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BENDING OF A EULER-BERNOULLI CRACKED BEAM
USING NONLOCAL STRAIN GRADIENT THEORY

Chao FU?, Xiao YANG?

Based on nonlocal strain gradient theory, the bending behaviors of the
cracked microbeams are studied. The expression of the higher-order bending
moment is established, and the corresponding non-classical boundary conditions
are obtained. Then, the general analytical expressions for the bending deformation
of a simply-supported Euler-Bernoulli cracked microbeam subjected to a uniform
load with two forms of boundary conditions are presented. Numerical results show
that the influence of the material length scale parameter on the crack effect of the
microbeam bending is of great significance, while that of the nonlocal parameter is
not decisive.

Keywords: nonlocal strain gradient theory; flexibility crack model; scale
parameter; crack effect; higher-order boundary condition.

1. Introduction

Micro/nano-scale systems and devices are receiving extensive attention
and widespread applications in many engineering fields [1,2]. Due to the
uncertainty of experimental environment and expensive computational costs of
numerical simulation, continuum mechanics theory is more appropriate to predict
material behaviors of the small scaled structures [3]. However, local continuum
theory has been verified inadequately to capture the size-dependent effect of the
material properties, i.e., Young’s modulus and bending rigidity [4]. In order to
overcome these deficiencies, various non-classical continuum models, such as
nonlocal elasticity theory [5] and strain gradient theory [6-8], have been
successfully developed and employed [9]. However, the nonlocal elasticity theory
can only predict the softening effect, while the strain gradient model generally
shows the stiffening effect. By comparing with these two different properties, Lim
et al. [3] presented nonlocal strain gradient theory with two scale parameters,
named as the nonlocal parameter and material length scale parameter.

With the order increase of the differential governing equations in the non-
classical models, it is needed to pay more attention to the corresponding boundary
conditions of the non-classical models [10]. Based on nonlocal strain gradient
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theory, Li and Hu [11], Li et al. [12], and Lu et al. [13] established the equilibrium
equations and corresponding boundary conditions of the beam using Hamilton
principle, and analyzed the bending deformation, buckling and free vibration with
the higher-order displacement boundary conditions. Xu et al. [10] presented the
new variational-consistent boundary conditions by using the weighted residual
method and developed the higher-order boundary conditions related to the
classical stress resultants.

Up to now, a lot of great achievements of the static and dynamic behaviors
of the intact micro/nano-scale beam have been gained. Comparatively, only a few
works have focused on the behaviors of the cracked micro/nano-scale beams. The
classical analytical approach treats the cracked beam as a system of two intact
segments connected by an equivalent massless spring (i.e. rotational spring [14],
torsional spring [15], or extensional spring [16]) located at the cracked section.
Additionally, the computational costs increase with the number of cracks, and this
approach is mainly used to study the vibration of the size-dependent cracked
beam. Recently, Dona et al. [17] presented an exact closed-form bending
deformations of multi-cracked beams in small scale by employing a mixed
stress/strain gradient model and the flexibility crack model with an equivalent
rotational spring assumption. Yang et al. [18] derived a similar crack model with
considering the discontinuity of the rotation, but this model is limited to the
classical elasticity problems. Moreover, these works are mainly focused on the
vibration analysis, and the study of the static bending behaviors of the cracked
beams due to the size effect is still very limited.

In this paper, the static bending behaviors of a cracked Euler-Bernoulli
microbeam are investigated using nonlocal strain gradient theory and the
flexibility crack model. The non-classical boundary conditions of the higher-order
bending moment are derived first. Then, the general analytical expressions of the
bending deformation of a simple-supported cracked microbeam are obtained with
two forms of the boundary conditions. By some numerical examples, the
influences of the nonlocal parameter and material length scale parameter, and the
crack effect on the bending behaviors are examined in detail.

2. Equilibrium equations and boundary conditions
2.1. Nonlocal strain gradient theory

Based on nonlocal strain gradient theory [3], the total stress t, on the
cross-section of the Euler-Bernoulli beam is defined as
t =o,—Vol. 1)
where V is the gradient symbol, for one-dimension problem, V=d/dx. o, and
o denote the classical stress and the higher-order stress, respectively.



Bending of a Euler Bernoulli cracked beam using nonlocal strain gradient theory 5

Suppose that the proper transform conditions [5] are satisfied, the
differential equations are presented as
}am e ()

{1 (e,@)? 2}0 =Ee¢_, {1—(ela)2 ™

where E is the Young’s modulus, | is the material length scale parameter
introduced to determine the effect of higher-order strain gradient. a is the internal
characteristic length, such as granular distance and lattice parameter. e, and e, are
the nonlocal parameters related to the classical strain and the higher-order strain
gradient, respectively.

