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OPTIMISATION MONO ET MULTI-OBJECTIF DE
L’USINAGE DU POLYAMIDE (PA66-GF30%) EN UTILISANT
LA METHODE TAGUCHI-DEAR BASEE SUR LE RAPPORT
SIGNAL/BRUIT

Sabrina HAOUES !, Mohamed Athmane YALLESE!, Salim BELHADI !, Alper
UYSAL? & Salim CHIHAOUI !

Les matériaux composites a base polymérique, sont de plus en plus utilisés
dans de nombreuses applications de l'ingénierie en raison de leur rentabilite,
durabilité, faible poids, bonnes propriétés mécaniques- Dans ce travail, des essais
d’usinage ont été réalisés suivant le plan de Taguchi (Lo), lors du tournage a sec du
polyamide composite (PA66-GF30%). Le but est de réaliser une étude
d’optimisation mono et multi-objectif des facteurs (Vc, f et ap) en utilisant I’analyse
de Taguchi et la méthode DEAR. L’objectif est de minimiser les paramétres de
performance tels que ; (Ra, Pc et Fz) et maximiser le (DCE).
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1. Introduction

Les composites a matrice polyamides avec renforcement fibreux en verre
(GF30%) sont des matériaux thermoplastiques largement utilisés dans divers
domaines de l'ingénierie telle que : l'aéronautique, la robotique, la sécurité et
I'automobile, en raison de leurs bonnes propriétés [1-2]. Les fibres de verre sont
ajoutées aux polymeres non renforcés pour améliorer les propriétés mécaniques et
thermiques [3-4]. Le polyamide renforcé en fibres de verre 30% présent des
difficultés lors de 1’usinage a cause de ses caractéristiques distinguées comme le
faible module d’élasticité, le taux d’absorption d’humidité et le coefficient de
dilatation thermique ¢élevé [5].

L’usinage du polyamide PA66-GF30% a fait I'objet de plusieurs travaux de
recherche. Parmi eux, V.N Gaitoude et al [6] ont étudié 1’effet de condition de
coupes (Ve et f) sur les paramétres de performances (Ra, Fc et Pc) lors du micro
tournage de PA66-GF30% en utilisant un outil de coupe (PCD). J. Paulo Davim et
al [7] ont comparé 1'usinabilité du polyamide PA 66 avec et sans renforcement de
fibres de verre lors du tournage en utilisant quatre outils de coupe (CVDD, PCD,
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K15, K15-KF). Les effets des paramétres du processus (vitesse de coupe et avance
par tour) sur les caractéristiques d'usinabilité (critére de rugosité, efforts de coupe
et effort spécifique) ont ét¢ étudiés. Y.H ¢elik et al [8], V.N Gaitoude et al [9] ont
appliqué I’approche de Taguchi afin de déterminer le régime de coupe optimal de
chaque réponse lors du tournage de GFRP.
La méthode DEAR (classification basée sur ’analyse d’enveloppe de donnée)
compte parmi les méthodes d’optimisation appliquée dans plusieurs domaines des
sciences et particulierement de la fabrication mécanique. Cette technique a prouvé
son efficience dans la détermination des conditions de coupe optimales en usinage
[10-11]. T.Muthuramalingam et al [12] ont appliqué la méthode (Taguchi -DEAR)
lors 1’usinage par jet d’eau d'un alliage de titane, afin d’obtenir une combinaison
optimale des facteurs opératoires de coupe sur les parametres (Ra et MRR). Dans
les années récemment les auteurs PH, Nguyen Huu et al, et V, Vikram Reddy
[13,14], ont réalisé des travaux sur l'usinage par 1'électroérosion, afin de résoudre
les problémes d’optimisation multi-objectifs en utilisant la méthode DEAR.
L’examen de la littérature montre que trés peu de recherche ont été
réalisées en utilisant [D’analyse de Taguchi basée sur le rapport
(Signal/bruit), couplée avec la méthode DEAR lors d’usinage du PA66-GF30% et
en examinant plusieurs parametres technologiques de sortie en méme temps. Le
but de ce travail est de proposer une optimisation Mono et multi-objectifs afin de
maximiser la productivité et de minimiser la consommation d’énergie, I’effort de
coupe et la rugosité de surface lors tournage du polyamide composite PA66-
GF30%.

