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WEAK CONVERGENCE THEOREM OF GENERALIZED
SELF-ADAPTIVE ALGORITHMS FOR SOLVING
SPLIT COMMON FIXED POINT PROBLEMS

Raweerote Suparatulatorn’

In the present paper, we introduce a self-adaptive algorithm for solving the split
common fized point problem of demicontractive operators in real Hilbert spaces. Weak
convergence result is discussed under suitable assumptions. Some numerical experiments
are also given to support our main theorem. Moreover, applications are given to the split
common null point problem and the split feasibility problem.

Keywords: split common fixed point problem, demicontractive operator, self-adaptive
algorithm.

MSC2010: 47J25, 47H10, 65K10.

1. Introduction

The split common fixed point problem and the split feasibility problem have received
much attention due to its applications in image reconstruction, signal processing, intensity-
modulated radiation therapy and computed tomography. Because the problem can be ap-
plied to solve several real-world problems as mentioned above, so many mathematicians
proposed algorithms for solving the problem, see [4, 12, 13, 15, 16, 17].

Let H; and Hy be two real Hilbert spaces with inner product (-, -) and norm || - ||. Let
S:Hy — Hyand T : Hy — H> be two nonlinear operators. Denote the fixed point sets of S
and T by Fiz(S) and Fixz(T), respectively. The split common fixed point problem (SCFP)
was firstly introduced by Censor and Segal [3], which is the problem of finding a point

x € Fix(S) such that Ax € Fix(T), (1)

where A : H; — H> is a given bounded linear operator. They invented and proved, in finite
dimensional spaces, the convergence of the following algorithm of two directed operators
S and T for solving such a problem: for an arbitrary point zy, generate a sequence {z,}
recursively by the rule

Tpi1 =S —7AYI - T)A)x,, n>0,

where 7 € (O7 %), with A being the largest eigenvalue of the matrix A*A (A? stands for
matrix transposition).

The SCFP (1) for demicontractive operators was first investigated by Moudafi [8], who
proved weak convergence of this problem, which the step-size of his algorithm was chosen in
such a way that it depends on the norm of the bounded linear operator A. Later on, there
has been growing interest in the SCFP (1) for demicontractive operators; for examples, see
Jirakitpuwapat et al. [5], Maingé [7], Padcharoen et al. [9], Shehu and Cholamjiak [10],
Tang et al. [11], Yao et al. [18].
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Recently, Yao et al. [14] presented the following iterative algorithm for the SCFP of
two demicontractive operators S and T' with constants 8 € [0,1) and u € [0, 1), respectively.
Algorithm 1.1: Initialization: given an initial point ¢y € H; be arbitrary, then compute
Tpy1 cyclically using

Yn = Ty — Sy + A" (I = T) Az, (2)
Tnt1 = Tn = YTnYn, 1 >0, (3)
where 7, is chosen self-adaptively as

— |2n — S$n||2 +[|(1 - T)ACEn”2 (4)
l[yn [I?

with v € (0, min{1—3,1—pu}) is a positive constant. If y, = 0, then x,, 11 = z, is a solution
of SCFP (1), and the iterative process stops. Therefore, the weak convergence of Algorithm
1.1 can be obtained under some mild conditions.

Another interesting point of view to achieve a better algorithm is the result of Kanzow
and Shehu [6]. In areal Hilbert space H, the inexact KrasnoselskiiMann scheme was modified
for fixed point problems of nonexpansive operators U : H — K, where K C H is nonempty,
closed and convex, as follows:

Algorithm 1.2: Initialization: given an initial point zog € H be arbitrary, then compute
Tp1 cyclically using

Tn+l = QnTp + BnUzy + 15, n >0, (5)

where r,, denotes the residual vector and «,, 8, € [0,1] such that a,, + 8, < 1. They also
proved the weak convergence result of Algorithm 1.3 under suitable assumptions.

Motivated by these research works, we construct a self-adaptive algorithm for solv-
ing the SCFP (1) and prove weak convergence theorem of the proposed algorithm under
some suitable assumptions. Some numerical experiments have been presented to show the
efficiency of our algorithm. Finally, we apply our result to solve split common null point
problems and split feasibility problems.

