

CHARACTERIZATION OF IN-SITU AA 6060/AlB₂ METAL MATRIX COMPOSITE

Dumitru-Valentin DRĂGUȚ¹, Petru MOLDOVAN², Mihai BUTU³, Emilia UŞURELU⁴

Obiectivul prezentei lucrări îl constituie caracterizarea unui material compozit cu matrice din aliajul de aluminiu deformabil AA6060 armat cu particule de AlB₂. Pentru sinteza compozitului s-a utilizat reacția aluminotermică dintre aluminiul prezent în aliajul AA6060 și KBF₄. S-au efectuat analize prin microscopie optică, microscopie electronică (SEM + EDS) și prin difracție de raze X. Compozitul conține particule cu morfologie caracteristică diborurii de aluminiu.

The objective of this paper is the characterization of a metal matrix composite material based on a deformable aluminum alloy AA 6060 reinforced with AlB₂ particles. An aluminothermic reaction between the aluminum AA 6060 alloy and KBF₄ was used for the synthesis of the composite. Analyses were performed by optical microscopy, electron microscopy (SEM + EDS) and X-ray diffraction. The composite contains particles with the characteristic morphology of the aluminium diboride.

Keywords: in-situ composite, AA6060 alloy, AlB₂

1. Introduction

Aluminum matrix composites (AMCs) have found extensive use in many engineering applications because of their high specific modulus, strength, hardness and stiffness, excellent wear resistance, low-heat expansion coefficient, stability of properties at elevated temperature, reduced density and competitive fabrication cost. The development of these materials has been driven by the aerospace and automotive industries for both nonstructural and structural applications [1].

Metal matrix composites (MMCs) reinforced with ceramic or metallic particles are widely used owing to their higher specific modulus, strength and

¹ PhD student, Dept. of Eng. And Management for Elaboration of Metallic Material, University POLITEHNICA of Bucharest, Romania, e-mail: dragutdumitruvalentin@yahoo.com

² Prof., Dept. of Eng. And Management for Elaboration of Metallic Material, University POLITEHNICA of Bucharest, Romania, e-mail: cavnic2010@gmail.com

³ Lecturer, Dept. of Eng. and Management for Elaboration of Metallic Material, University POLITEHNICA of Bucharest, Romania

⁴ PhD student, Dept. of Eng. and Management for Elaboration of Metallic Material, University POLITEHNICA of Bucharest, Romania

wear resistance. MMCs have been considered as alternatives to monolithic metallic materials or conventional alloys in a number of specialized application areas. Aluminum matrix composites (AMCs) have been reported to possess higher wear resistance and lower friction coefficient with an increasing volume fraction of reinforcement particles, compared to aluminum alloys without reinforcement. AMCs also combine the low density of the matrix with the high hardness of the reinforcements[11].

To improve the interfacial compatibility and reduce the reinforcement size various new processing techniques are being employed to produce the high performance in situ composites. Ultrafine ceramic particles (TiB_2 , AlB_2) are produced in situ by the exothermic reaction between aluminium and the ceramic compounds [2]. The literature on the in situ AlB_2 particle composites is very limited [7].

Al–B system (Fig. 1) is well known because Al–B master alloys are widely used in the production of electrical conductive grade aluminium to remove transition metal impurities, such as titanium, vanadium, chromium and zirconium.

Fig.1. The aluminium-boron binary phase diagram

These elements are brought into aluminium as impurities with bauxite or from scraps. The contents of these elements are merely higher than several tens ppm. However, as solutes, the transition elements reduce the electrical conductivity of aluminium dramatically. To overcome this problem, boron is used to precipitate these impurities by forming borides of transition metals in aluminium which do not contribute to a major reduction in the electrical conductivity. Al-B master alloys are also used in the in-situ fabrication of aluminium matrix composites. One example is the in-situ fabrication of AlB₂ fibre reinforced aluminium metal matrix composites using an Al-B master alloy [3].