By assuming e, =¢, =e, (2)is rewritten as

{1 ey’ }t —E[ "zdd_;jgw @3)

Herein, the nonlocal parameter ea and material length scale parameter |
are two kinds of scale parameters to account for the size-dependent effect,
respectively.

2

2.2. Governing equations

We consider a micro/nano-scale rectangular elastic beam with length L (x
axis), width b (y axis) and thickness h (z axis), subjected to the distributed
transverse load q(x) . According to the hypothesis of Euler-Bernoulli beam

theory, the displacements u,, U, and U, along x, y and z directions, respectively, at
a reference point (x,y,z) can be expressed as

ux ¥, =220, 1,009,220, 1, (x,2) =w(x) (4)

where w(x) denotes the transverse deflection of the beam’s axial line.
The longitudinal strain ¢, (x,y,z) of the beam is given as

£y, =20 =750 ©

where y(x)=d?w(x)/dx? is the axial line curvature of the deformed beam.
The virtual strain energy of the size-dependent beam is given as
oU :IV(GXX5€XX +0oyV e, )dV

{ o (x )582w(x)} {M(Xwaw(x)} {(’N(x) 5w(x)}L_ J‘%X(X) S

OX
(6)
where ¢ is the variational operator; The total bending moment M (x) and higher-
order bending moment M®(x) are defined as follows

0
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M(x) =] zt,dA M®(x)=[ zoPdA @)
The virtual work of the external force is obtained as
OW = [ g(x)sw(x)dx (8)

According to the principle of virtual work, i.e., oW —-o6U =0, and by
employing (6) and (8), the equilibrium equation and boundary conditions of a
Euler-Bernoulli intact beam are given as follows

d*M (x) B
dxz + q(X) - 0 (9)
dM(x) _ _ _ dw(x) )
T_0 or Sw(x)=0, M(x)=0 or 5[dxj_0. (10)
M®(x)=0 or 5[‘12’;’((2)‘)]:0. (11)

where (10) and (11) are viewed as the classical boundary conditions and non-
classical boundary conditions, respectively [12,19].

By multiplying variable z on both sides of (3) and utilizing integration
with respect to the cross section A, the bending moment with size effect can be
obtained as

2 . 07 \d*'w(x)
{1 (ea) }M(x)_ (EI)O[l I dxz) v (12)

where (EI), is the flexural r|g|d|ty of the intact beam.

2.3. Non-classical boundary condition

Generally, it is difficult to derive the explicit expression of the higher-
order bending moment M®(x). However, motivated by Li et al. [19], the explicit
expression of the higher-order bending moment M®(x) and the corresponding

non-classical boundary conditions are presented as follows.
Substituting (5) into (2) leads to

{1—(ea)2dd—);}axxz &2 d(;N(ZX), {1—(ea)2§—;}a§>=—E|2zd2’¥((3x). (13)

Multiplying variable z on both sides of (1) and (13), respectively, and
utilizing integration with respect to the cross section A, it gets

M (x) =M O () — M2

dx
e M09 =0, Tp 1) (Moo e, Sg. )

where M(O) (x) is the lower-order bending moment defined as M @ (x) =fA20XXdA.

(14)

From (15), one gets
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M® (X) =1 + Alex/ea + Aze_x/ea. (16)

Considering A =A, =0 as presented by Li et al. [19], (16) can be
rewritten as

, AM O (x)
dx

, M ©(x)

M®(x)=I = (17)
Substituting (17) into (14), one obtains
d’M@(x) _ M (x)— M(x)
dx’ I° (18)
Substituting (18) into the first equation of (15), it gets
MO(x) - ey MHIMEI gy AW (19)
Combining (9) and (12), the total bendlng moment M (x) is given as
— (em)? . & |dw()
M ) =~(ea) a9 (N 11 |9 (20

