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end, the results encompass a Hai-type characterization, a logarithmic characterization,
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1. Introduction

The qualitative theory exploring the exponential asymptotic behavior of dynamical
systems in Banach spaces, including aspects such as stability, instability, and dichotomy, has
seen considerable advancements over recent decades. This progress has been documented in
numerous studies (see [1, 2, 3, 4, 5, 9, 10, 14, 15, 17] and the references therein), encompass-
ing both deterministic and stochastic settings. Within the domain of dynamical systems
and ergodic theory, cocycles are fundamental as they encapsulate the linear evolution of
vectors along the trajectories of a dynamical system. Research on cocycles over dynamical
systems has been instrumental in understanding the stability properties of linear perturba-
tions evolving alongside nonlinear dynamical behaviors. For example, Stoica [14] obtained
a Perron type theorem for uniform exponential dichotomy in mean square of stochastic co-
cycles in Hilbert spaces. Furthermore, Dragičević [10] established several continuous and
discrete versions of the Datko type condition for exponential stability in average of cocycles.
Recently, Yue [16] was motivated by the work of Dragičević [10] to describe the exponential
instability in average of cocycles, using the Datko-Pazy theorem and Lyapunov functions.

Conversely, the classical concept of exponential (in)stability may appear overly restric-
tive. As such, it is crucial to explore more general behaviors, for example, by considering
polynomial growth rates (see [6, 11, 12, 18]). In [12], Hai proposed several discrete and con-
tinuous versions of Datko type theorems for uniform polynomial (in)stability in the mean of
stochastic skew-evolutionary semiflows, using Banach spaces of functions or sequences tech-
niques. Furthermore, Boruga studied a logarithmic condition and a Datko type condition
for polynomial stability in average of cocycles over semiflows in [8]. It should be noted that
the author in [8] focused solely on the continuous time case. A pertinent question arises
as to whether the logarithmic criterion and Datko type theorem can be extended to the
discrete time scenario. This paper will address this inquiry in the affirmative.

1Associate Professor, Department of Mathematics, Hubei University of Automotive Technology, Shiyan

442002, China, e-mail: : yuet@huat.edu.cn
2Associate Professor, Department of Mathematics, Hubei University of Automotive Technology, Shiyan

442002, China, e-mail: : liukaituo@huat.edu.cn
3Lecturer, Department of Mathematics, Hubei University of Automotive Technology, Shiyan 442002,

China, e-mail: : 905793623@qq.com

99



100 Tian Yue, Kaituo Liu, Jie Zhang

Drawing inspiration from [8, 10, 16], this paper delves into the study of uniform poly-
nomial (in)stability in average behavior of cocycles over maps. The primary objective is to
provide necessary and sufficient conditions for both uniform polynomial stability and insta-
bility in average behavior of these cocycles. Specifically, we establish four distinct necessary
and sufficient conditions for uniform polynomial stability in average: a Hai type characteri-
zation, a logarithmic characterization, and two Datko type characterizations. Concurrently,
we present analogous results for uniform polynomial instability in average. Notably, com-
pared to continuous time approaches, our methodology relies on discrete time techniques,
offering enhanced convenience for hypothesis verification and computational processes.

2. Preliminaries

In this section, we give some notations and definitions that will be used in the se-
quel. We denote by N the set of natural numbers, by N≥δ = {x ∈ N : x ≥ δ} and by
∆ =

{
(m,n) ∈ N2 : m ≥ n ≥ 1

}
. For a real number t, [t] represents the largest integer

less than or equal to t. Let Ω = (Ω,B, µ) be a probability space, X a Banach space, L(X)
the set of all invertible bounded linear operators from X to itself.

Definition 2.1. (see [7, 10]) Let f : Ω → Ω be an invertible measurable map. A measurable
map A : N× Ω → L(X) is said to be a cocycle over f if the following conditions hold:

(i) A(0, ω) = Id for all ω ∈ Ω;
(ii) A(n+m,ω) = A(n, fm(ω))A(m,ω) for all n,m ∈ N and ω ∈ Ω.