2. Procédure expérimentale

Le polymere utilisé dans cette étude est le polyamide renforcé de 30% en
fibres de verre (PA66-GF30%) sous forme d’une barre pleine avec les dimensions
suivantes : @ = 80 (mm), L= 280 (mm). Les propriétés mécaniques et thermiques
de ce matériau sont indiquées dans le tableau 1 [15]. Les essais d’usinage ont été
réalisés a sec sur un tour modele (SN40C) avec une puissance (Pm=6 kW). Les
plaquettes utilisées pour 1’usinage sont en carbure métallique avec la désignation

SPGR 12 03 08, elles sont fixées sur un porte-outil du type SDPN 25 25 M12.
Tableau 1

Propriétés mécaniques et thermiques du polyamide PA66 GF30

Propriétés Valeurs

Densité 1,35 g/cm’?
Plage Allongement a la rupture en traction 8 %

Dureté : encoche a la bille H358/30 240 N / mm?
Module d'élasticité en traction 4 800 N / mm?
Température de fusion + 255 °C
Conductivité thermique 0,27 W/ (m - K)
Plage de température d'utilisation -30a +150 °C
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Un dynamometre Kistler (9257B) a été utilisé pour mesurer I’effort de coupe
tangentiel (Fz). Pour la mesure du critere de rugosit¢ de surface moyenne
arithmétique (Ra), un rugosimeétre du type MITUTOYO (SJ-210) a été utilisé. La
mesure de (Ra) a été répétée trois fois suivant un angle de rotation de I’éprouvette
de 120° et la moyenne des trois mesures a €té retenue. La puissance de coupe (Pc)
et le débit de copeau enlevé (DCE) ont été calculés respectivement a partir des
équations (1) et (2).

Pe(W) = Fz(N).Vc(m/minii

5 60

bt (S50) = ve () x £ (5) x aptmm) @
min min tr
Dans cette étude, le plan orthogonal de Taguchi Lo (3°) a été adopté afin de
minimiser le nombre des essais d’usinage. Les parameétres d’entrée et leurs
niveaux sont les suivants : Ve = (80, 115 et 206) m/min, /= (0.08, 0.12 et 0.16)
mm/tr et ap = (0.5, 1 et 2) mm.

(1)

3. Résultats et discussion
3.1 Résultats des essais expérimentaux

Le tableau 2 présente les résultats expérimentaux de (Ra), (Fz), (Pc) et (DCE),
correspondant aux différentes combinaisons des paramétres de coupe (Ve, fet ap)
suivant le plan de Taguchi Lo. On remarque que la rugosité (Ra) varie de (1.24 a
2.07) um, Deffort (Fz) varie de (16.48 a 65.76) N, (Pc) varie de (21.973 a

122.021) W et le (DCE) varie de (3.20 4 32.96) cm>/min.
Tableau 2

Résultats des essais expérimentaux

Ve f ap Ra Fz Pc DCE
(m/min) | (mm/tr) (mm) (nm) N) W) (cm?/min)

1 80 0.08 0.5 1.4 16.48 21.973 3.20
2) 80 0.12 1 1.69 33.92 45.227 9.60
3 80 0.16 2 2.07 65.76 87.680 25.60
4 115 0.08 1 1.41 30.62 58.688 9.20
5 115 0.12 2 1.56 58.06 111.282 27.60
6 115 0.16 0.5 1.78 26.66 51.098 9.20
7 206 0.08 2 1.24 35.37 121.437 32.96
8 206 0.12 0.5 1.27 20.18 69.285 12.36
9 206 0.16 1 1.56 35.54 122.021 32.96

L’optimisation des parameétres de coupe en usinage a fait 1’objet de plusieurs
travaux de recherche en utilisant diverses techniques [16-17]. Elle permet le choix
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des conditions de coupe optimales afin de satisfaire I’objectif désiré. Cela induit
un impact direct sur la productivité, la qualité et le cotit d’un produit [18-19].

Dans ce travail, deux méthodes d’optimisation ont été proposées. La méthode
de Taguchi pour I’optimisation mono-objectif des paramétres de sortie et la
méthode DEAR pour I’optimisation multi-objectif en se basant sur le rapport
signal-bruit (S/N).