AlB₂ has a hexagonal close packed (HCP) crystal structure with lattice parameters: $a = 0.3000$ nm and $c = 0.3245$ nm, whereas AlB₁₂ has a tetragonal crystal structure with $a = 1.0161$ nm and $b = 1.4238$ nm. Boron and aluminium occupy alternative layers in the HCP AlB₂ crystals. The melting points of AlB₂ and AlB₁₂ were reported as $1655 \pm 50^\circ\text{C}$ and $2163 \pm 50^\circ\text{C}$, respectively. Other Al-B compounds, such as AlB₁₂ and AlB₁₀, were also reported. These compounds were later proved to be metastable or ternary compounds that are stabilized by small amount of impurities [3]. Also the elementary cell is an rhombic prism. Fig. 2 provides an image of the crystal lattice of AlB₂ while table 1 presents the distances between aluminium and boron atoms.

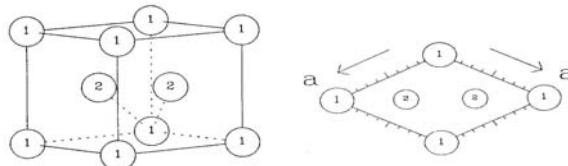


Fig. 2. Graphical representation of AlB₂ crystal atomic lattice

Table 1

Distances between the atoms in the AlB₂ crystallin structure

Reference atom: Al (1)			Coordonates		
			x	y	z
			0	0	0
Distance, [nm]			Coordonates		
			x	y	z
0,2373	2	B	1/3	-1/3	1/2
0,2373	2	B	-1/3	-2/3	1/2
0,2373	2	B	1/3	-1/3	-1/2
0,2373	2	B	-1/3	-2/3	-1/2
0,2373	2	B	-1/3	1/3	1/2
0,2373	2	B	-2/3	-1/3	1/2
0,2373	2	B	2/3	1/3	1/2

0,2373	2	B	1/3	2/3	1/2
0,2373	2	B	2/3	1/3	-1/2
0,2373	2	B	1/3	2/3	-1/2
0,2373	2	B	-1/3	-1/3	-1/2
0,2373	2	B	-2/3	1/3	-1/2
0,3000	1	Al	1	0	0
0,3000	1	Al	-1	0	0
0,3000	1	Al	0	-1	0
0,3000	1	Al	0	1	0
0,3000	1	Al	1	1	0
0,3000	1	Al	-1	-1	0
0,3245	1	Al	0	0	-1
0,3245	1	Al	0	0	1

2. Experimental materials and methods

The Al/AlB₂ in situ composite was produced via chemical reactions between KBF₄ (of analytical purity) and AA6060 aluminium alloy (0.44 wt% Mg, 0.48wt% Si) at 850°C in an electrical furnace (Fig. 3). A small quantity of Na₃AlF₆ was also added as activator of the reaction (to reduce energy and accelerate the system). KBF₄ powder was continuously manually fed, and incorporated in the molten aluminium alloy during the stirring with an graphite rod. After 60 minutes reaction time at 850°C the melt was cast into a steel mould. The cast ingot was sectioned into small pieces for microstructural analysis. The samples were polished to 1000 mesh grade with SiC paper, followed by surface finishing to 1µm. After polishing, the samples were subjected to chemical etching (0.5% HF) and afterwards microscopically analized.

Table 2 presents the thermodynamical propreties of the exothermic equilibrium equation of the in situ formation of AlB₂ particles in the melt:

The temperature in the furnace rised to about 900 - 950°C and was measured by a thermocouple.