In what follows, we denote by

Aω(m,n) = A(m,ω)A(n, ω)−1.

Moreover, we denote by F the Banach space of all Bochner measurable functions z : Ω → X
such that

∥z∥1 :=

∫
Ω

∥z(ω)∥ dµ(ω) < ∞,

identified if they are equal µ−a.e.
Given a cocycle A over a map f , we shall always suppose that A is uniformly poly-

nomially bounded in average, that is, there exist K ≥ 1 and α > 0 such that∫
Ω

∥Aω(m,n)z(ω)∥ dµ(ω) ≤ K
(m
n

)α
∫
Ω

∥z(ω)∥ dµ(ω) (1)

for all (m,n, z) ∈ ∆× F.

Definition 2.2. Assume a cocycle A over a map f .
(i) A is uniformly polynomially stable in average if there exist N ≥ 1 and v > 0 such

that ∫
Ω

∥Aω(m,n)z(ω)∥ dµ(ω) ≤ N
(m
n

)−v
∫
Ω

∥z(ω)∥ dµ(ω), ∀(m,n, z) ∈ ∆× F. (2)

(ii) A is uniformly polynomially unstable in average if there exist N ≥ 1 and v > 0
such that

N

∫
Ω

∥Aω(m,n)z(ω)∥ dµ(ω) ≥
(m
n

)v
∫
Ω

∥z(ω)∥ dµ(ω), ∀(m,n, z) ∈ ∆× F. (3)

(iii) A has uniform polynomial decay in average if there exist M ≥ 1 and β > 0 such
that

M

∫
Ω

∥Aω(m,n)z(ω)∥ dµ(ω) ≥
(m
n

)−β
∫
Ω

∥z(ω)∥ dµ(ω), ∀(m,n, z) ∈ ∆× F. (4)
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Proposition 2.1. (see [13]) The following two relations hold for all γ > 0, m ∈ N≥1 and
(n, k) ∈ N2 with n ≥ k.

(i)
∑∞

i=m
1

iγ+1 ≤ 2γ+1

γmγ ;

(ii)
∑n

i=k i
γ−1 ≤ 2nγ

γ .

3. Uniform polynomial stability in average

The study in this section is devoted to establishing some discrete characterizations
for the uniform polynomial stability in average of cocycles. Firstly, we will present a Hai
[11] type characterization for the concept of uniform polynomial stability in average.

Theorem 3.1. A cocycle A is uniformly polynomially stable in average if and only if there
exist c ∈ (0, 1) and λ ∈ N≥2 such that∫

Ω

∥Aω(λn, n)z(ω)∥ dµ(ω) ≤ c

∫
Ω

∥z(ω)∥ dµ(ω), (5)

for all (n, z) ∈ N≥1 × F.

Proof. Necessity. It is a simple verification that (5) holds for λ = 1 + [N
1
v ] and c = N

λv ,
where N, v are given by Definition 2.2(i).

Sufficiency. Let (m,n, z) ∈ ∆ × F and p = max
{
j ∈ N : m ≥ nλj

}
. Then we have

λp ≤ m
n < λp+1. By the relations (1) and (5), it follows that∫

Ω

∥Aω(m,n)z(ω)∥ dµ(ω) =
∫
Ω

∥Aω(m,nλp)Aω(nλ
p, n)z(ω)∥ dµ(ω)

≤ K
( m

nλp

)α
∫
Ω

∥Aω(nλ
p, n)z(ω)∥ dµ(ω)

≤ Kλα

∫
Ω

∥Aω(nλ
p, n)z(ω)∥ dµ(ω)

≤ Kλαc

∫
Ω

∥∥Aω(nλ
p−1, n)z(ω)

∥∥ dµ(ω) ≤ . . .