3.2. Optimisation mono objective de Taguchi

La méthode d'optimisation mono-objective de Taguchi est basée sur le rapport
signal/bruit (S/N) qui est utilisé pour analyser les résultats de 1'expérience. Ici, (S)
est le facteur de signal qui indique la valeur réelle du systéme et (N) est le facteur
de bruit qui montre un facteur non inclus dans la conception de 1'expérience [20-
21-22]. Le rapport (S/N) est calculé par les équations (3 et 4) selon les objectifs
souhaités, « le plus grand est le meilleur » et « le plus petit est le meilleur »
respectivement.

n
S 1 1
N =-10 lOglO (H Zﬁ> (3)

i=1

2~ 10 logyo (3 > y?) @
N n !

i=1
Ou n : Le nombre des essais ; y;: Les données observées, Avec:1=1,2,...n

Dans notre cas, le logiciel Minitabl7 a été utilisé pour 1I’optimisation mono-
objective. L’¢équation (4) a été utilisée pour le calcul de rapport (S/N) afin de
minimiser les parameétres de sortie (Ra, Fz et Pc) individuellement, tandis que
I’équation (3) a ¢été utilisée pour maximiser le (DCE). Les résultats des calculs
sont indiqués dans le Tableau 3.

Tableau 3
Résultats du rapport (S/N) pour (Ra, Fz, Pc et DCE)
° Résultats (S/N)
Ra (dB) Fz (dB) Pc (dB) DCE (dB)
1 -2.92 -24.3391 -26.84 10.1
2 -4.56 -30.6091 -33.11 19.65
3 -6.32 -36.3592 -38.86 28.17
4 -2.98 -29.7201 -35.37 19.28
5 -3.86 -35.2775 -40.93 28.81
6 -5.01 -28.5172 -34.17 19.28
7 -1.87 -30.9727 -41.69 30.36
8 -2.08 -26.0984 -36.81 21.84
9 -3.86 -31.0143 -41.73 30.36
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Le tableau 4 et la figure 1 (a, b, c et d), résument les résultats de I’optimisation
mono-objectif basés sur le rapport (S/N) et les valeurs de delta (A) de chaque
niveau qui représente la différence entre les valeurs les plus ¢€levées et les plus
faibles (A= max-min) pour les parameétres de sortie (Ra, Fz, Pc et DCE). Pour la
rugosité (Ra), le régime optimal est (Vcs, fi et ap1), ce qui coincide avec la plus
grande vitesse de coupe (Vec= 206 m/min), ’avance la plus petite (/= 0.08 mm/tr)
et une profondeur de passe (ap= 0.5 mm). De la méme manicre, le régime optimal
pour I’effort (FZz) est obtenu avec les niveaux des parameétres de coupe (Vez= 206
m/min, fi= 0.08 mm/tr et gpi= 0.5 mm). Quant aux conditions optimales pour
minimiser la puissance de coupe (Pc), elles sont données par la combinaison des
niveaux (Vci, fi, ap1), qui correspond a (Ve= 80 m/min, /= 0.08 mm/tr et ap= 0.5
mm). Enfin, le régime optimal sélectionné afin de maximiser le débit de copeau
enlevé (DCE), il est donné par la combinaison (Ves, f3, aps), qui correspond aux
valeurs les plus élevées des parametres de coupe (Ve= 206 m/min, = 0.16 mm/tr,
et ap=2 mm). Les régimes optimaux pour chaque objectif ont été mis en évidence
par des points verts dans la figure 1.

Tableau 4
Réponses de (S/N) pour (Ra, Fz, Pc et DCE)
Niveaux
Combinaisons
Ve -4.600 -3.952 -2.602 1.998 2
f -2.592 -3.499 -5.063 2.472 1
ap -3.336 -3.802 -4.017 0.681
Fz
Ve -30.44 -31.17 -29.36 1.81 3
f -28.34 -30.66 -31.96 3.62 2
ap -26.32 -30.45 -34.20 7.88 1
Pc
Ve -32.93 -36.82 -40.08 7.14 2
f -34.63 -36.95 -40.49 3.62
ap -32.61 -36.74 -40.49 7.89 1
DCE
Ve 19.30 22.46 27.52 8.22 2
f 19.91 23.43 25.93 6.02
ap 17.07 23.09 29.11 12.04 1
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Fig. 1. Graphiques des effets principaux pour S/N de : a) Ra, b) Fz, ¢) Pc et d) DCE

Le tableau 5 récapitule les combinaisons optimales trouvées ainsi que les
valeurs des réponses correspondantes. Les valeurs P du S/N des différents
parametres ont été prédites par 1’équation 5 [23].

