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ON THE MATRICES KEEPING INVARIANT THE
QUADRATIC FORMS

Alina-PETRESCU-NITA ', Carmina GEORGESCU®

In aceasta lucrare, se studiazd matricele care invariazda o formd pdtratica
reald fixata §i se da un criteriu ca acestea sa formeze un grup; in §1 se dau cdteva
exemple. In §3 se studiaza grupul matricelor care invariaza forma “pitagoreica”

x2 + y2 —22 si se da un procedeu de obtinere sistematica a solutiilor ecuatiei

diofantice X2y y2 =22,

In this work, one analyzes conditions that a real quadratic form is kept
invariant by some matrices. In §1 some examples are given and in §3, one studies

the group of matrice which keep invariant the “pitagoreic” form x2 + y2 - 22 and

one indicates a procedure to get systematically the solutions of the diophantic

equation x2 +y2 = 22.
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1. Introduction

Quadratic forms are important geometrical algebraic objects, both for the
study of various mathematical structures, but also for their applications to the
study of quadrics in matrix calculus, differential geometry and tensor calculation.

A general theoretical presentation is found in [1] and more specific
problemes are treated in [2], [3]. Using [4], the paper deals with the study of
matrices which preserve a real given quadratic form.

In the second part of the paper the results are applied to the systematic
listing of Pythagorean triples of numbers 2. On the connection between matrices
and quadratic forms.
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2. On the connection between matrices and quadratic forms

Fix a real quadratic form ¢:R" — R . By definition, a matrix 4 € M, (R)
keeps invariant the quadratic form q if the following condition holds:
forany x=(x...x,), q(x)=¢(4-x) (1)
we will identify x and its transpose ET .
We will denote by G(q) the set of all matrices from M, (R) which keep
invariant ¢ .
If QeM,(R) is the matrix associated to g for the canonical basis of the

space R, it is well known the Q is symmetric and moreover, g(x)= gT -0-x,

forany xe R".
Proposition 1. The condition (1) is equivalent to

A"-0-4=0 )
Proof. We have ¢(x) ZJ_CT -0-x and
g(A-x)=U-0"-0-A-x=x"-4"-0-dx.
The relation (1) becomes x” -Q-x=x (47 -Q- 4)-x, forany x e R",

whence (2).
Proposition 2. The set G(q) is stable to products.

Proof. Let 4,B € G(gq). We have to prove that B- 4 € G(gq). But for any
x,yeR", q(x)=q(4-x) and q(y)=q(B-y). Take y=A4-x, hence
q(x)=q(A4-x)=q(y)=q(B-y)=q(B-A4-x), forany xeR".

In other terms, B.4 € G(q).

Corollary. G(¢)NNGL(n,R) is a group with respect to multiplication of

matrices.
Proof. Obviously, the unit matrix /, belongs to G(q). If A€ G(q) is

nonsingular, we will show that Ae G(q) . Indeed, for any xeR" fixed, take
y=4a"x. By (1), q(»)=q(4-y), hence q(4 ' -x)=q(4-4""-»)=q(x),
therefore 47! e G(g).

10
NOTE. Suppose that n=2 and g(xj,x;) =x12. The matrix Az(l 0]

verifies (2) hence belongs to G(g), but A is singular.
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Proposition 3. If g is nondegenerated, then G(q) is a group relative to

multiplication.
Proof. By definition, ¢ has all the proper values of the matrix O

(associated to ¢ in the canonical basis) are different from zero, hence detQ # 0.
It is enough to show that any matrix 4 € G(q) is nonsingular; indeed, from the

relation (2), it follows that det O = (det Q)(det 4)%, whence (det 4)* =1.

Therefore, det A # 0 and A is nonsingular. It remains to apply the corollary of
the Proposition 2.

Examples. 1. Take q(xl,...,xn)le2 +m+x,%. In this case, O =1, and

the condition (2) becomes: AT 4 =in . Thus, A4 is an orthogonal matrix of
order ». In the case n =2, one obtain the rotation matrices.