Table 2
Thermodinamical values of the reaction calculated with HSC Chemistry 6.0

	T	Cp	H	S	G	Reference	
1	3Al + 2 KBF₄ = 2KF + 2AlF₃ + AlB₂						
2	T	deltaH	delta S	delta G	K	Log(K)	
3	C	kJ	J/K	kJ			
4	650.000	-605.259	-156.612	-460.683	1.172E+026	26.069	
5	700.000	-639.012	-192.753	-451.434	1.711E+024	24.233	
6	750.000	-640.340	-194.085	-441.762	3.590E+022	22.555	

7	800.000	-641.441	-195.137	-432.030	1.073E+021	21.030	
8	850.000	-642.317	-195.935	-422.253	4.360E+019	19.639	
9	900.000	-588.369	-148.190	-414.520	2.871E+018	18.458	
10	950.000	-588.646	-148.422	-407.104	2.437E+017	17.387	
11	1000.000	-588.797	-148.543	-399.680	2.508E+016	16.399	
12	Formula	FM	Conc.	Amount	Amount	Volume	
13		g/mol	wt-%	mol	g	l or ml	
14	Al	26.982	24.326	3.000	80.945	29.979	ml
15	KBF ₄	125.902	75.674	2.000	251.804	100.520	ml
16		g/mol	wt-%	mol	g	l or ml	
17	KF	58.097	34.919	2.000	116.193	46.852	ml
18	AlF ₃	83.977	50.475	2.000	167.953	54.179	ml
19	AlB ₂	48.602	14.606	1.000	48.602	15.236	ml

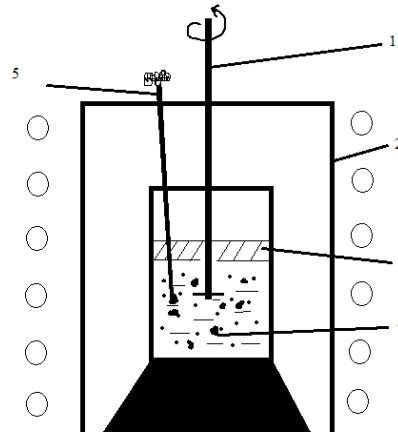


Fig. 3. Schematic of the furnace: 1 –graphite stirrer, 2 - electric resistance furnace, 3- flux K₂TiF₆ + Na₃AlF₆, 4 – Al_xB_y particles, 5 – termocouple

3. Results and Discussion

The crystallographic structures of the compounds that could appear in the microstructure of the composite are: hexagonal (AlB₂) and tetragonal (AlB₁₂). (Fig. 4)

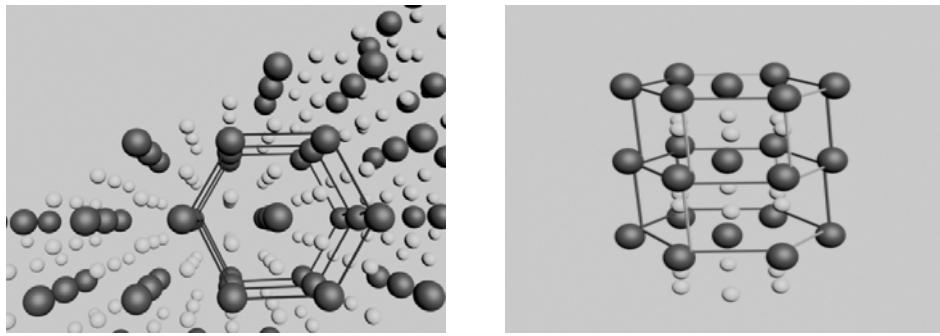


Fig. 4. The 3d structure of AlB_2 : represents the aluminium atoms, and the boron atom

In Fig. 5 are presented the results of the optical analysis of the in situ obtained AA6060/ AlB_2 composite. It can be noted that AlB_2 type structure formed, the hexagonal form of the particles being clearly noticeable. Since the exothermic reaction between aluminium (AA6060 alloy) and KBF_4 took place entirely in the molten alloy, no oxidation layer on the surface of the AlB_2 particles could be formed.

