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ON KÁRMÁN MODEL FOR COANDA EJECTOR WITH 
INCOMPRESSIBLE FLOW 

Corneliu BERBENTE1, Sorin DINEA2 

 Modelul Kármán pentru ejectorul Coandă cu regim de curgere incompresibil 
este utilizat şi completat în vederea precizării parametrilor care influenţează 
factorul de amplificare a forţei prin ejecţie şi limitele între care pot să varieze aceşti 
parametri. În acest scop, se stabilesc formule analitice de calcul. Se dau valori 
numerice pentru mai multe cazuri de interes teoretic şi practic. 

 Este pus în evidenţă un nou parametru, Λ,  de  care  depinde  existența 
soluțiilor modelului. Acest parametru, pe lângă gradul de neuniformitate a 
vitezelor  curgerii  secundare  în  secțiunea  inițială,  considerat  de  Kármán, 
conţine şi raportul ariilor ocupate de jet şi curgerea secundară iniţială, precum şi 
raportul dintre viteza maximă, la contact cu jetul, şi viteza medie indusă. Acest ultim 
raport este evidenţiat ca parametru important pentru stabilirea domeniilor de valori 
de interes practic. Se extinde profilul de viteze în secţiunea de plecare, şi se dă o 
metodă unitară de tratare simultană  a curgerilor plană şi axial-simetrică. 

Kármán model for Coanda ejector with incompressible regime is used and 
completed in order to point out the main parameters that influence the augmentation 
factor of thrust by ejection and the limits allowed for the variation of these 
parameters. To this aim one obtains analytical formulas of calculation. Numerical 
values for several cases of theoretical and practical interest are presented. 

A new parameter Λ, giving the existence conditions of the model is put in 
evidence. This parameter, besides the degree of flow nonuniformity in the section 
where the mixing starts considered by Kármán, also contains the ratio of jet and 
ejector surface areas, as well as the ratio between the maximal and the average 
velocities of the secondary flow, induced by mixing. This last ratio is proved to be an 
important parameter for the domain of practical values. The velocities profile in the 
starting section is extended and a unitary method to solve together both 2D and axi-
symmetrical flows is given. 

1. Introduction 

The Coanda effect regarding the jet flow evolution near solid curved walls 
was subject of many experimental and theoretical studies [1-6], some of them 
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done by Coanda himself [5]. A number of these studies were related to the wings 
of low aspect ratio [4]; others considered the ejector force augmentation [1;2;5]. 

In order to explain the mechanism of force augmentation obtained by 
Coanda ejector (an open tube with curved walls at entrance, where a jet is injected 
-fig.1), Kármán [1] considers an initial section 1, where one supposes that the 
mixing of jet with the air inside the tube starts, and section 2 at the ejector exit, 
where the the velocity is totally uniform and the atmospheric pressure is achieved. 
The chanel is considered of constant area, and the wall friction is neglected. The 
flow is  incompressible. 

Defining the force augmentation coefficient φ as the ratio: 

                          ( ) 22
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ρ + ⎛ ⎞⎛ ⎞φ = = +⎜ ⎟⎜ ⎟ρ ⎝ ⎠⎝ ⎠

 (1.1)

where U  is the jet velocity, constant on area a , and 2u  the exit velocity from 
ejector, through area ( a + A) . One denoted byρ the gas density, and by A the area 
of the secondary flow. 

 
Fig.1 The ejector 

 
Kármán pointed-out that the coefficient φ can be larger than unity. It tends 

to value 2 when the surface area ratio /A a  indefinitely increases, if the secondary 
flow velocity is constant in the initial section 1. For larger nonuniformity degrees 
of velocity in section 1, the  coefficient  φ  can approach values larger than 2.  In 
the following we detail and complete the formulas and the conclusions possible to 
obtain by using the Kármán model. 
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2. The velocity profile 

First we note the the injection is not necessarily done parallel to the wall, 
the jet joining however very quickly the wall,  due to the pressure decreasing 
along the wall (so called Coanda effect). Therefore, one takes the section 1 
immediately after the wall curvature vanishes. 

The mixing starts from the jet to axis; in the axis neighbourhood still 
remains a zone with potential flow, called  potential core.[7;8]. 

Kármán considers the initial section 1 (mixing start) with a null velocity, 
1u =0, on the axis; then the velocity increases along a distance h, being maximal at 

the jet contact, but smaller than U . 
In section 1, Kármán introduces a parameter of nonuniformity for the 

induced flow, denoted by λ, and defined by the relation: 
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bars indicating the average  values. 
Retaining this  idea, one takes however a more general velocity 

distribution in the secondary flow, section 1,  with a velocity not necessarily null 
at axis. Moreover, to improve the mixing one can introduce a counter current on 
axis, for example, by suction. The proposed velocity distribution is: 
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                      (2.2) 

 
C being constant, and β ,n parameters at hand. Forβ =0, one obtains the Kármán 
velocity distribution. 

