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SIMULATING THE SOLUTION OF THE DISTRIBUTED 

ORDER FRACTIONAL DIFFERENTIAL EQUATIONS BY 

BLOCK-PULSE WAVELETS 

M. MASHOOF 1, A. H. REFAHI SHEIKHANI 2 

In this paper, we introduce methods based on operational matrix of 

fractional order integration from fixed point (initial value point) for distributed 

order fractional differential equations (DFDE). We use block-pulse wavelets and 

hybrid functions matrix of fractional order integration from arbitrary initial point, 

where a fractional derivative is defined in the Caputo form. By the use of this 

method we translate a (DFDE) to algebraic linear equations which can be solved 

then. The proposed method has been tested by some numerical examples.  

Keywords: distributed order fractional differential equation, wavelet, block pulse, 

hybrid function, operational matrices. 

1. Introduction 

The history of fractional calculus is more than three centuries old; 

however, only in the last two decades the field has received practical attention and 

interest; see [1], [2], [3] and [4] for more details on this regard. Fractional calculus 

is the generalization of calculus, in which the order of derivatives and integrals 

can be arbitrary numbers. The distributed-order operators can be obtained when 

we integrate the fractional-order calculus operators with respect to the order 

variable. The first idea of distributed order differential equation was stated by 

Caputo in 1969 and later developed by [5] and [6]. These distributed-order 

differential equations were mainly formed in constitutive equations of dielectric 

media [7], diffusion equations [8] and the multidimensional random walk models 

[9]. The interested readers can refer to [10], [11], [12], [13], [14] and [15] for 

more details. Here and in this paper, we consider the distributed order linear 

equations of the form 

        g(t),=dty  00
ttDt

c

t

b

a

  
,                                                      (1) 

             under initial conditions, 
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,      
    biyty i ,...,1,0,i0                                         (2) 

where 


t

c

t D
0

 is the th  fractional order derivative of  ty  in Caputo 

sense from 0t . A recent development of approximation theory is approximation of 

an arbitrary function by wavelet polynomials. There are different types of wavelet 

such as block-pulse wavelet, Haar wavelet, Mexican-Hat wavelet, Shannon 

wavelet, Daubechies wavelet, Meyer’s wavelet, and so forth. In this paper, we 

mainly focus on approximation by block-pulse wavelet and hybrid functions of 

based on Block-pulse wavelet and Shifted Legendre polynomials. Any time 

function can be synthesized completely to a tolerable degree of accuracy by using 

set of orthogonal functions. For such accurate representation of a time function, 

the orthogonal set should be “complete” [16]. In this paper, we will apply Block-

pulse and Hybrid functions based on Block-pulse wavelet and Shifted Legendre 

polynomials to approximate the solution of (1) under conditions (2). In section 2 

we present a number of definitions about fractional calculus, distributed order 

derivative, block-pulse wavelets, hybrid functions and its properties. In section 4 

we will introduce a numerical method based on block-pulse and hybrid 

operational matrix, and in section 5 we will discuss the convergence of the 

described method. At the end, we will present some numerical examples. 

2. Preliminaries 

In this section, we present some basic definitions and properties of 

fractional calculus, distributed order derivative and wavelets [16]. 

Definition 2.1.  A real function   0, xxf  is said to be in space C , 

R  if there exists a real number  p , such that    xfxxf p

1  

where     ,01 xf , and it is said to be in the space 
mC  if Cf m  , Nm .         

Definition 2.2.   The Riemann-Liouville fractional integral of order  from 

0t  with respect to t is   
 

    

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Definition 2.3.  The fractional derivative of  tf  by means of Caputo       

Sense from 0t  is defined as 
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            The relation between the Riemann-Liouville integral and Caputo 

derivative operator is given by the following expressions as in [17] and [18]: 
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              (3)  

Definition 2.4.  The fractional derivative of distributed order in the Caputo 

sense with respect to order-density function   0 from a to b with ba 0  

is as         dtfDtfD

b

a

t

c

t

t

ba  0

0 .                                                               

Remark 2.5.  We can see that when   , is Dirac delta function, then 

fractional derivative of distributed order-density function    and fractional 

derivative of order   are the same. 

Definition 2.6.  The m-set of block-pulse functions for 1,...,2,1,0  mi , on 

 T,0  is defined as  
 
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
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
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T
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 It can be shown that the functions ib  are disjoint and orthogonal [16]. 

           Theorem 2.7.  A function     TLtf ,02  may be approximated by the 

block-pulse function as      



1

1

m

i

m

T

ii tBFtbftf , 

where  m

T ffF 1 ,       Tmm tbtbtB 1  and  
 
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i dttf
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            Proof: In [16]. 

            Remark 2.8. From above theorem we have, 

 
 

 
 tfftf

ihthi
i

ihthi 


11
maxmin , this shows that if we approximate 

 tf  by  tBF m

T ; then the function    tBFtf m

T  has at least one zero in the 

  ihhi ,1 . 

