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OBSERVABILITY AND SINGULARITY IN THE CONTEXT OF
ROSSLER MAP

Madalin FRUNZETE!, Adrian LUCA2, Adriana VLAD?, Jean-Pierre BARBOT*

Conceptele de observabilitate si singularitate descriu structural un sistem di-
namic multi-dimensional i reprezinta elemente foarte importante tn dezvoltarea
unui observator in multe aplicatii bazate pe haos. Lucrarea discutd cele doud
concepte in contextul sistemului Réssler discret. Scopul este de a decide care
variabild de stare este cea mai potrivita pentru a fi aleasd criptogramd intr-
o metoda de cifrare de tip incluziune, bazatd pe sistemul Rossler. Rezultatele
experimentale obfinute sunt sustinute si de coeficientul de observabilitate cal-
culat pentru sistemul Rossler discret prin adaptarea unui algoritm cunoscut in
literatura pentru sisteme dinamice continue.

The concepts of observability and observability singularity describe struc-
turally a multi-dimensional dynamical system and they represent very important
elements for developing an observer for many applications, as for example: ob-
server based diagnostic, control of induction motor without mechanical sensor
or again as it is emphasized in this paper cryptographic application (of type
inclusion method). Here, the two concepts are discussed and evaluated in the
context of Rdssler map, coming up in the end with a strong argument in order
to know which state variable of the system will be chosen as cryptogram.
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1. Introduction

Since Shannon’s work in 1949 [1], cryptography has experienced different
development directions including the approach between the chaotic systems and
cryptography. Thus, the approach of different concepts such as statistics, cryp-
tography and dynamical systems theory have led to numerous studies in the field
of chaos based cryptography (e.g. [2], [3], [4], [5]). In general, the applicabil-
ity of dynamical systems in cryptography is based on ergodicity, the property
of mixing and the sensitivity to initial conditions. Besides these properties, the
notions of observability and singularity are basic elements in the development of
cryptographic applications of type inclusion method (see [2], [4]).

Thus, from the perspective of applications in cryptography, this paper makes
a detailed analysis of Rossler map in terms of the two concepts, namely observ-
ability and singularity. The interest in Rdssler map is derived from previous
studies [6, 7] which showed good statistical properties and thus its suitability for
applications in cryptography.

Roughly speaking, observability in the context of a n-dimensional chaotic
system means that having involved a sequence of values generated by one of the n
state variables of the system, the phase space of the system can be reconstructed.
Note that the concept of observability is discussed in the hypothesis that the
system parameters are known.

A complete point of view and the definition of the locally weakly observable
is given by R. Hermann and A. Krener in [8]. An algebraic point of view, given
by S. Diop and M. Fliess, may be also found in [9].

Singularity manifold of a chaotic system (noted by Sg) is the space where the
system loses its observability property from the perspective of the considered state
variable. In terms of use in cryptography is ideal if the system has no singularity
manifold, S5 = . In other words, the system is 100% observable from the point
of view of the considered state variable. A detailed example on the interpretation
of the singularity manifolds of Réssler continuous system [10] is found in [11].

Section 2 presents theoretical interpretation of the notions of observability
and singularity in the context of three-dimensional discrete time chaotic systems.
Section 3 exemplifies in theory and evaluates experimentally the two concepts in
the context of Rossler map. The results support the usage of Rdossler map in
cryptographic applications of type inclusion method and help the experimenter in
choosing state variable to serve as a cryptogram.
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2. Theoretical background

Let us consider a nonlinear discrete system described (1) in the three-
dimensional space R3, i.e. (z1, 79, 23)T, where z; € R are the state variables.

x:r = fi($1,$2,x3), 1= 172737 (1)

r = (21,29, 73)7 € R3 represents the state vector evaluated at k iteration (i.e.
z(k)), so 7 = x(k + 1). Assume that an observable s is obtained using the
measurement function A : R3(z) — R(s). It is thus possible to reconstruct the
phase space from the time series {z;(k)} using for instance consecutive iterations
(X =s,Y = s, Z = stT). The coordinate transformation between the origi-
nal phase space R3(xy, zox3) and the iterative embedding R3, i.e. (XY, Z)7T is
defined by:
X =s5=u
DY =sT =af (2)
7 =gttt = $Zji-+
Variables X, Y and Z correspond to the current k iteration, next iteration
k + 1 and to the k + 2 iteration, respectively. The observability matrix O; of a
nonlinear system of type (1) observed using the i*" state variable is the Jacobian
matrix of map ®;, [12]. The same idea has been shown for continuous systems