2. Mathematical preliminaries

In this section, we give some mathematical preliminaries which will be used in the
sequel. Let H be a real Hilbert space. We know that the metric projection Po from H onto
a nonempty, closed and convex subset C' C H is defined by

Pox :=argmin||z —y|, =€ H.
yeC

It is well known that P¢ is characterized by the inequality, for x € H

(x — Pox,y — Pex) <0, VyeC. (6)
Next, we have the following equality:
2(z,y) = ll=l” + llyl* = ll= = yII?, (7)
the subdifferential inequality:
lz +yl1* < llal® + 2{y, = + ), (8)
and
[tz + syl|* = t(t + s)llz]|* + s(¢ + 5)llyl* — stlla — y|I* 9)

for all z,y € H, s,t € R.
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Definition 2.1. An operator T : C — C' is said to be demicontractive (or k-demicontractive)
if there exists a constant k € [0,1) such that

1Tz —2*|* < o — 2*||* + kllo — Tz,

or equivalently,
1—k

(x —Tx,x—a*) > |z — Tx||?,

for all (z,z*) € H x Fixz(T).

We use — for weak convergence and — for strong convergence. Next, we give some
important tools for proving our main results.

Definition 2.2. Let T': C — H be an operator. Then T is said to be demiclosed aty € H
if, for any sequence {x,} in C such that x, — x € C and Tz, — y imply Tz = y.

oo
Lemma 2.1. [1] Let {o,} and {y,} be nonnegative sequences satisfying Z on < 00 and

n=1
’7n+1 S Yn +0n» n 2 0
Then, {vn} is a convergent sequence.

Lemma 2.2. (Opial) Let D be a nonempty set of H and {x,} be a sequence in H such that
the following two conditions hold:
(a) for every x € D, lim |z, — x| exists;
n—oo
(b) every sequential weak cluster point of {x,} is in D.
Then {x,} converges weakly to a point in D.

3. Weak convergence theorem

In this section, we study the SCFP (1) under the following hypothesis.
(HP1) Hy and Hj are two real Hilbert spaces;
(HP2) S : H — Hy and T : H, — Hj are two demicontractive operators with constants
B €10,1) and p € [0,1), respectively, and both I — S and I — T are demiclosed at zero;
(HP3) A: Hy — Hs is a bounded linear operator with its adjoint operator A*;
(H P4)

P4) The problem is consistent, i.e. its solution set, denoted by €2, is nonempty.
Next, we construct the following self-adaptive algorithm to solve SCFP (1) and prove
weak convergence of the proposed algorithm under some suitable conditions.
Algorithm 3.1: Initialization: given an initial point ¢y € H; be arbitrary, then compute
ZTp41 cyclically using
Yn = Tp, — Stp + A (I —T)Ax,, (10)
Tn+l = QnTp + /Bn(-rn - Tnyn) + 70, n >0, (11)
where 7, is chosen self-adaptively as

iy @0 — Szal® + |(I = T) Az, |2
. 1ynl[?

(12)

with v € (0,min{l — 3,1 — u}) is a positive constant, r,, denotes the residual vector, and
o, Bn € 10,1] such that «,, + 3, < 1. If y,, = 0, then x,, is a solution of SCFP (1), and the
iterative process stops.

Remark 3.1. z € Q if and only if ||z — Sz + A*(I — T)Az| = 0, see Yao et al. [14].
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Theorem 3.1. Let the following conditions hold:
[oe]

oo

(a) linrgigfanﬁn > 0; () Z lrnll < oo; (c) Z(l —ay, — Bp) < oo
—0

n n=0
Then the sequence {x,} generated by Algorithm 3.1 converges weakly to a solution of
SCFP (1).

Proof. Let z € Q. Firstly, we prove that lim ||z, — z|| exists. By the equivalence of
n—oo

demicontractive operators, we have

(Yns Tn — 2) = (T — Sy + A" (I = T)Azp, Ty — 2)
= (Tp — STy, xp — 2) + (I — T)Axy, Az, — Az)
1-06 1—p
> 2 P, s S0 T A
1 . 2 2
> 3 min{l — 5,1 — pu} (Hxn = Sxn||* + (I = T)Azy,|| ) ) (13)
Using (13), we derive
= Tatn = 2017 = llzn = 2I* = 270 (yn, 20 — 2) + 73 |lyn®
2
. [0 = Szn|* + |(I = T) Az, >
< ||xn—z||2—7m1n{1—ﬁ,1—,u}( TE )

2
2 (Hxn - anHz + H(I - T)Axn||2)

+7
[lyn?

2
(l2n — San|® + | — T) Azn||?)