The notations h și H are given inFig.1. 
By using the velocity distribution (2.2) and the definition (2.1), one 

obtains the average velocities and the expression of the parameter of 
nonuniformity, λ , in section 1, under the form: 
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where  ε =1 for 2D flow, and ε =2  for axi-symmetrical flow. In this way, one can 
treat the two cases together. 

 One can see that the degree of nonuniformity increases with ν , having a 
positive derivative, while for ν= 0 one has 1λ= . The derivative with respect to 
β is: 
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                          (2.5) 

i.e. the degree of nonuniformity decreases with  β , at ν =const. 
             The maximal secondary speed results at r = h: 

                                            1 (1 ) ,hu C
U

= +β                                                   (2.6) 

such that the ratio 1

1

hu
u

and its derivative have the  expressions: 
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Therefore the ratio 1

1

hu
u

decreases with  β , at ν =const. 

 3.The conservation laws. 

a) From the tube entrance up to the section 1 , the motion is potential (the 
potential core); therefore one can apply the Bernoulli law, as a particular case of 
the law of momentum conservation. 

At the jet – secondary flow contact (section1), the pressures are equal, 
such that the pressure is denoted 1hp . 

 One yields the pressure - velocity relations in section 1: 
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whilst the pressure 2p   at exit is constant and equal to the atmospheric prssure: 

∞= pp2 . 
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The equation of continuity [8;9] between the  sections 1 and 2                    
(A 1= A2 =  a +A),  gives:  

1 2A A

udA udAρ = ρ∫ ∫        (3.2) 

The equation of momentum [8;9] between the  sections 1 and 2 yields: 
( ) ( )
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From (3.2) one gets: 
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= +α −α α=  

whereas from (3.3) results: 
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   (3.5) 

Denoting by Λ  the combined parameter: 
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containing the degree of nonuniformity,λ , as well as the velocity ratio, , one 

obtains the following algebraic equation for the exit velocity 2u
U

: 
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The second degree algebraic equation (3.7) has the reduced determinant: 
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                                      (3.8) 

Therefore, real solutions exist if and only if 2.Λ ≤  
We write the two real solutions under the form: 
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From the expressions (3.9) one can see that the solution, 2 ,
I

u
U

⎛ ⎞
⎜ ⎟
⎝ ⎠

is positive for any 

2Λ ≤ , while the  other solution, 2

II

u
U

⎛ ⎞
⎜ ⎟
⎝ ⎠

, can be negative, or can change the sign, 

so that cannot represent a solution for our problem. 
Case n = 0 (ν = 0). 
In this case, the secondary speed  1u is uniform. The constant β plays 

no role, being included in the general  speed constant C. All quantities are 
now completely determinated as  functions of surface area ratio α. Below 
one gives explicit expressions for the basic quantities in this case: 

                       ν = 0 ; λ = 1 ; Λ= 1 – α ; ' 2Δ = α ;                                    (3.10) 
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When 0α→ , one gets the maximum force amplification φmax = 2. One 
can see that 1 /hu U <1, for any α. 
 
 
Study of several limit cases. 

For 2Λ = , ' 0Δ = , one gets: 

                                       2 2 11; 1; ( 2)
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u u u
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It is clear that the situation (3.13) is not a practical one, because the  jet 

cannot suddenly entail the entire air quantity from the ejector entrance. However 
the conditions (3.13) do not necessarily represent the trivial case of a uniform 
current in a tube of constant section. 

In Table 3.1 values for the exponent ν  and for the speed ratio 1 /hu U are 
given, when 2Λ = , β= 0. One remarks that  solutions exist only in a certain  
interval of surface aria ratio (α ≤  1/28). On the other hand, values larger than 
unity for the ratio 1 /hu U are not acceptable for simple mixing. 
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 Table 3.1 ; Values for  2Λ = , β= 0 . 
 

      
α 

0.0 1/50 1/40 1/28 

       υ 2.4142 3.1406 3.4072 5.1276 

1hu
U

 
3.4142 4.1406 4.4072 6.1276 

 
Therefore  one should take 2.Λ <  
A limit situation of interest for the study of the ejector performances is to 

have, as a maximal value, equal contact velocities at the initial section, that is : 

                                          1 1.hu
U

=                                                                 (3.14) 

 
As a consequence, between the parameters , ,α β ν  of the model a relation 

should exist. Considering ,α β independent, the exponent  ν  will result. 
In the Table 3.2, values for the parameters , ,ν Λ φ , dr  as functions of the 

surface area ratio α and of β, the parameter of the initial velocity on axis, are 
given. 

One denotes by  dr  the flow rates ratio, defined by the relation: 

           ( ) 2

2

11 ,d

A a u Ur
aU u

ρ + ⎛ ⎞ ⎛ ⎞= =φ = + φ⎜ ⎟ ⎜ ⎟ρ α⎝ ⎠⎝ ⎠
                                                (3.15) 

φ being the force amplification. 
                                                   Table  3.2.  