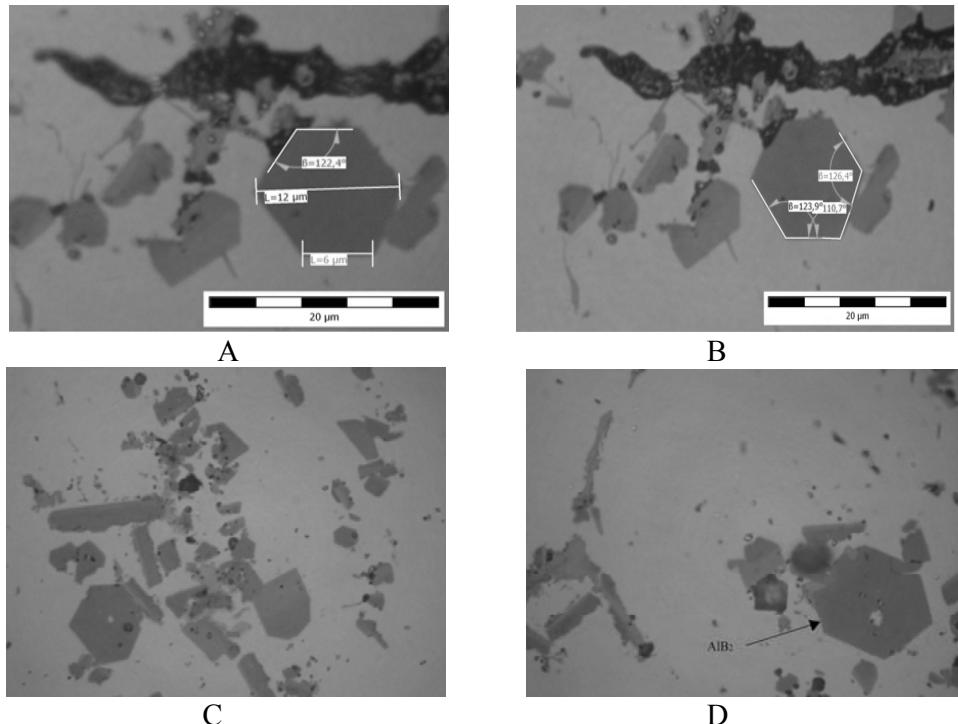


Fig. 5. The morphology of AlB_2 particles in AA6060/ AlB_2 in situ composite

A representative sample was examined by X-ray diffraction methods using a nickel filtered Cu radiation (Fig. 6). For the measuring of the two specimens the measuring parameters were the same. The analysis was performed using a Philips diffractometer and the data were recorded using specialized software X'Pert Data Collector. The pattern reveals the presence of Al and AlB₂ peaks, indicating that AlB₂ is formed in the composite, at high cooling rate. As it is known the adhesion mechanical work of the in situ composites is higher than of the ex situ composites, this fact presenting an advantage of the in situ composites.

The adhesion energy can be calculated from surface energies γ_{sv} and γ_{pv} using the following relation:

$$W_{AD} = 2\phi (\gamma_{sv} \cdot \gamma_{pv})^{1/2} \quad (2)$$

where: $\phi = 0.25$, s – solid metal, v – vapor, p – AlB₂ particles.

$\gamma_{sv} = 1.2(\gamma_{lv})_m + 0.45(T_m - T)$, where T_m is the melting temperature, K.

