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ANALYTICAL AND NUMERICAL STUDY OF THE 
STABILITY PHENOMENON OF A PUNCHING DIE 

Gabriel JIGA1, Daniel VLĂSCEANU2, Tiberiu ZAMBAL3 

In lucrarea de faţă este prezentat un studiu analitic destinat calculului 
forţei critice de flambaj şi numeric, cu ajutorul metodei elementelor finite, în 
vederea determinării stării de deformaţie din organul activ de ştanţare dintr-o 
matriţă combinată cu acţiune succesiv-simultană. Deoarece în timpul proceselor de 
deformare plastică la rece, elementele active sunt solicitate la sarcini ce variază 
periodic, fenomenul de oboseală a materialului poate grăbi distrugerea acestuia. 
Noutatea acestui articol rezidă în faptul că în nicio lucrare de specialitate nu există 
rezolvări explicite pentru barele cu secţiune variabilă în trepte şi cu condiţii de 
rezemare altele decât cele corespunzătoare cazurilor fundamentale.  

In this paper an analytical study is presented for the calculus of the critical 
buckling load as well as a numerically one, using the finite element method, for the 
determination of  strain state for the active body of a combined punching die with a 
successive-simultaneous action. Since during the cold forming processes the active 
elements are subjected to periodically varying loads, the phenomenon of fatigue of 
the material may hasten its damage. The novelty of this article is that in any 
specialty course there are no explicit solutions for bars with stepped variable 
sections and with bearing conditions other than those used for basic cases. 
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1. Introduction 

During manufacturing processes, the reliability study of the technological 
assets of molds and die bodies plays an important role in meeting contractual 
requirements as well as those related to the quality of products made by plastic 
deformation. Because of a poor design and lack of thorough checking, it is 
possible to affect the manufacturing process, through partial or total damage of 
the active punching body. 

The inertia of a constructive design can lead to a much simpler solution in 
terms of analytical calculations and execution (i.e., a punch of constant section), 
but with an increased risk of loss of elastic stability in exploitation. 
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For these reasons, the authors propose in this paper, an improved version 
of the constructive solution, leading to a better reliability of the manufacturing 
process. 

  

2. Analytical calculus of critical buckling load  

The character of the equilibrium is studied starting from Dirichlet 
principle: in stable equilibrium, the potential function has a minimum, whereas in 
an unstable condition, a maximum. In indifferent (neutral) equilibrium, the 
potential function, in all neighboring positions face to the analyzed one, is 
constant [1]. In the spirit of Dirichlet data definition, if one considers a 
conservative elastic system initially in equilibrium under the action of a set of 
forces, the system will leave the equilibrium state only if it is acted by a force 
which is external to the initially equilibrium system. Considering the total energy, 
E, induced into the system by a perturbing force, one can write the following 
balance equation under the conservation of energy law: 

constEEE PC =+=                                                            (1) 
where EC is the kinetic energy and EP the potential energy of the system. 
  

An increase in kinetic energy is accompanied by a decrease of potential 
energy and vice versa, in accordance with the law of energy conservation. If the 
system is initially in a equilibrium configuration with a minimum of potential 
energy, then the potential energy from the equation of conservation increases and 
in these conditions the kinetic energy due to the system motion must decrease. 
Thus, the displacement from the initial equilibrium state caused by a system 
disturbance with an external force will remain low leading to a stable equilibrium 
state. 

In case of beams with variable sections (Figure 1) – representing in fact 
the present application – the determination of the buckling load is not a simple 
problem.  

Starting from solutions based on established equations and boundary 
conditions (restraint conditions and continuity conditions) it will result the critical 
buckling load. This method is applicable only if the deflection occurs in the elastic 
domain [2], [3]. 
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Fig. 1. Draft of the punching die 

  

The differential equation of the curvilinear equilibrium shape is:  
 

FwEI −=
ρ
1                                                                (2) 

where:   
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                                                                   (3) 

represents the curvature of the bar. 
In Fig. 2 is presented a schematization of the bar, with the two different 

cross-sections. The bar is considered embedded at one extremity and simply 
supported at the other one. In this support a reaction force H will occur, the 
bending moments in sections defined by x1 and x2 being respectively [4]: 
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Fig. 2. Bar schematization  

Starting from the differential equation of the deformed median fiber 
written for the two intervals, it will result:  
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The two equations admit a solution form:  

( ) ( ) 11111111 cossin x
F
HxBxAw ++= αα                                             (8) 
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represent the moments of inertia for the two sections and E the Young modulus. 
By imposing boundary conditions, respectively: 
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- at x1 = 0 w1 = 0, at x2 = 40, w2 = 0 and 0
2

2 =
dx
dw

 as well as the condition of 

continuity: 

- at x1 = 12 and x2 = 0, w1 = w2 and 
2

2

1

1
dx
dw

dx
dw

=  , one could obtain: 

B1 = 0, respectively ( ) ( ) 05240cos40sin 2222 =++
F
HBA αα                  (12) 