Now we define the hybrid functions of Block-pulse and shifted Legendre 

polynomials. Firstly, we recall the shifted Legendre polynomials. 

Definition 2.9. The shifted Legendre polynomials are defined on the 

interval  1,0  and can be determined with the aid of the following recurrence 

formula 
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tP iii , where   10 tP and   121  ttP . 

 



196                                            M. Mashoof, A. H. Refahi Sheikhani 

Definition 2.10. Hybrid functions of block-pulse and shifted Legendre 

polynomials ijh , 1,...,2,1,0  mi  and 1,...,2,1,0  nj  are defined on  T,0  as 
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ij  where jP is the thj shifted Legendre 

polynomials on  1,0 .  

   

            Now, for approximating the function f we can set                                              
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T
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            Now we introduce the operational matrix methods based on block-pulse 

functions. Fractional integration from 00 t  of the block-pulse function vector is 

given as      tBFtBI mmtt

 
0

, where  F  is the block-pulse operational matrix 

of the fractional order integration [18] and 
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 Now, let    tBtHy mnmn ,  and      tHyQtHyI mnmnt ,,0

  ; then we can 

construct operational matrix for Hybrid functions as     1  FQ . In the 

following lemmas, we present operational matrix of fractional order integration 

from arbitrary 0t  for block-pulse wavelets and shifted Legendre hybrid functions. 

 

             Lemma 2.11. The operational matrices of the fractional order integration 

  from 0t  for mB on tt 0  are given as    
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             Proof:             
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            Remark 2.12.  It is clear that if  0,0 0  tj then
    FFt 
0

. 

 

            Lemma 2.13. The operational matrices of the fractional order integration 

 from 0t  for shifted Legendre hybrid functions vector mnHy , on tt 0  are given 

as  
    1

00

 
tt FQ . 

               

               Proof: Let       tHyQtHyI mntmntt ,, 00

  , so       tBQtHyI mntmntt  

00 , ,    

moreover;          tBFtBItHyI mntmnttmntt



000 ,  , that is 
   

00 tt FQ  , or 

    1

00

 
tt FQ . 

            In the following section, we will consider block-pulse wavelets and shifted 

Legendre hybrid functions for solving the distributed order linear equations as (1) 

under initial conditions (2). By the above descriptions, we can approximate a 

function f in   TL ,02 as   

                                                  tWwtf T .                                    (5) 

            3. Numerical methods 

For the sake of the simulation of solution of distributed order fractional equation 

(1) under condition (2), first, we consider the integration formulas of Newton and 

Cotes for the integral term in the distributed order equation [19], and next we use 

block-pulse functions described in the previous section for approximation of 

fractional derivative by using fractional operational matrices. Then we will have a 

system of linear equations in which it can be solved by existent methods; for 

example, we can use modified iterative methods [20] for this matter. Let we 

consider the following formula for approximation the integral term in the 

distributed order equation           
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Now by using equation (5) we have  
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where    tWwty T

y  ,    tWwtg T

g , and  tW  is block-pulse or hybrid 

functions of block-pulse and shifted Legendre vector functions, and w is it’s 

corresponding vector coefficients, respectively, so 
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Remark 3.1. Note that, as pointed out in [21],    tyDh i
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, where a very large number of 

terms are considered. On the other hand, from above relations we have 
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               If we replace the approximation with equality in the equation (8), we will 

have a linear algebraic equation which is solvable. By solving that, we can find 

yw  and then simulate  ty  as    tWwty T

y . 

4. Convergence analysis 

In this section we want to investigate the convergence of the method 

described in the previous section. Let   .,1,0C  be the Banach space of all 

continuous functions with norm    tftf
t 10

max
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Theorem 4.1.  Let  tf  be an arbitrary real bounded function, which is 
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,  is the best approximation of f out of X, Xf i  , from the last 

inequality we have                                                                                                  
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Now, we want to show the convergence of the block-pulse wavelets method for 

(DFDE). 

Theorem 4.3.  If we use, Newton and Cotes for the integral term and the 

operational matrix of the Block-Pulse functions for fractional term in equation (1), 

then we can convergence to the exact solution of (DFDE). 

Proof: Let     on  ba, . Now, we show 
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tends to zero when mn, . By integration of order b from 0t of mE we have                  
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theorem 4.1 and the above referred inequality we can see that 
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 , the last 

inequality shows that when m  then 0mE ; this means that the method 

described in section 3 is convergent.                                                                      

A similar theorem can be obtained from theorem 4.3 when we use the 

operational matrix of the hybrid of block-pulse and shifted Legendre functions. 