≤ Kλα

c
cp+1

∫
Ω

∥z(ω)∥ dµ(ω)

=
Kλα

c

(
λp+1

)−v
∫
Ω

∥z(ω)∥ dµ(ω)

≤ N
(m
n

)−v
∫
Ω

∥z(ω)∥ dµ(ω),

where N = Kλα

c and v = − lnc
lnλ . Hence, A is uniformly polynomially stable in average. □

Next, we give below a logarithmic criterion for the uniform polynomial stability in
average concept by making use of Theorem 3.1.

Theorem 3.2. A cocycle A is uniformly polynomially stable in average if and only if there
exists a constant L > 1 such that(

ln
m

n

)∫
Ω

∥Aω(m,n)z(ω)∥ dµ(ω) ≤ L

∫
Ω

∥z(ω)∥ dµ(ω), (6)

for all (m,n, z) ∈ ∆× F.
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Proof. Necessity. If A is uniformly polynomially stable in average, then by Definition 2.2(i),
there are N ≥ 1 and v > 0 such that (2) holds. By (2), we have

(
ln
m

n

)∫
Ω

∥Aω(m,n)z(ω)∥ dµ(ω) ≤ N
(
ln
m

n

)(m
n

)−v
∫
Ω

∥z(ω)∥ dµ(ω)

=
N

v

ln
(
m
n

)v(
m
n

)v ∫
Ω

∥z(ω)∥ dµ(ω)

≤ L

∫
Ω

∥z(ω)∥ dµ(ω),

where L = 1 + N
ve .

Sufficiency. Let c is an arbitrary constant belongs to (0,1) and λ =
[
e

L
c

]
+ 1. From

(6) we have that∫
Ω

∥Aω(λn, n)z(ω)∥ dµ(ω) ≤
L

lnλ

∫
Ω

∥z(ω)∥ dµ(ω) ≤ c

∫
Ω

∥z(ω)∥ dµ(ω)

for all (n, z) ∈ N≥1×F. Now by Theorem 3.1, we conclude that A is uniformly polynomially
stable in average. □

Finally, we present two Datko [9] type characterizations for the uniform polynomial
stability in average.

Theorem 3.3. A cocycle A is uniformly polynomially stable in average if and only if there
exist D > 1 and d > 0 such that

∞∑
i=n

1

i

(
i

n

)d ∫
Ω

∥Aω(i, n)z(ω)∥ dµ(ω) ≤ D

∫
Ω

∥z(ω)∥ dµ(ω), (7)

for all (n, z) ∈ N≥1 × F.

Proof. Necessity. Assume that A is uniformly polynomially stable in average, then by Def-
inition 2.2(i), there are N ≥ 1 and v > 0 such that the relation (2) holds. Let d ∈ (0, v).
From (2) and Proposition 2.1(i) we have

∞∑
i=n

1

i

(
i

n

)d ∫
Ω

∥Aω(i, n)z(ω)∥ dµ(ω) ≤ N

∞∑
i=n

1

i

(
i

n

)d (
i

n

)−v ∫
Ω

∥z(ω)∥ dµ(ω)

= Nnv−d
∞∑
i=n

1

iv−d+1

∫
Ω

∥z(ω)∥ dµ(ω)

≤ Nnv−d 2v−d+1

(v − d)nv−d

∫
Ω

∥z(ω)∥ dµ(ω)

=
2v−d+1N

v − d

∫
Ω

∥z(ω)∥ dµ(ω),

for all (n, z) ∈ N≥1 × F. Hence, (7) holds with D = 2v−d+1N
v−d + 1.
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Sufficiency. If (m,n) ∈ ∆ with m ≥ 2n, then from (1) and (7) we have that(m
n

)d
∫
Ω

∥Aω(m,n)z(ω)∥ dµ(ω)

=
1

m− [m/2] + 1

m∑
i=[m/2]

(m
n

)d
∫
Ω

∥Aω(m, i)Aω(i, n)z(ω)∥ dµ(ω)

≤ 2K

m

m∑
i=[m/2]

(m
n

)d (m
i

)α
∫
Ω

∥Aω(i, n)z(ω)∥ dµ(ω)

≤ 2K

m∑
i=[m/2]

1

i

(
i

n

)d (
m

[m/2]

)d+α ∫
Ω

∥Aω(i, n)z(ω)∥ dµ(ω)

≤ 22(d+α)+1K

∞∑
i=n

1

i

(
i

n

)d ∫
Ω

∥Aω(i, n)z(ω)∥ dµ(ω)

≤ 22(d+α)+1KD

∫
Ω

∥z(ω)∥ dµ(ω).