P = Mg+ ) [(My)— Mg
j=1

()

Mg : moyen général pour chacun des paramétres de sortie,
M;,; : moyenne de la réponse au niveau optimal,
n : nombre de paramétres d’usinage. Dans ce cas, n=3 (Vc, fet ap).

A partir des valeurs du S/N prédites (P), les valeurs réelles (Vr) des différentes
réponses (Ra, Fz, Pc et DCE) ont été obtenues par les équations (6) et (7), pour le
cas de minimisation et maximisation, respectivement.



Optimisation mono [...] (PA66 GF30%) en utilisant la méthodologie Taguchi-DEAR 113

—p
vr = J10(10) ©)
10(®) (7)

On remarque, que les régimes optimaux trouvés pour les paramétres
technologiques (Ra et Fz) ne figurent pas au tableau 2, par contre le régime
optimal pour (Pc) (Vei-fi-ap1) est existe et le paramétre (DCE) est calculé. A cet
effet, des tests de confirmation avec le régime optimal (Ve3-fi-ap1) afin de trouver
les résultats expérimentaux de (Ra et Fz) ont été réalisés et comparés avec les
valeurs prédites et I’erreur relative a été calculée. Tous les résultats sont consignés
au tableau 5.

Tableau 5
Récapitulative des régimes optimaux trouvés par la méthode de Taguchi

.. Combinaisons Valeurs Réponses
Objectifs 5 &
optimales correspondantes réelles

Minimisation | ;. 2 0| 206 | 0.08 | 0.5 1.134 1,119 1,3404

de Ra
Minimisation

de Fz Ves-fi-ap 206 | 0.08 | 0.5 14.753 14,73 0,156
Minimisation Existe au tableau

de Pe Ver-fi-apt 80 0.08 | 0.5 22.26 2 /
Maximisation i

de DCE Ves-fi-aps 206 | 0.16 2 65.92 Calculé /

3.3. Méthode de classification basée sur l'analyse d'enveloppe de
données (DEAR)

La méthode (DEAR) utilisée dans ce cas, est une approche d’optimisation
multi-objectif des parametres de sortie simultanément. Elle a été couplée avec la
méthode de Taguchi en se basant sur le rapport (S/N) pour trouver la combinaison
optimale des conditions de coupe lors de 1’'usinage du polyamide PA66-GF30%,
en utilisant I'indice de performance a réponse multiple (MRPI) [24]. Les étapes de
la méthode DEAR sont exposées dans la figure 2.
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Etape 1: Déterminer le poids (Wyy) de toutes les réponses par l'utilisation de

I'équation (8): Wy, = ‘Tu,\_ oui (j=1,2,..,n) nombre des essais .
I, Xij

Etape 2: Converti les domnées de reponse en dormées ponderces en multphiant la valeu]
obtenue par sonproprepoids (TéquatonS) X™ = X, x W,

Elape 3; Divisez lesdonnées comme suit: plusc'est grand, mieuxc'est, et plusc'est petit
migux c'est

Méthode DEAR
|

-

X' max
mi

Etape 4: Traitez cette valeur comme unindice (MRPI) ou MRPI =

"
j

. 5 . Im Xy

(fquation 10). Sélectionnerles valewrs desréponses prédites

Fig.2. Etapes de la méthode DEAR

Dans ce travail, deux cas d'optimisation multi-objectifs ont été traités. Le 1
cas consiste a I’amélioration de la qualité de surface par la minimisation de (Ra)
ainsi que minimiser la consommation de I’énergie par la réduction de (Fz et Pc),
tandis que le 2®™¢ cas est consacré a l'optimisation combinée, entre la
minimisation des parametres de sortie (Ra, Fz et Pc) et la maximisation de
productivité (DCE). Selon la méthode de Taguchi, afin de trouver les paramétres
d'usinage optimaux, le rapport (S/N) de chaque niveau de parametre d'usinage doit
étre évalué pour chaque parametre de sortie. Le S/N le plus élevé des niveaux de
parametres d'usinage considérés indique un niveau optimal. A partir des résultats
du rapport signal/bruit (S/N) présentés dans tableau 3, le poids (Wx;j) et le (MRPI)
de chaque expérience ont été calculés suivant les équations (8 a 10) de la figure 2,
leurs valeurs sont consignées dans le tableau 6.