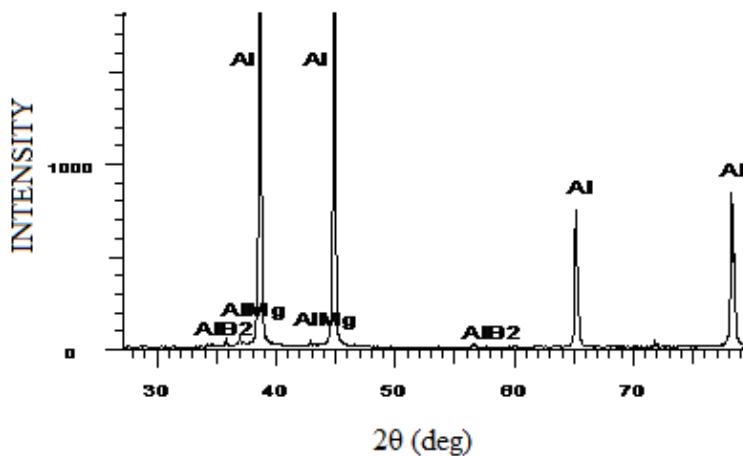


Fig. 6. XRD image of the representative sample of AA6060/AlB₂ composite

The morphology and the chemical composition of the composite samples have been investigated by Scanning Electron Microscopy (Fig. 7 a, b). The analysis was performed using an XL-30-ESEM TMP Electronic Microscope.

The SEM analysis revealed the morphology of the AlB₂ particles (white polyhedral particles).

The EDS of the surface of the composite specimen indicate the presence of Si and Mg from the aluminium matrix and the presence of K, Na, F and Cl from salts.

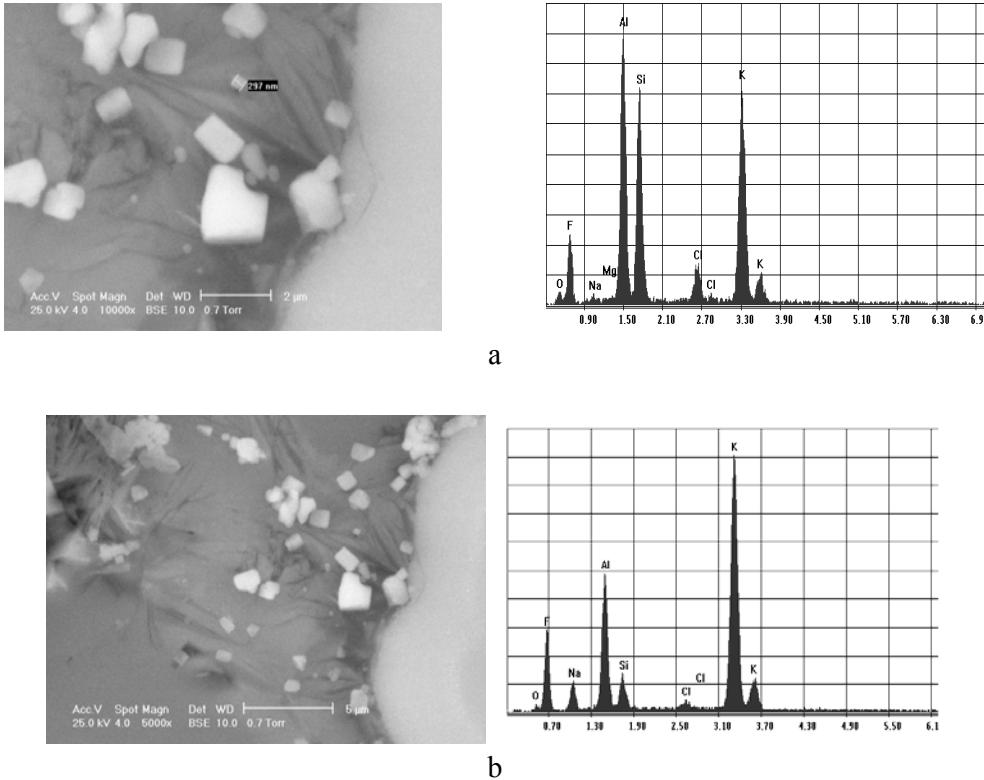
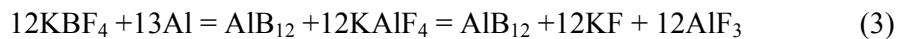
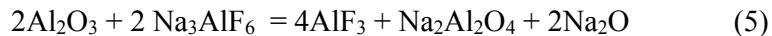