If (m,n) ∈ ∆ with n ≤ m < 2n, then it follows from (1) that(m
n

)d
∫
Ω

∥Aω(m,n)z(ω)∥ dµ(ω) ≤ K
(m
n

)d+α
∫
Ω

∥z(ω)∥ dµ(ω)

≤ 2d+αK

∫
Ω

∥z(ω)∥ dµ(ω).

From the above two cases, we conclude that (2) holds with N = 22(d+α)+1KD and v = d. □

Theorem 3.4. A cocycle A is uniformly polynomially stable in average if and only if there
exist D > 1 and d > 0 such that

m∑
i=n

1

i

(m
i

)d 1∫
Ω
∥Aω(i, n)z(ω)∥ dµ(ω)

≤ D∫
Ω
∥Aω(m,n)z(ω)∥ dµ(ω)

, (8)

for all (m,n, z) ∈ ∆× (F \ {0}).

Proof. Necessity. Assume that A is uniformly polynomially stable in average, then by Def-
inition 2.2(i), there are N ≥ 1 and v > 0 such that the relation (2) holds. Let d ∈ (0, v).
From (2) and Proposition 2.1(ii) we have

m∑
i=n

1

i

(m
i

)d 1∫
Ω
∥Aω(i, n)z(ω)∥ dµ(ω)

≤ Nmd−v∫
Ω
∥Aω(m,n)z(ω)∥ dµ(ω)

m∑
i=n

iv−d−1

≤ Nmd−v∫
Ω
∥Aω(m,n)z(ω)∥ dµ(ω)

· 2m
v−d

v − d

=
2N

v − d

1∫
Ω
∥Aω(m,n)z(ω)∥ dµ(ω)

,

for all (m,n, z) ∈ ∆× (F \ {0}). Hence, (8) holds with D = 2N
v−d + 1.

Sufficiency. Let (m,n, z) ∈ ∆× (F \ {0}).
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If m ≥ 2n, then from (1) and (8) we have that

(m
n

)d 1∫
Ω
∥z(ω)∥ dµ(ω)

=
1

n+ 1

2n∑
i=n

(m
n

)d 1∫
Ω
∥z(ω)∥ dµ(ω)

≤ 1

n

2n∑
i=n

K
(m
n

)d
(
i

n

)α
1∫

Ω
∥Aω(i, n)z(ω)∥ dµ(ω)

≤ K

2n∑
i=n

1

i

(m
i

)d
(
i

n

)d+α+1
1∫

Ω
∥Aω(i, n)z(ω)∥ dµ(ω)

≤ 2d+α+1K

m∑
i=n

1

i

(m
i

)d 1∫
Ω
∥Aω(i, n)z(ω)∥ dµ(ω)

≤ 2d+α+1KD∫
Ω
∥Aω(m,n)z(ω)∥ dµ(ω)

.

If n ≤ m < 2n, then it follows from (1) that(m
n

)d 1∫
Ω
∥z(ω)∥ dµ(ω)

≤ K
(m
n

)d+α 1∫
Ω
∥Aω(m,n)z(ω)∥ dµ(ω)

≤ 2d+αK∫
Ω
∥Aω(m,n)z(ω)∥ dµ(ω)

.

From the above two cases, we conclude that (2) holds with N = 2d+α+1KD and v = d. □

4. Uniform polynomial instability in average

In this section, we extend the techniques used in the previous section to the case of a
uniform polynomial instability in average.