Tableau 6
Poids et MRPI de chaque expérience pour les deux cas d’optimisation
. Ra Fz Pc DCE 1 cas 2¢me cas
1 0.087 0.090 0.081 0.049 -4.612 -4.121
2 0.136 0.112 0.100 0.095 -7.381 -5.524
3 0.189 0.133 0.118 0.136 -10.620 -6.803
4 0.089 0.109 0.107 0.093 -7.300 -5.512
5 0.115 0.129 0.124 0.139 -10.090 -6.094
6 0.150 0.104 0.104 0.093 -7.273 -5.485
7 0.056 0.113 0.127 0.146 -8.894 -4.459
8 0.062 0.096 0.112 0.105 -6.737 -4.442
9 0.115 0.114 0.127 0.146 -9.255 -4.820

En appliquant I’analyse de Taguchi sur les résultats de l'indice (MRPI)
(tableau 6), les régimes de coupe optimaux (pour les deux cas d’optimisation),
sont présentés dans le tableau 7. D’apres ce tableau, ’analyse des résultats du 1¢*
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cas de I’optimisation qui concerne la minimisation de (Ra, Fz et Pc), donne le
régime optimal suivant: Ve= 80 (m/min), /= 0.08 (mm/tr), ap= 0.5 (mm)
respectivement, ce qui correspond aux parametres de sortie optimisés suivants :
Ra= 1.4 (um), Fz= 16.480 (N) et Pc=21.97 (W). Aussi, le régime optimal obtenue
par la méthode DEAR pour le 2¢™¢ cas, qui concerne la minimisation de (Ra, Fz et
Pc) ainsi que la maximisation de (DCE) simultanément se présente comme suit :
Ve= 206 (m/min), /= 0.08 (mm/tr) et ap= 0.5 (mm), ce qui permet d’aboutir aux
paramétres de sortie suivants : Ra= 1.134 (um), Fz= 14.753 (N), Pc= 50.653 (W)
et DCE= 8.240 (cm’/min). Les régimes optimaux pour I’indice (MRPI) ont été
mis en évidence par des points verts dans la figure 3.

Puisque, les réponses de ce régime optimal trouvé ne figurent dans le tableau 3.
Pour cela, I’application de I’équation de prédiction (équation 5) est utilisée afin de
trouver les réponses prédites.

D’apres les résultats de 1’optimisation pour les deux cas, on constate que

I’avance (f) et (ap) restent les mémes mais (Vc) varie. En effet, on remarque que
dans le cas ou le (DCE) n’est pas pris en considération, (Vc) est limitée a 80
(m/min), ce régime conduit a un faible effort de coupe et une consommation
d’énergie faible. Lorsque le (DCE) est considéré dans I’optimisation, (Vc) passe a
une valeur de 206 (m/min), cela conduit a une faible rugosité et un faible effort de
coupe par contre (Pc) est a un niveau ¢levé-
Le tableau 8 résume les combinaisons optimales trouvées ainsi que les valeurs des
sorties réelles pour les deux cas d’optimisation multi-objectifs. Notons ici, que les
valeurs des indices (MRPI) calculées selon I’équation de prédiction (5), sont plus
grandes par rapport aux valeurs présentées dans le tableau 6. Concernant le 1¢* cas
d’optimisation avec la méthode (DEAR), le régime de coupe trouvé (Vc=80
m/min, m/min, /= 0,08 mm/tr et ap= 0,5 mm existe parmi les essais réalisés,
(tableau 2 ; Essai 1). Par contre, le régime de coupe trouvé pour le 2¢m¢ cas (Ve=
206 m/min, f= 0,08 mm/tr et ap= 0,5 mm) n’existe pas dans le tableau 2. Pour
cela, trois essais expérimentaux ont été réalisés et la moyenne des résultats est
retenue, afin de calculer les erreurs relatives entre les valeurs expérimentales et
prédites pour (Ra, Fz et Pc). Le tableau 9 présente les résultats trouvés pour (Ra,
Fz et Pc) et les erreurs calculées sont (1,3404%, 0.156% et 0.158%)
respectivement. On peut clairement voir que I'erreur calculée est tres faible.