Theorem 4.4.  If we use Newton and Cotes for the integral term and the 

operational matrix of the hybrid functions of block-pulse and shifted Legendre 

functions for fractional term in equation (1), then we can have convergence to the 

exact solution of (DFDE). 

Proof: The proof is similar to the proof of theorem 4.3. 

5. Illustrative Examples 

 In order to show the efficiency of the methods described in section 3 and simulate 

the exact solution of distributed order equations, we consider some examples that 

their exact solutions are known. 

5.1. Example. Consider    
 

  01.01.0,10,
ln

23
1.19.19.0

1.0

1.0 


 yt
t

tt
dtyDt

c  
. 

The exact solution of this example is   2tty  . In this manner we use trapezoidal 

rule [19] for integral term with 2.0h ,  tB32  and  tB64 for approximating  ty . 

Now from equation (8) we can find yc  and then simulate  ty  by  tBcT

y 32  , 

and  tBcT

y 64 . Figure 1 shows the numerical results generated by block-pulse 
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vector functions  tB32  and  tB64 for the example 5.1, and from that we will see 

when m increases from 32 to 64; the numerical solution tends to exact solution. 

Table 1 shows the absolute error in some points. 

 

 

 

 

 

Fig. 1. Numerical and exact solutions of example 5.1 by block-pulse functions. 

 

 

 

 

 

               Fig. 2. Numerical and exact solutions of example 5.2 by hybrid functions 3,8Hy . 

 

 

 
 

By  tB32  and 2.0h  

 
By  tB64  and 2.0h  
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5.2. Example. Now consider
 

 
 t
tt

dtyDt

c

ln120

6 352

0

0





 

 
, 10  t , 

    000 '  yy . The exact solution is   5tty  . Similar to example 5.1, in this 

example we use trapezoidal rule [19] for integral term with 2.0h  and  tB32 , 

 tB64  and  tHy 3,8  for approximating  ty . In figure 2 we present the numerical 

and exact solutions generated by hybrid functions. Form figure 2 we can see that 

the numerical solution generated by hybrid functions are so closed to the exact 

solution. In table 2, we can compare absolute error of solutions generated  tB32 , 

 tB64  and  tHy 3,8 in some points. From table 2 we can see that the errors of 

hybrid function are less than block-pulse functions. 

 
                                                                                                                                                  Table 1 

Melting points and elemental analyses 

t   5

32 ttBcT

y   t   2

64 ttBcT

y   

 

0.144 

 

4.0425×e-6 

 

0.4062 

 

2.0174×e-5 

0.242 8.4520×e-5 0.5918 1.9726×e-5 

    

    

 

 

Table 2 

Melting points and elemental analyses 

t   5

32 ttBcT

y     2

64 ttBcT

y     2

3,8 ttHy   

 

0.1 

 

5.9470×e-6 

 

1.3777×e-7 

 

4.4538×e-7 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.3073×e-5 

1.9812×e-4 

1.4000×e-3 

4.7000×e-3 

5.4000×e-3 

2.7000×e-3 

7.6000×e-3 

3.1300×e-2 

5.4498×e-5 

8.4561×e-5 

4.9081×e-4 

1.9000×e-3 

2.2676×e-5 

6.9000×e-3 

8.1000×e-3 

6.8000×e-3 

1.3319×e-5 

8.6726×e-5 

2.6389×e-4 

5.5607×e-4 

9.2704×e-4 

1.3000×e-3 

1.6000×e-3 

1.6000×e-3 
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          Fig. 3. Error of block-pulse approximations generated by m = 32, 64 for examples 5.1, 5.2. 

 

Also, in figure 3 we present the error for examples 5.1, 5.2 generated by m = 32, 

64. From figure 3 we see that when we double m, the number of zeros of 

   tBcty m

T

y  are double in each interval 
 








 

m

Ti

m

iT 1
, . This idea was supported 

in remark 2.8. Notice that in each example we translate a DFDE to algebraic 

linear equations such as bAx   and then solved these equations. 

            6. Conclusions 

The fractional differential equations play an important role in physics, 

chemical mixing and biological systems. The distributed-order operators can be 

obtained when we integrate the fractional-order calculus operators with respect to 

the order variable. The fundamental goal of this work has been to apply block-

pulse and shifted Legendre hybrid functions operational matrix method to 

simulate the solution of DFDE with initial conditions at 0t . This method translates 

a DFDE to an algebraic linear equation which was presented in section 3 and the 

convergence of this method was demonstrated in section 4, also from section 4 we 

saw when m increases, we can obtain a good simulation of solution of DFDE with 

initial conditions. Moreover, two numerical examples were given to verify the 
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effectiveness of the proposed schemes to simulation of solutions. Although the 

proposed numerical algorithms are quite effective in case of deterministic 

differential equations with smooth solutions, one has to further investigate how 

pulse wavelets numerically behave in case of stochastic differential equations 

(which really are sources of fractal signals).       
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