It is verified that the expression of the bending moment derived by Li and Hu [20]
Is exactly identical to (20) when the kinetic energy and the second-order effect of
the longitudinal deformation are neglected.
Combining (17), (19) and (20), the expression of the lower-order bending
moment and that of higher-order bending moment are obtained, respectively
0 (y) - (ea)" q(X) d*w(x) . lz(ea)z d* W(X) 21
M@ (x) = (ea) - — (BN ey - > (ED—— (21)
O () — |2 daW(X)_ I’(ea)" da(x) , I*(eq)’ d°w(x)
O v = i I My e i EL G L v
By referring to the way of the boundary condition choice as proposed by
Li et al. [19] to study the longitudinal vibration of the nanobeam, (22) can be used
to solve the beam bending problems as one possible non-classical boundary
conditions.
In the case of a simply supported beam with size effect, the boundary
conditions at x=0 and x=L can be given in two forms, defined as Case | and
Case II, respectively

Case I:

w(x)=0, M(x)=0, M®(x)=0. (23)
Case IlI:

W(X) =0, M(x)=0, dz”(zx) 0. (24)

The former which contains the non-classical boundary conditions (22) by
incorporating the classical boundary conditions (10) is proposed in this present



8 Chao Fu, Xiao Yang

paper, while the latter takes another non-classical boundary conditions as shown
in the references [10,12,19].

3. Bending deformation of a simple-supported cracked beam

In the following the bending of the cracked beam subjected to a uniform
load q(x)=Q, will be solved. Assuming that cracks exist at the location
x=x (i=12,---,N) and the cracks are always open. The flexibility crack model
[18] is employed, and the equivalent flexural rigidity (El)g, of the cracked beam

can be expressed as
1

@ e, i ) )
where §(x) is the Dirac’s delta function, and k; is the equivalent spring rigidity
associated with the crack severity which should be determined by either ab initio
studies or molecular dynamics calculations [14].

From (9), it gets
M(x) =—0"(x) -Cx-C,. (26)
in which C, and C, are the undetermined constants, and the function g®(x) is
defined as

q"() = [ [ q()dE--dé. (27)
For a cracked beam, (12) should be revised as |
M () — (ea)* & . (X) —(E), {dz(;’)v((zx) e di;’;’(gx)}_ (28)

By employing (25), (26) and (28), one obtains

[(E|)0+Zk5(x X)J[(ea) () — g (x) ~C,x— C]_—[di;’;’((zx)—lzdz’;’(ﬁx)}.(29)
Introducing the dimensionless variables and parameters, it gets
w X X _h o A | _ea
Ut et "t At '1‘? =T )
._ ML pe_ MY QL dw' ()
e M e CTEn AT P9 e
(26) and (29) are converted into the dimensionless equations
M*(f)__ *[2]_C1§_Cz- (31)
2, % 120" -1 — _
e Y S B

With employing method of variation of constants, the general solution of
(32) is derived as



Bending of a Euler Bernoulli cracked beam using nonlocal strain gradient theory 9

2
2 (&)=De’t +D,e " +Q (If -2+ %} +C,+C¢

2 1 )
3860 -Q G -cs -, Laimn[ £ 5 HEz-4).

1
where H(x) is the Heaviside functlon, D, and D, are the undetermined constants.
Integrating (33) with respect to the dimensionless variable ¢ twice, and
utilizing the boundary conditions of (23), the dimensionless deflection and the
rotation angle of a simple-supported cracked beam with the boundary conditions
Case | are given as
S GO

#O)=Q [i—5—+5—]+zﬂq {,2
N ff
+Q" (13 —Il){z{coth[mljsmh —cosh . :I &- }

24 4 6

(34)
ol Bl
it amf)
W)= Q[Zi £ ;J iZN;,ﬂiQ*{lzz+(1_%)§}[(1—é)§-(§—é)“(§—é)]
+%*(|;_|f){| coth[zl,l]{cosh@ }—hsinhlfj—é(é—l)} -

2 e e e e B G B
+Ilsinh(§l_—1éj H(¢- ;)—gllsinh(‘l_l‘;j}

Similarly, the dimensionless deflection and rotation angle of a simple-
supported cracked beam with the boundary conditions Case Il are presented as

#o)- Q(é £ 24j > AQ {,2 4 }[1 &-H(E-5)]

i=1

+Q" (17 - If){é —% + |1sinh[1‘2|f‘f Jsech(zillﬂ
R e e e A e e Ty

(36)
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W (&)= Q(%—g 24}2/3@ {IZ ¢ g)ﬂ[(l—é)f—(ﬁ—é)H(5—&)]

i=1

+Q*(|5_|;)[|f_§+%2—|5003h(1 ijsech[ ﬂ
+§AQ*I{I§ +%Hsinh(§;—1§0 H(¢-&) —sinh(acsch&jsinh {1? ﬂ

(37)