2. Consider the case n=2 and g(x1,x,) = x12 —x% .

. 1 0 ) a b
In this case, O = and if 4=
0 -1 c d
2

keeps invariant ¢, then from (2) one gets: az—b2=1, ?—d?*=
ab—cd =0.Then a® =b*> +1#0 and ¢* =d? +1%0.1f b#0, then
2 2 2l
a2 2 d b
a b a b . 2 2
So, A= b or A= ,with a“ —=b" =1.

a -b -—a

hence k2 = =1 . Therefore, k=1 or k =-1.

If =0, then a’ =1 , d =0 and we refind the above matrices.
3. In the case n=4 and q(xl,xz,x3,x4)=x12+x%+x32—x£, which is
nondegenerated, then the set G(g) has a structure of group (by proposition 3),

which can be called the group of Lorentz transformations of the 4-dimensional
space of Einstein-Minkowski.
Other results are in [2].

3. The matrices which keep invariant the quadratic form ¢ : R} SR,

q(x,y,2)=x> +y* =22,

In this case, QO =diag(1,1,—1) and by the proposition 3,
Glq)={4eM3(R)|4' -0 4=0}
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is a group relatively to multiplication (since ¢ is nondegenerated).

If AeG(q), then (det A)2 =1; whence det 4 = =1 and particularly, A4is

a b c
nonsingular. If A=|x y z [, then by (2), it follows the system:
u v ow

a2+x2—u2=1, b2+y2—v2:1, A+ -w?=1

ab+xy—uv=1, bc+yz—wvw=0, catzx+wu=0

Proposition 4. For g = x? +y2 — 2%, the set = G(q)NM3(2) is a
group relatively to multiplication.
Proof. Obviously, if 4,Be®, then 4-B e @, by the proposition 2. It

remains to prove that any matrix 4€® has an inverse in ®. Indeed, since
1

det 4

det 4 ==1, it follows that A= A = iA*, hence A~! has all elements in

Z and thus, Aler.
Definition. By obvious reason, the group ® can be called the pitagoreic

group (connected by the diophantic equation X2+ y2 =72 ).

2 2

Whenever a 3-uple (x,y,z) is a solution of the equation x~ + y2 =z,

then ¢(x,y,z)=0 and by (1), the 3-uple A(x,y,z) is also a solution of the same
equation, forany A€ ®.
Consider the matrices

0
Q =diag(l,l,-1), R=diag(-1,1,]) and S=| 1
0

C’Joo»—t
— o O

Then Q%> =R?>=8% =15, hence 0" ' =0, R7'=R, s7'=
subgroup of @ generated by O, R, S, hence
® c{OQP-R1-8" | p,q,r €{0,1,-1}}.

By explicit calculus, ®; consists of the following 16 matrices:

my =diag(LLl) =13, my =diag(LL,-1)=0

my =diag(l,-Ll), my =diag(l,-1,-1),

ms =diag(-LLl)=R, mg=diag(-L1,-1),

my =diag(-1,-1,1), mg =diag(-1,-1-1),

. Denote by @; the
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010 01 0
mg = 1 0 0 =S, myo = 1 0 0
0 0 1 0 0 -1
0 1 0 1 0
my = -1 0 0 , My = -1 0 0
0 0 0 0 -1
0 -1 0 0 -1
ms3 = 1 0 0 , My = 1 0 0
0 0 1 0 0 -1
0 -1 0 0 -1 0
nms = -1 0 0 , Mg = -1 0 0
0 0 0 -1

Theorem 1. a) @ is formed by the matrices of the form diag(a,b,c) or
0 a O
b 0 0], where a,b,c e {-11}.
0 0 ¢

b) P, #P .

Proof. a) Represents the synthesis of the above explicitation.
b) We have to indicate a matrix 7 € 2\ ;.

Consider the algebraic identitites
q(x,y,z)=x2+y2—22=(x+y+z)2—2(x+z)(y+z) 3)
2
q(x,y,2)=(x+y+z)"-2(z-x)(z—-y) “4)
and the linear map ¢: R3 5 R , t(x,y,2z)=(x,)1,21) , where xj,y;,z; are given

by the relations.
xxty|—z1=x+y+z, zZ1—-x=x+z, zZ1-y=y+z, %)

whence

by(3) ) by(4)
q(x,,2) = (x+y1—21)" =2(z1 —x)(z1 =) = q(x1,)1,21)-

Thus, g(¢t(x,y,z))=q(x,y,z), for any x,y,z, therefore the matrix 7" associated to

the linear map ¢ (in the canonical basis of R3) belongs to @ . On the other hand,
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solving the linear system, it follows that xj=x+2y+2z, y=2x+y+2z,

1 2 2
z1=2x+2y+3zhence T={2 1 2|.
2 23

Since T # my,, for any 1<k <16, it follows that 7' ¢ ?;.