( )112 12sin αAB =                                                     (13) 
From the condition of continuity in rotational angles 21 ϕϕ = , it results: 

( ) 22111 12cos ααα AA =                                                (14) 
By imposing the condition 02 =ϕ for x2 = 40, one could obtain: 

( ) ( ) 040sin40cos 222222 =+−
F
HBA αααα                              (15)   

From equations (10), (11), (12) it results: 
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Introducing the value of A1 obtained above in equation (11) it will result: 
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     (17) 
After simplification and taking into account that, 21 7928,10 αα =  the final form 
of the equation (14) will become: 

   
( ) ( ) ( )[ ] ( ) ( ) 040cos40sin5240sin40cos5251,1297928,10 222222 =−−−⋅ ααααααctg

  (18) 
This transcendental equation has several solutions, computed with Newton-
Raphson method. The nearest value to 0 obtained was ][1011,12 3

1 rad−⋅≅α .  
For this value, the corresponding critical buckling force will be:  

NEIFcr 765312
22 == α                                                       (19) 

The necessary punching force is determined with the relation: 
NtpkF rnec 81603408.05.11625.1 =⋅⋅⋅⋅=⋅⋅⋅= τ                          (20) 

where p = represents the perimeter of the punching surface, t – the material 
thickness, τr – the fracture shear stress ( rr στ 8,0= ) and k – a coefficient 
depending on the anisotropy of physical and mechanical properties, thickness 
deviations of the band and the wear degree of the cutting edges. Since the material 
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band is a low carbon steel the value of the ultimate tensile strength has been 
considered σr = 340 MPa. It is obvious that it will be a range of values for the 
punching force due to the modifications, which can occur in the degree of wear of 
the cutting edges and variation of the ultimate tensile stress.  

 Due to the fact that the obtained safety factor is: 37.9==
F

F
c cr

f , this 

value being higher than the allowable coefficient for such components, included 
in the range (4…8), it is obvious that the punching die will not buckle. 
 

2. Numerical modeling of the buckling phenomenon  

In order to check the reliability of the analytical solutions, the authors 
proposed a numerical model. The structure geometry was modeled using the CAD 
software CATIA, being then analyzed with the CAE ANSYS software program. 
The purpose of this modeling was to evaluate the stability behavior of the 
structure under static loading. In order to obtain the critical buckling load, the 
structure model was first subjected to compressive static load. The obtained 
results were transferred to the buckling analysis in order to determine the 
coefficient of stability. The loadings that act upon the structure as well as the 
restraints are presented in Figure 3. 

 

Fig. 3. Loads and restraints 

SOLID186 is a higher order 3-D 20-node solid element that exhibits 
quadratic displacement behavior. The geometry of this element is presented in 
Figure 4. 

Twenty nodes, having three degrees of freedom per node - translations in 
the nodal x, y, and z directions, define this element. The element supports 
plasticity, hyper-elasticity, creep, stress stiffening, large deflection, and large 
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strain capabilities. It also has mixed formulation capability for simulating 
deformations of nearly incompressible elasto-plastic materials, and fully 
incompressible hyper-elastic materials. 

 

 

Fig. 4. Geometry of SOLID186 element 

Fig. 5 presents the punching die meshing. The whole structure has 7475 
nodes and 4650 elements.  

Fig. 6 presents the buckling deformation form and the value of the 
numerically value of the load multiplier equal to 8.27, confirming the initial 
assumption. 
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Fig. 5. Structural meshing 

 

Fig. 6. Buckling deformation form 

Since the numerical value obtained is quite close to the theoretical one 
(with an error  ε = 11.73 %), one can conclude that the finite element analysis 
(modeling, meshing and restraint conditions) was appropriate. Figs. 7 and 8 
present the equivalent plastic and elastic strains.  

As one can see in Fig. 7 no plastic strain occurs during the structure 
buckling, confirming thus the analytical results, where it was assumed that the 
loss of stability occurs in elastic strain domain in limits of applicability of 
Hooke’s law. 
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Fig.7. Equivalent plastic strain 

 

Fig .8. Equivalent elastic strain 

3. Conclusions 

In the present paper, the authors proposed two comparative methods – an 
analytical and numerical one – in order to check the stability phenomenon of a 
punching die. It is easy to prove that there is a real necessity to check punching 
dies with low slenderness because these active elements are predisposed to buckle 
under intense exploitation. On the other side, since stamped parts have strict 
designs, very often impossible to modify, the adaptation of the punching dies 
active ends is not an option whereas the rest of the punching body has the 
possibility to be adapted in order to respect safety and reliability standards.  

From the example shown in this paper, it could be seen that both analytical 
and numerical results obtained, otherwise quite complex, are close. This confirms 
that for the analysis of complex structures (bars with more than two steps, bars 
with variable section, bars with intermediate supports etc.), where it is difficult to 
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perform analytical calculations, the finite element modeling remains a quickly and 
useful method. 

Although the material requirements are higher to manufacture stiff 
punching dies, the difference in cost is covered by the economical benefits of 
having reliable manufacturing processes. 
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