4. Numerical examples

The geometric and material parameters of the rectangular microbeam [21]
are given as: h=176um, b=2h, and E=144GPa . The length and two

dimensionless scale parameters [3] are taken as: L/h=20, 0<l <0.2 and
0<l,<0.2. In the following example, a simple-supported microbeam with a
single open crack subjected to a uniform loads Q, is considered. The crack
location, the equivalent spring rigidity associated with the crack severity [14], and
the uniform load are given as: x =L/2, k =2 and Q, =100 uN.
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Fig. 1. Distributions of dimensionless deflection w*(¢) of the intact beam

In order to verify the numerical results, the bending deflections of an intact
beam without crack subjected to the uniform load are given in Figure 1, in which
the dimensionless deflections of (35) and (37) with Case | and Case I,
respectively, are compared with the results derived with Navier’s method [10]. It
can be seen that the accuracy of the present solutions is verified to a high degree.
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Fig. 2. Distributions of dimensionless deflection w*(&) of the cracked beam
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Fig. 3. Distributions of rotation angle ¢ (&) of the cracked beam

The dimensionless deflections w'(£) and rotation angles ¢(&) of the

cracked beam with Case | and Case I, respectively, are presented in Figures 2 and
3 for different parameters |, and |, , in which the classical solutions are given by

the bending expressions of the classical elasticity cracked beam [18]. It is found
that the dimensionless rotation angles with these two different boundary
conditions are exactly equal, and the differences of the dimensionless deflection
between Case | and Case Il is very small, which may be regarded as a proof to
verify the correctness of the non-classical boundary conditions derived in this
present paper.

Moreover, one may observed that the distributions of the deflection and
rotation angle of the cracked beam are rather smooth at the crack location. In
other words, the phenomena of deflection cusp and jump of rotation angle existed
in the classical elastic theory due to the stiffness varying at the crack location have
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not appear at all. The possible reasons could be interpreted by taking the rotation
angle solutions (36) of Case Il as an example: it is clear that the last two terms of
(36) not only reveal the influence of the equivalent spring flexibility on the
rotation angles of the microbeam, but also play a decisive factor on whether the
crack effect does work. When 0<1,<0.2 and & =0.5, it is verified that I is

much less than (1-&)& /2, which means that the nonlocal parameter |, plays a
limited influence on the bending deformation at the crack location. Therefore,
ignoring the influence of the nonlocal parameter I, (i.e., I,=0), the last two terms
of (36) represent the influences of the material length scale parameter |, and the

classical elasticity theory on the bending deformation at the crack location,
respectively. Obviously, if only the influence of the classical elastic theory is
considered (i.e., I, =0), a jumping phenomenon on the rotation angle curves at the
crack location can be observed which indicates the crack effect is significant.
While |, =0, it is proved that the signs of the rotation angle near the crack
location from the last two terms of (36) are exactly the opposite, in other words,
the material length scale parameter |, has a weakening effect on the rotation angle
of the classical elastic theory. Therefore, no significant jumping phenomenon is

observed. Similar explanations from (37) can also be used to illustrate whether the
cusp phenomenon of the deflection curve appears.
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Fig. 4. Distributions of rotation angle of the cracked beam when I1=1,#0

Fig. 4 shows the rotation angle of the cracked beam with two cases when
I =1, =0, respectively. It is found that in the vicinity of the crack the bending

deformations of the nonlocal strain gradient theory are obviously different with
those of the classical elastic theory, while away from the crack section, the
distributions of these two theories are almost the same. Therefore, it is concluded
that the size-dependent effect is more obvious in the vicinity of the crack.
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Moreover, when |, =1, =0, due to (29) is degenerated into the governing equation

of the classical elastic cracked beam, the solutions (34)-(35) and (36)-(37) of the
nonlocal strain gradient theory with Case | and Case Il are degenerated into the
same solutions of the classical elastic cracked beam.

5. Conclusions

Based on nonlocal strain gradient theory and the flexibility crack model,
the bending deformation of a Euler-Bernoulli micro/nano-scale beam with an
open crack is analyzed, and some main findings are listed as follows: (1) The
bending behaviors of the nonlocal cracked beams in the vicinity of the crack are
only dependent on the material length scale parameter and independent on the
nonlocal parameter; (2) When the two scale parameters are equal to a non-zero
value, the bending solutions of the cracked beam can’t be reduced to those of the
classical one, and the differences between them indicate that the size effect on the
bending deformation is more obvious in the vicinity of the crack.
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