Fig. 7. SEM and EDS images of the samples

The mechanism of the interaction between Al and KBF_4 was explained by Wang[2]. When KBF_4 is added into molten aluminium, it is reduced by Al with KAlF_4 formation. It can be seen from reaction (1) that the formation of one mole of AlB_2 produces a larger quantity of KAlF_4 than the formation of one mole of AlB_2 . KAlF_4 is lighter in weight than aluminium and floats on to the surface of the aluminium melt. This makes the build up of boron inside the aluminium melt difficult. However, the reaction is vigorous and the build up of boron still happens.

The reactions (3) and (4) represent the explicit chemical processes which occur during the process of preparation in situ Al/AlB₂ (Na₃AlF₆ can cause slags to eliminate Al₂O₃) [6].

or by solving Al₂O₃ after the rise of temperature.

4. Conclusions

The Al/AlB₂ in situ composite was produced via exothermic chemical reaction between KBF₄ and liquid AA6060 aluminium alloy at 850°C.

The thermodynamics and the mechanisms of the interaction between Al and KBF₄ in the presence of cryolite (as activator and solvent for Al₂O₃) was investigated.

The XRD analysis revealed the formation of AlB₂ polyhedral compounds dispersed in the matrix and an interface Al/AlB₂ very clean and with a high adhesion energy generally observed.

The microstructures (Optical Microscopy, SEM/EDS) confirms the presence of AlB₂ compounds in the condition of high cooling rate of the composite material.

R E F E R E N C E S

- [1] *M.R. Ghomashchi, A. Vikhrov*, Squeeze casting: an overview. *Materials Processing Technology*, 101, 2000, p. 1-9
- [2] *C.F. Feng, L. Froyen*, Microstructures of in situ Al/TiB₂ MMCs prepared by a casting route, *Journal of Materials Science* 35, 2000, p. 837– 850
- [3] *Xiaoming Wang*, The formation of AlB₂ in an Al–B master alloy, *Journal of Alloys and Compounds* 403, 2005, p. 283–287
- [4] *Z. Sadeghian, C M. H. Enayati, C P. Beiss*, In situ production of Al–TiB₂ nanocomposite by double-step mechanical alloying , *Journal of Material Science* 44, 2009, p. 2566–2572
- [5] *P. Moldovan*, „Metal matrix composites”, *Compozite cu matrice metalică*, Editura Printech, Bucuresti, 2008, ISBN 978-606-521-091-2
- [6] *Z.Y. Chem, Y.Y. Chen, C. Shu, G.Y. An, Y.Y. Liu*, Microstructures and Properties of In situ Al/TiB₂ composite fabricated by In-Melt reaction method, *Met. And Mat. Trans. A*, 31A 2000, p. 1959-1964
- [7] *Yucel Birol*, Production of Al–B alloy by heating Al/KBF₄ powder blends, *Journal of Alloys and Compounds* 481, 2009, p. 195–198
- [8] *Z.H. Melgarejoa, P.J. Restoa, D.S. Stoneb, O.M. Suárezc*, Study of particle–matrix interaction in Al/AlB₂ composite via nanoindentation, *Materials Characterization* 61, 2010, p. 135 – 140
- [9] *M.J. van Setten, M. Fichtner*, On the enthalpy of formation of aluminum diboride, AlB₂, *Journal of Alloys and Compounds* 477, 2009, p. L11–L12

- [10] *J. Fjellstedt, A.E.W. Jarfors, Lena Svendsen*, Experimental analysis of the intermediary phases AlB_2 , AlB_{12} and TiB_2 in the Al–B and Al–Ti–B systems, *Journal of Alloys and Compounds* 28, 1999, p. 192–197
- [11] *Z.H Melgarejo, O.M. Suarez, and K. Sridharan*, Wear resistance of a functionally-graded aluminum matrix composite, *Scripta Materialia* 55, 2006, p. 95–98