(Lorenz, Rossler systems) by Letellier et al. in [13].
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The system is thus fully observable when the determinant det(O;) never
vanishes, that is when map ®; defines a global diffeomorphism (®; must also be
injective, a property observed in most of the cases). When det(O;) never vanishes,
the map ®; can be inverted everywhere and the system can always be rewritten
under a reiterative form:

Xt=Y
Yt =27 (4)
Zt =F(X,Y,Z)

where the model function F;(X,Y, Z) is free of singularities and subscript ¢ des-
ignates the measured state variable. Otherwise, a system such (4) might be ob-
tained, but with singularities. This situation occurs when det(O;) = 0 over some
space in the original space: the system is said to be not fully observable.
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The subspace mentioned in the previous paragraph can be () or many points.
The different states in such a subspace, in the original phase space, cannot be
distinguished in the reconstructed space using the observable. It is then said that
the original system cannot be fully observed from the recorded state variable.
From a practical point of view, even two different states that are close to the
aforementioned subspace are very hard to distinguish in the reconstructed space.

The singularity manifold S5 is the subspace where the map ®; cannot be
inverted and the system cannot be rewritten under a form as (4). A mathematical
interpretation of the singularity manifold is given in (5):

So.i = {(z1,12,23) € R | det(0;) = 0} (5)

where subscript ¢ designates for which state variable was computed S5. Therefore
the quality of the observable depends on the existence of a singularity subset, its
dimension and its location with respect to the attractor of the system.

3. Case study: Rossler map

In this section the way to obtain the singularity manifold in the context of
Rossler map (6) will be presented; the parameter vector was considered for the
experiments: (a1, ag, by, by, bs, by, c1,¢2)T = (3.78,0.2,0.1,2,0.35,1.9,3.8,0.05)T.
The analytic exemplification is done in the case when selected observable is the
first state variable x;. Also some experimental results are given for the other two
state variables.

vy = a1 (1 — 21) + asxy
z3 = by[(1 = bowy) (22 + b3) — 1](1 — byxs) (6)
r3 = c1o3(1 — x3) — (1 — bazy) (o + b3)

By the form (6) considering as observable the first state variable s = x;, the

coordinate transformation between the original phase space 3, i.e. (1,79, 23)7,
and the iterative embedding R3, i.e. (X,Y,Z)%, of type (2) is obtained:

X =5= T T
P Y =sT=uaf = a1z1(1 — 1) + asxy (7)
Z =5t =gt arry (1 —2]) + axad

The observability matrix O of Rdssler map (6) obtained using the first state
variable z; is the Jacobian matrix of map ®; (see (3) and (7)):

1 0 0
01 = €1 Qa2 0 (8)
€y €3 a2b1b4[(1 — bel)(xQ + bg) — 1]
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where:
€1 = a1 — 2&11’1

2 202 2 2 2 2 3 _ 3
ey = aj — aj(ay — 2)x; + aj(a] + 2a2)x] — 2aja2x] — ajasxs+

-+ 2&1&351311’2 — agblbg(ﬂﬁg + bg)(l — 641'3)
€3 = —2&?6121'1(1 —+ 33'1) — 2@%@%1’2 + ajag + a2b1(1 — bgl'l)(l — b4£L‘3)
The determinant of observability matrix O; from (8):

det(01) "2 Ay, = a3biba[(1 — byay) (o + by) — 1] (9)
From (5) and (9) the singularity manifold Sp ; is:

So1 = {(z1,22,23) € R [ A,, = 0}
= {(1‘1,332,.%3) € R? ’ (1 — ble)(ﬂi’Q + bg) —1= O}

The graphical representation of the singularity manifold and the attractor
of the Rossler map is presented in Fig. 1.

The system attractor was computed for 10° iterations starting from the ini-
tial condition z(0) = (z1(0), 22(0), z3(0))T = (0.224,0.054,0.741)". By computing
the determinant of the observability matrix for each point of this attractor in all
three cases it can be concluded which of the state variables has a better observ-
ability. For interpreting the results the experimental distribution law of each A,
is given in the Figs. 2, 3 and 4.

So, in each of the three Figs. 2, 3 and 4 is given a distribution p(4,,) of
the values for each determinant. The intersection with the singularity manifold is
represented by the points situated on 0.

Selecting the observable as first state variable s = x; of (6) it can be observed
that there are no values around the critical point 0. By performing a comparative
analysis, Figs. 1 and 2, it is confirmed that there are no intersections between the
Réssler attractor and singularity manifold Sp; because the determinant of the
observability matrix A, is always different than 0. So, there are no points of the
attractor on the singularity manifold and the system is fully observable when
is selected as observable.

An interpretation in terms of the distribution of the computed values for A,,
and A,, was given only for the state variables x5 and x3. A graphic interpretation
of the type given in Fig. 1 for x; was not comprehensive for x5 or x3. This is
because the complexity of singularity manifolds for these state variables does not
allow a clear view.

