

Fig. 4 shows the rotation angle of the cracked beam with two cases when 

1 2 0l l=  , respectively. It is found that in the vicinity of the crack the bending 

deformations of the nonlocal strain gradient theory are obviously different with 

those of the classical elastic theory, while away from the crack section, the 

distributions of these two theories are almost the same. Therefore, it is concluded 

that the size-dependent effect is more obvious in the vicinity of the crack. 
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Moreover, when 1 2 0l l= = , due to (29) is degenerated into the governing equation 

of the classical elastic cracked beam, the solutions (34)-(35) and (36)-(37) of the 

nonlocal strain gradient theory with Case I and Case II are degenerated into the 

same solutions of the classical elastic cracked beam. 

5. Conclusions 

Based on nonlocal strain gradient theory and the flexibility crack model, 

the bending deformation of a Euler-Bernoulli micro/nano-scale beam with an 

open crack is analyzed, and some main findings are listed as follows: (1) The 

bending behaviors of the nonlocal cracked beams in the vicinity of the crack are 

only dependent on the material length scale parameter and independent on the 

nonlocal parameter; (2) When the two scale parameters are equal to a non-zero 

value, the bending solutions of the cracked beam can’t be reduced to those of the 

classical one, and the differences between them indicate that the size effect on the 

bending deformation is more obvious in the vicinity of the crack. 
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