The matrix 7T is invertible with the inverse

1 2 -2
il 2 1 -2
2 -2 3

and moreover, (7T - x) = g(x), for any triple x € z3.

We also consider the matrices

-1 2 2
V=T-ms={-2 1 =2
-2 2 3
and
1 -2 2
W=Tmy=|2 -1 2|.
2 -2 3

These matrices 7,V,W belong to the group G(q).

Definition. Two triples of pitagoreic numbers u =(x,y,z), v=(x",)',z'),

2 2

i.e. non-null solutions in N> of the equation x~ + y2 =z* are said equivalent if

thereis ne N such that either V=n-u,or u=n-v.

For instance, (1,0,1) and (3.4,5) are not equivalent, but (3,4,5) and (6,8,10)
are equivalent.

Theorem 2. Let s =(3,4,5)T be the standard solution of the equation

X2 +y2 =z% in N>. The set S of all nonequivalent solutions in (N*)3 of the

2

equation x>+ y2 =z is just the set of the vertices of the following ordered tree:
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Ts Vs Ws
T?s VTs WTs TVs V3 WVs TWs VWs W2s

In other terms, all the elements of S are obtained by starting with s and
multiplying it with T,V ,W taken in an arbitrary order.

Proof. If (x,y,z)e®;, put (p,q,r)T =T_1(x,y,z)T, that is
p=x+2y-2z,g=2x+y-2zand r=-2x-2y+3z.

One easily verifies that 0 <7 <z and p,q cannot be both negative. If (x,y,z) e S

and (x',y',z')T =T~(x,y,z)T, then y'-x'=—(x—y) hence | x— y| is preserved;
then, z'-x'=z+x and z'-y'=z+y, hence z—x and z—y increase. On the

other hand, if (x",y",z”)T = V-(x,y,z)T , then y"—x"=—(x+y) hence | y—x]|
increases, z''—x''=z—x hence z—x 1is preserved and z"-y"=z+y, that is
z—y increases. Finally, if (x"',y'”,z'”)T =W~(x,y,z)T, one  gets
ylvv_xvvv:x+y , M x"=z4+x and Zm_ym
and z -y is preserved.

=z—y, hence y—x, z—Xx increase

Thus, startind from s, all the pitagoreic triples (a,b,c) such that
|a—b|=1 are obtained by 7" -s .

The pitagoreic triples (a,b,c) such that c—b =1 (or ¢ —a =1) correspond
to V" -s and those having components that differ by 2, are obtained from W" -s .

One can explicit the powers 7", V" W" (by diagonalisation of T,V ,W).

For instance, one gets that V" .s= (4n2 +8n+3,4n+4, 4n® +8n+ S)T and



52 Alina Petrescu-Nita, Carmina Georgescu

w".s=12n+3, 2n% +6n+ 4, 2n% +6n+ S)T , which correspond to the solutions of
the form (a,b,a +2) and respectively (a,b,b+1) from the set S.

4, Conclusions

The main aim of the work is to study the group of all matrices which keep

invariant the pitagoreic quadratic form X+ y2—22 . One knows the classical
parametrization of the set S of all triples of non-null natural numbers (x,y,z)
? 2, y=2pgk, z=k(p?+¢%), with

such that x2+y2 =z"; namely x=k|p2—q

k.p.geN’, p#q.
The theorem 2 allows another listing of the elements of §. At any level r

of the above ordered tree, one get 3 solutions. Explicitly, starting with
S = (3,4,5)T =(3,4,5), are obtain

(3.4,5)
T W
%
(21, 20, 29) (15,8, 17) (5,12, 13)
4\ 4\ ¥\
(119, 120, 169) .ot (7,24, 25)
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