Analyzing the distribution of values of A,, for the same 10° points of the
system attractor it can be observed that all the values of the determinant can be

(10)
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@) b} (c)

F1G. 1. Rossler attractor (a), singularity manifold S5, (b) and
combined Rossler attractor and singularity manifold Sp ; (c)
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Fi1G. 2. Determinant of the observability matrix for

found in the vicinity of the critical value 0 determined with an approximation of
1071

The corresponding Fig. 4 for the state variable x3 is obtained in the same
manner as for the observable s = x5. It can be observed that most of the values
are in the vicinity of 0 too.

An interval of range € = 10~* around the critical point 0 was set in order to
compute an average probability to reach this singularity region. The probability
that A,, to belong to this interval was computed as a ratio between the occurrences
of A,, € e and 10° (total number of the points for the experimental attractor).
For the state variable x5 the values of the determinant represented in Fig. 3 found
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FiG. 3. Determinant of the observability matrix for s

in the interval € are 0.0803% from the ensamble of 10°. For the state varable w3,
3.18% values of the determinant from the ensamble of 10° belong to the € interval.
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F1G. 4. Determinant of the observability matrix for x3

The results, obtained in this section, are in line with the observability coef-
ficients computed for Rossler map in the Appendix. The algorithm implemented
represents the interpretation for the discrete case for an existing algorithm [14].

4. Conclusions

Analyzing the experimental results for this new approach it can be said that
the choice of the state variables x; to act as a cryptogram in an application of
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type inclusion method [4] is well done. In terms of the principle of bi-univocal
cryptography concepts, this paper makes a contribution in terms of respecting it;
namely for x; as cryptogram there is no loss of observability, then there is no loss
of information.

Also, concepts for a multi-dimensional discrete systems by adjusting analysis
for continuous systems were presented.
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Appendix

Observability coefficient in discrete case is computed by adapting the algo-

rithm proposed in [14].

(1) Write the so-called fluency matrix by replacing each (non)linear element of
the Rossler map (6) with (1) 1, and zero otherwise. This corresponds to
(non)linear term in the vector field. The elements from the first line cor-
responding to the first equation (27 = ayz1(1 — x1) + agzs) are: Fyy = 1
because there exists a nonlinear dependence on x1, Fj5 = 1 means that it is
a linear dependence on x5 and Fj3 = 0 as there is no dependence on x3.

Fij = (11)

= =] =
= = =
== O

(2) Choose a variable to “reconstruct” the dynamics. Define a column vector
C1; when 1 corresponds to the “measured” state variable x; and 0 otherwise.
Then replace the diagonal element of the fluency matrix F' corresponding
to this variable by a dot and multiply each row of it by the corresponding
element in €4 ;. The matrix H,; is thus obtained:

1 0 0
Cii= |0 Cip= |1 Ciz= |0
0 0 1
e 10 000 00 0
Hiy=|0 0 0| Hia=|[1 e 1| Hys=1[00 0
00 0 00 0 11 e

(3) Count the number p; ; of the linear elements and the number ¢ ; of nonlinear
elements in H; ; for each state variable x;, i € {1, 2, 3}.

pia=1 p12=0 p13=0
q11 =20 G2 =2 Q13 =2
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(4) Replace the dot in Hy; by 0, 1 or 1 acording to the fluency matrix Fj;, and
transpose H ;.

100 010 00 1
HI = {1 0 0 H,=10 10 HI,=10 0 1
00 0 010 00 1

(5) Count the sum ot the elements of each row, both 1 and 1 should be counted
as 1. This defines the new column vector Cy ;.

1 1 1
Oy = |1 Cro = |1 Cr3 = |1
0 1 1

(6) Hy; is obtained by replacing each non zero element of Hf , by a dot and
replacing each remaining element by its corresponding element in the fluency
matrix multiplied by the corresponding element of the column vector Cs ;.

e 1 0 1 e 0 11 e
H271 = |® 1 i H272 = 1 L I H273 = I 1 L
0 00 1 e 1 11 e

(7) Count the number py; of 1 and the number gy ; of 1.
p21=1 p22=0 P23 =1
G21 = 2 G22 = Q23 =05
(8) By the notation P1 = pLi, P2 = pgﬂ', q1 = q1,i7 Q2 = q2’i Wlth 7 € {1, 2, 3} The
observability coefficient is given by:

1 b1 q P2 q2
M=z + + +
2 m+a i +a)? pete (P2t @)?
where p; + g is replaced with 1 + ¢, if p,, = 0.

T T2 x3

m = 0.7778 12 = 0.1065 13 = 0.1898

The results of the observability coefficient computed for Rossler map are in
line with the experimental results from section 3.