Values for  1 1.hu
U

=  

α 
     

1/100 
     

1/50 
        

1/40 
      

1/20 
        

1/10 
    

1/2 
    β = – 0.05    

ν  
1.8716 1.8820 1.8

880 
1.

9220 
2.010    

3.537 

Λ 
1.9054 1.8102 1.7

625
1.

5175
0.9822 - 

11.947 

φ 
10.389 5.4203 4.4

279 
2.

4360 
1.4334    

0.6155 

rd 
32.393 16.626 13.

474 
7.

1523 
3.9708    

1.3589 
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     β = 0    

ν  
2.4170 2.4230 2.428 2.

4600 
2.5670 5.050 

Λ 
1.8846 1.7716 1.7129 1.

4237 
0.8019 -15.004 

φ 
9.o84 4.801 3.919 2.

1892 
1.3151 0.5901 

rd 
30.310 15.648 12.676 6.

7804 
3.8034 1.3305 

    β = 0.05  

ν  
3.378 3.354 3.348 3.353 3.460 8.280 

Λ 
1.8480 1.7023 1.6312 1.2795 0.5444 - 19.328 

φ 
7.4999 4.018 3.3201 1.9096 1.1856 0.5637 

rd 
27.523 14.315 11.667 6.333 3.6113 1.3004 

From Table 3.2, one can see that the mixing (Λ) is diminished with β  and, 
accordingly, the force augmentation coefficient φ also  decreases. The exponent ν  
increases with β, at  1 /hu U  imposed. For negative values of the combined 
parameter, Λ, one yields force augmentation coefficients less than unity. The flow 
rate amplification, dr  , is also large. 

     The surface area ratio α, remains the main  parameter to influence 
mixing and the force augmentation coefficient, leading to  amplifications even by 
an order of magnitude. Certainly, by reducing the ratio 1 /hu U , one decreases the 
force amplification. For example, for 1 /hu U = 0.500, β = 0, one gets the values: 
ν =1.743; Λ= 1.602; φ= 3.664 (as compared to φ=9.084, for 1 /hu U = 1). 

4. Using the velocity ratio 1 /hu U as parameter. 

 Because the velocity ratio 1 /hu U  proved itself to play an important role in 
our analysis. Using it as parameter  in place of the exponent ν is therefore of  
interest, as it can be easily controled.  

 By  noting  that  the  ratio  between  the  maximum  and  average 
velocities in the secondary flow, 1 1/ hu u , has the expression: 

                                                   ( )
( )( )
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1

1 1
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1 1h

u
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+β + ν
=

+β + ν
                                       (4.1) 
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we will express successively the entrance and the exit velocities, as 
follows: 

                                      1 11 1 2 1

1 1

1;
1

h h
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u uu u u u
U u U U u U
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= = α+⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+α⎝ ⎠ ⎝ ⎠⎝ ⎠

.             (4.2) 

The force augmentation coefficient, φ, is expressed too as function of the 
section 1 parameters only: 
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⎛ ⎞⎛ ⎞
φ= α+⎜ ⎟⎜ ⎟⎜ ⎟α +α ⎝ ⎠⎝ ⎠

.                                    (4.3) 

The momentum theorem is then used to obtain an equation for the 
exponent ν , β being known. This equation is (see also (3.5)): 
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λ= +⎜ ⎟+ ν +β + ν⎝ ⎠

        (4.4) 

We remark that this strategy was already used to calculate the values given 
in Table 3.2. 

On the other hand, because  1hu /U and φ are closely related  parameters, 
by the expression: 

 

                                   ( )( )1 1

1

1h hu u
U u

⎛ ⎞
= φα +α −α⎜ ⎟
⎝ ⎠

,                                   (4.5) 

one can use as well  φ > 1 as parameter, then calculating the velocity ratio 
1 / 1hu U ≤ . 

5. Conclusions 

The Kármán model for Coanda ejector with incompressible flow and its 
extension are able to explain the force augmentation by mixing and aditional flow 
rate. The initial nonuniformity of the secondary flow is essential for the ejector 
performance. On the other hand, the mixing is complete when the exit velocity 
distribution is uniform, what requires a sufficiently long tube and small wall 
effects. The frictions effects were neglected; a diminution of the obtained thrust 
due to viscosity is also expected. If the turbulent boundary layer is considered in 
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connection with a divergent nozzle, a boundary layer separation can occur [7;8;9], 
affecting the uniformity of the  exit velocity distribution. The surface area ratio α, 
remains the main parameter to influence mixing and the force augmentation 
coefficient. Besides α, an important parameter was proved to be the ratio of the 
contact velocities between the primary and the secondary flows in the starting 
section where the potential core ends ( 1 /hu U ). 

Further theoretical and experimental studies are necessary in order to 
include the specified aspects, as well as a more accurate description of the jet 
characteristics around slit . 
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