Theorem 4.1. A cocycle A is uniformly polynomially unstable in average if and only if
there exist c > 1 and λ ∈ N≥2 such that∫

Ω

∥Aω(λn, n)z(ω)∥ dµ(ω) ≥ c

∫
Ω

∥z(ω)∥ dµ(ω), (9)

for all (n, z) ∈ N≥1 × F.

Proof. Necessity. It is a simple verification that (9) holds for λ = 1 + [N
1
v ] and c = λv

N ,
where N, v are given by Definition 2.2(ii).

Sufficiency. Let (m,n, z) ∈ ∆ × F and p = max
{
j ∈ N : m ≥ nλj

}
. Then we have

λp ≤ m
n < λp+1. By the relation (1), we have∫

Ω

∥∥Aω(λ
p+1n, n)z(ω)

∥∥ dµ(ω) = ∫
Ω

∥∥Aω(λ
p+1n,m)Aω(m,n)z(ω)

∥∥ dµ(ω)
≤ K

(
λp+1n

m

)α ∫
Ω

∥Aω(m,n)z(ω)∥ dµ(ω)

≤ Kλα

∫
Ω

∥Aω(m,n)z(ω)∥ dµ(ω).

(10)
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From (10) and (9) we obtain that∫
Ω

∥Aω(m,n)z(ω)∥ dµ(ω) ≥ K−1λ−α

∫
Ω

∥∥Aω(λ
p+1n, n)z(ω)

∥∥ dµ(ω)
≥ K−1λ−αcp+1

∫
Ω

∥z(ω)∥ dµ(ω)

= K−1λ−α
(
λp+1

)v ∫
Ω

∥z(ω)∥ dµ(ω)

≥ K−1λ−α
(m
n

)v
∫
Ω

∥z(ω)∥ dµ(ω)

= N−1
(m
n

)v
∫
Ω

∥z(ω)∥ dµ(ω),

where N = Kλα and v = lnc
lnλ . Hence, A is uniformly polynomially unstable in average. □

Theorem 4.2. A cocycle A is uniformly polynomially unstable in average if and only if
there exists a constant L > 1 such that

L

∫
Ω

∥Aω(m,n)z(ω)∥ dµ(ω) ≥
(
ln
m

n

)∫
Ω

∥z(ω)∥ dµ(ω), (11)

for all (m,n, z) ∈ ∆× F.

Proof. Necessity. If A is uniformly polynomially unstable in average, then by Definition
2.2(ii), there are N ≥ 1 and v > 0 such that (3) holds. By (3), we have(

ln
m

n

)∫
Ω

∥z(ω)∥ dµ(ω) ≤ N
(
ln
m

n

)(m
n

)−v
∫
Ω

∥Aω(m,n)z(ω)∥ dµ(ω)

=
N

v

ln
(
m
n

)v(
m
n

)v ∫
Ω

∥Aω(m,n)z(ω)∥ dµ(ω)

≤ L

∫
Ω

∥Aω(m,n)z(ω)∥ dµ(ω),

where L = 1 + N
ve .

Sufficiency. Let c is an arbitrary constant belongs to (1,∞) and λ =
[
eLc

]
+1. From

(11) we have that∫
Ω

∥Aω(λn, n)z(ω)∥ dµ(ω) ≥
lnλ

L

∫
Ω

∥z(ω)∥ dµ(ω) ≥ c

∫
Ω

∥z(ω)∥ dµ(ω)

for all (n, z) ∈ N≥1×F. Now by Theorem 4.1, we conclude that A is uniformly polynomially
unstable in average. □

Theorem 4.3. Assume that A has uniform polynomial decay in average. Then it is uni-
formly polynomially unstable in average if and only if there exist D > 1 and d > 0 such
that

m∑
i=n

1

i

(m
i

)d
∫
Ω

∥Aω(i, n)z(ω)∥ dµ(ω) ≤ D

∫
Ω

∥Aω(m,n)z(ω)∥ dµ(ω), (12)

for all (m,n, z) ∈ ∆× F.