= llzn — 2| = (min{l — 8,1 — u} =)

7
(14)
So, since v € (0, min{l — 8,1 — u}), we have for all n > 0,
[0 = Tyn — 2| < llzn — 2], (15)
On the other hand, we see that
[2ni1 = 2]l = llan(zn = 2) + Bn(@n — Tyn — 2) + 710 — (1 — an — Bn)2|

< (an + Bu)lzn — 2l + (1 = an = Bu)llrn — 2| + (e + Ba)lIrall
<lan = 2) + (1 = an = Bn) M + |[rall,

for some M > 0. By conditions (b) and (c) together with Lemma 2.1, we determine that
lim ||z, — z|| exists. This implies that {x,} is bounded. Here we show that lim |z, —
n—oo n—00

Sz || = ILm |(I —T)Azy| = 0. From (9) and (15), we have

lon(zn — 2) + Bn(Tn — TnYn — Z)||2 = an(an + Bn)llTn — Z||2 + Bnlan + Bu) |70 — Tnyn — Z||2
- anﬂnTEL”ynHZ

< (on + /Bn)szn - ZHQ - an6n7721||yn”2~ (16)
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Then from (8) and (16), we obtain
Znt1 = 2l* = llan(@n = 2) + Ba(@n = Tayn — 2) + 10 — (1 — @ — Bn)z|?
< lan(zn — 2) + Bu(Tn — Tutn — 2) 12 + 20 — (1 — a — Bn)2, Tni1 — 2)
< (an+ 5n)2||xn - 2”2 - aanTgnyn”Q +2(rn — (1 — an = Bn)z, Tny1 — 2)
< lzn — ZH2 - anﬁnTiHynHQ +2(rn — (1 — an — Bn)2, Tnt1 — 2)
= |20 — 2l* = anBuallynll? +2(1 — @ = Ba)(rn — 2,041 — 2)
+ 2(an + Bn)(rny Tpy1 — 2)
< l#n = 211* = anBarallynll® +2[(1 = an = Ba)llrn = 2|l + (an + Ba) I7nll] €041 — ||
< lwn = 2012 = anBatillyall® + (1 = an — Bn) My + [|ra || M,
for some My, My > 0. That is
B2 lynll? < m — 21 = Jmss — 21 + (1 n — Bu) My + ]| Mo,

By our assumptions, we have that lim 72||y,||> = 0, which implies that
n—oo

o — Sz|2+ (I = T) Az, ||2)°
lim (I |+ |I( ) A, |?) o (17)

n—o0 lynl[?

However, we observe that

2 2
(”xn = Swa|* + (I - T)Aan2) (”xn = Swa|* + (I - T)Axn||2)

PAE " e — Sz + A (I — T) Az, |2
(0 — Sz + (I — T) Az, |12)°
= 2(lzn — Szl + AP — T) Az, )
N ”xn - SCCn”2 + ”(I — T)ACCHHQ.

18
2 2ma(L [T "

Combining (17) and (18), we immediately obtain
nh—>Holo |z — S| = nh_}rrgo (I —=T)Az,| = 0. (19)

We next show that every weak cluster point of the sequence {x,,} belongs to the solution set
of SCFP (1). Let z be a sequential weak cluster point of {z,}, that is, it has a subsequence
{zn,} fulfilling z,, — Z as k — oo. Since A is bounded linear operator, we obtain that
Azy, — AZ as k — oco. By the demiclosedness at zero of I — .S and I — T, we can conclude
that z € €.

Finally, by Opial’s lemma (Lemma 2.2), we can conclude that {z,} converges weakly
to a solution of SCFP (1). The proof is now completed. O

4. Numerical experiments

In this section, we provide some numerical experiments and illustrate its performance
for supporting our main theorem.

Example 4.1. Let Hy = Hy = Iy with usual norm. Define

S (01,0, 05, ...) = {(gvlsinvll,Zwsiné,0,0,0,...) if v1#0 and v #£ 0,
(

0,0,0,...) otherwise,

and T (v, vg,v3,...) = =3 (v1,v2,03,...), and let A(v1,v2,v3,...) = (0,v1,v2,...) for all
(1}171)2,’03,...) Elg.
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. 20
Choose a,, = 3&71‘31), Bn = % and 7, = (%_H) for all n > 0 in Algorithm

3.1. It is not hard to show that S is O-demicontractive but not nonexpansive and T is
%—demicontractive and T is not quasi-nonexpansive. So, we set v = % and consider different
choices of x( as follows:

Choice 1: xg = e1 + e3 + bes;

Choice 2: xg = 3e; — 6es + 2e3;

Choice 3: g = —7ey + 4es — bes;

Choice 4: xg = —20e; + 25e5 — 17eg3,
where e; is the sequences whose the i*" term is 1 and the other terms are zero, for i € N.