Tableau 7
Réponses pour les valeurs totales de L'MRPI
Cas 1 va S 3 Delta Rang
Ve -7.538 -8.221 -8.295 0.758 3
1 cas f -6.935 -8.069 -9.049 2.114 2
ap -6.207 -7.978 -9.868 3.661 1
Ve -5.483 -5.697 -4.574 1.123 1
2éme pg f -4.697 -5.353 -5.703 1.006 3
ap -4.683 -5.285 -5.785 1.103 2
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Fig. 3. Graphiques des effets principaux pour les deux cas de MRPI

Tableau 8
Récapitulative des régimes optimaux et I’indice (MRPI)

Réponses réelles

Coml{malsons Valeurs MRPI
optimales correspondantes p. Fz Pc DCE
1 | Ve, | fi | apr | 80 | 0.08 | 05| 1.4 |16.480 | 21.97 - -4.12
2¢me | Ves | fi | aps | 206 | 0.08 | 0.5 | 1.134 | 14.753 | 50.653 | 8.240 | -3.45
Tableau 9
Résultats du test de confirmation
Ra
26me | 206 | 0,08 | 05 | 1,119 | 1,134 | 13404
Fz
26me | 206 | 0,08 | 05 | 14,73 | 14,753 | 0,156
Pc
20me | 206 | 008 | 05 | 50573 | 50653 | 0.158

4. Conclusions

Cette étude concerne ’usinage du polyamide renforcé en fibre de verre 30%
(PA66 GF30) lors de tournage a sec en utilisant un outil en carbure métallique.
Deux méthodes d’optimisation (Taguchi et DEAR) ont été¢ appliquées afin de
déterminer les conditions de coupe optimales. Les résultats de 1'optimisation
mono-objective de Taguchi basée sur le rapport (S/N) pour réduire chacun des



Optimisation mono [...] (PA66 GF30%) en utilisant la méthodologie Taguchi-DEAR 117

parametres (Ra), (Fz) et (Pc), sont : (Ve= 206 m/min, /= 0,08 mm/tr et ap= 0,5
mm) ; (Ve= 206 m/min, f= 0,08 mm/tr et ap= 0,5 mm) ; (Vc= 80 m/min, = 0,08
mm/tr et ap= 0,5 mm) respectivement. La combinaison optimale pour la
maximisation du DCE est : (Ve=206 m/min, /= 0,16 mm/tr et ap= 2 mm).
L’optimisation multi-objective en utilisant la méthode DEAR a été appliquée avec
succes suivant deux cas souhaités. Le régime de coupe pour le 1° cas concernant
la minimisation de (Ra, Fz et Pc) est : (Ve= 80 m/min, /= 0,08 mm/tr, ap= 0,5
mm). Par contre, pour le 2°™ cas, qui s’intéresse a la minimisation de (Ra, Fz et
Pc) avec la maximisation du DCE en méme temps est : (Ve= 206 m/min, /= 0,08
mm/tr et ap= 0,5 mm). Les essais de confirmation avec le régime optimal trouvé
pour le 2™ cas montrent que les erreurs relatives sont de (1,3404%, 0,156% et
0.158%) pour (Ra, Fz et Pc) respectivement. Les méthodes d’optimisation mono
et multi-objectives proposées dans cette étude peuvent étre appliquées facilement
pour d’autres matériaux et dans des conditions de coupe différentes.
Contrairement aux méthodes heuristiques, ces méthodes appliquées n’ont pas
besoin d’un modele mathématique pour 1’optimisation des conditions de coupe, il
suffit seulement d’un plan d’expérience.
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	Résultats (S/N)
	N°
	DCE (dB)
	Pc (dB)
	Fz (dB)
	Ra (dB)
	-24.3391
	-26.84
	10.1
	2
	-4.56
	-30.6091
	-33.11
	19.65
	3
	-6.32
	-36.3592
	-38.86
	28.17
	4
	-2.98
	-29.7201
	-35.37
	19.28
	5
	-3.86
	-35.2775
	-40.93
	28.81
	6
	-5.01
	-28.5172
	-34.17
	19.28
	7
	-1.87
	-30.9727
	-41.69
	30.36
	8
	-2.08
	-26.0984
	-36.81
	21.84
	9
	-3.86
	-31.0143
	-41.73
	30.36

	-2.92
	1