In the experiment, we choose the stopping criterion is E, = [ly,|| < 1076 such
that z := (0,0,0,...) is the solution of the SCFP (1). The following table shows numerical
experiments of Algorithm 1.1 and Algorithm 3.1 for solving SCFP (1) with different choices
of Zo-

Choice of xg Algorithm 1.1  Algorithm 3.1
Choice 1 No. of Iter. 41 27
Elapsed Time (s) 0.0023 0.0007
Choice 2 No. of Iter. 43 27
Elapsed Time (s) 0.0015 0.0006
Choice 3 No. of Eer. 43 25
Elapsed Time (s) 0.0025 0.0006
Choice 4 No. of Iter. 46 24
Elapsed Time (s) 0.0032 0.0010

TABLE 1. Numerical experiments of Example 4.1.

From Example 4.1, we observe that the sequence generated by our algorithms involv-
ing the residual vector provides less number of iterations and elapsed times than that of Yao
et al. [14].

5. Applications

In this section, we apply our main result to obtain two new algorithms for solving the
split common null point problem and the split feasibility problem.

5.1. The split common null point problem

Recall that a set-valued mapping M : H; — 21 is called monotone if for all z,y € H;,

u € M(z) and v € M(y) imply
(x —y,u—v) > 0.
A monotone mapping M is said to be maximal if the graph G(M) is not properly contained
in the graph of any other monotone map, where G(M) := {(z,y) € Hy x Hy : y € Mz} for
a multi-valued mapping M. The resolvent operator J éw associated with M and § is defined
by
Jy () = (I +BM) " (z), x€Hy, >0,

It is known that the resolvent operator J, é” is single-valued and 0-demicontractive and that
a solution of the problem: find x € Hy such that 0 € M(z) is a fixed point of Jé”7 for all
B > 0, see [2]. Now, given set-valued maximal monotone mappings By : H; — 2 | and
By : Hy — 282 | respectively. The split common null point problem (SCNP) is the problem
of finding a point « € H; such that

0 € Bi(z) and 0 € Ba(Ax). (20)
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By setting S = Jfl and T = JﬁB"’, we see that Algorithm 3.1 reduce to the following
algorithm for studying SCNP (20).

Algorithm 5.1.1: Initialization: given an initial point ¢y € H; be arbitrary, then compute
ZTp41 cyclically using

Yn =T — J5 w + AT(1 = TF?) Az, (21)
Tnt1 = ATy + Bn(Tn — Tnyn) + Tn, n >0, (22)
where 7, is chosen self-adaptively as
lzn = I3 @nll* + (1 = J52) A ||?
lynll?

with v € (0, 1) is a positive constant, r,, denotes the residual vector, and «,,, 8, € [0,1] such
that a,, + B, < 1. If y,, = 0, then z,, is a solution of SCNP (20), and the iterative process
stops.

(23)

Tn +—

We immediately obtain the following result by Theorem 3.1.

Theorem 5.1. Suppose the conditions (a) — (c) in Theorem 3.1. Then the sequence {x,}
generated by Algorithm 5.1.1 converges weakly to a solution of SCNP (20).

5.2. The split feasibility problem

Given nonempty, closed and convex sets C' C H; and Q C Hs. The split feasibility
problem (SFP) is to find

x* € C such that Az* € Q. (24)

By setting S = Po, T = Py, k(x) = %H(I — Po)x|]? and ((x) := %H(I — Pg)Az|? for all
x € Hy. Then Vk(z) = (I — Po)z and V((x) = A*(I — Pg)Axz. Then Algorithm 3.1 reduce
to the following algorithm for studying SFP (24).

Algorithm 5.2.1: Initialization: given an initial point o € H; be arbitrary, then compute

ZTp41 cyclically using
Yn = VE(x,) + VC(20), (25)
Tn+1 = Qpdnp + ﬁn(xn - Tnyn) + Tn, M Z Oa (26)
where 7, is chosen self-adaptively as
(k+ Q(xn)
l[ynll?

with v € (0,1) is a positive constant, r,, denotes the residual vector, and a,, 8, € [0, 1] such
that oy, + B, < 1. If y, = 0, then z,, is a solution of SFP (24), and the iterative process
stops.

Tp =2 (27)

We get the following result by Theorem 3.1.

Theorem 5.2. Suppose the conditions (a) — (¢) in Theorem 3.1. Then the sequence {xy}
generated by Algorithm 5.2.1 converges weakly to a solution of SFP (24).

6. Conclusion

The problem of SCFP (1) is discussed, and we provide a self-adaptive algorithm,
Algorithm 3.1, is presented for solving the problem. Convergence analysis of the algorithm
shows that, under some simple and suitable control conditions, the sequence generated by
Algorithm 3.1 converges weakly to a solution of the problem.
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