Proof. Necessity. Assume that A is uniformly polynomially unstable in average, then by
Definition 2.2(ii), there are N ≥ 1 and v > 0 such that the relation (3) holds. Let d ∈ (0, v).
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From (3) and Proposition 2.1(ii) we have

m∑
i=n

1

i

(m
i

)d
∫
Ω

∥Aω(i, n)z(ω)∥ dµ(ω)

≤ N

m∑
i=n

1

i

(m
i

)d (m
i

)−v
∫
Ω

∥Aω(m,n)z(ω)∥ dµ(ω)

= Nmd−v

∫
Ω

∥Aω(m,n)z(ω)∥ dµ(ω)
m∑
i=n

iv−d−1

≤ Nmd−v

∫
Ω

∥Aω(m,n)z(ω)∥ dµ(ω) · 2m
v−d

v − d

=
2N

v − d

∫
Ω

∥Aω(m,n)z(ω)∥ dµ(ω),

for all (m,n, z) ∈ ∆× F. Hence, (12) holds with D = 2N
v−d + 1.

Sufficiency. Let (m,n, z) ∈ ∆× F.
If m ≥ 2n, then from (4) and (12) we have that

(m
n

)d
∫
Ω

∥z(ω)∥ dµ(ω) = 1

n+ 1

2n∑
i=n

(m
n

)d
∫
Ω

∥z(ω)∥ dµ(ω)

≤ M

2n∑
i=n

1

i

(m
i

)d
(
i

n

)d+β+1 ∫
Ω

∥Aω(i, n)z(ω)∥ dµ(ω)

≤ 2d+β+1M

m∑
i=n

1

i

(m
i

)d
∫
Ω

∥Aω(i, n)z(ω)∥ dµ(ω)

≤ 2d+β+1MD

∫
Ω

∥Aω(m,n)z(ω)∥ dµ(ω).

If n ≤ m < 2n, then it follows from (4) that(m
n

)d
∫
Ω

∥z(ω)∥ dµ(ω) ≤ M
(m
n

)d+β
∫
Ω

∥Aω(m,n)z(ω)∥ dµ(ω)

≤ 2d+βM

∫
Ω

∥Aω(m,n)z(ω)∥ dµ(ω).

From the above two cases, we conclude that (3) holds with N = 2d+β+1MD and v = d. □

Theorem 4.4. Assume that A has uniform polynomial decay in average. Then it is uni-
formly polynomially unstable in average if and only if there exist D > 1 and d > 0 such
that

∞∑
i=n

1

i

(
i

n

)d
1∫

Ω
∥Aω(i, n)z(ω)∥ dµ(ω)

≤ D∫
Ω
∥z(ω)∥ dµ(ω)

, (13)

for all (n, z) ∈ N≥1 × (F \ {0}).

Proof. Necessity. Assume that A is uniformly polynomially unstable in average, then by
Definition 2.2(ii), there are N ≥ 1 and v > 0 such that the relation (3) holds. Let d ∈ (0, v).
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From (3) and Proposition 2.1(i) we have

∞∑
i=n

1

i

(
i

n

)d
1∫

Ω
∥Aω(i, n)z(ω)∥ dµ(ω)

≤ N

∞∑
i=n

1

i

(
i

n

)d (
i

n

)−v
1∫

Ω
∥z(ω)∥ dµ(ω)

≤ Nnv−d 2v−d+1

(v − d)nv−d

1∫
Ω
∥z(ω)∥ dµ(ω)

=
2v−d+1N

v − d

1∫
Ω
∥z(ω)∥ dµ(ω)

,

for all (n, z) ∈ N≥1 × (F \ {0}). Hence, (13) holds with D = 2v−d+1N
v−d + 1.

Sufficiency. Let (m,n, z) ∈ ∆× (F \ {0}).
If (m,n) ∈ ∆ with m ≥ 2n, then from (4) and (13) we have that(m

n

)d 1∫
Ω
∥Aω(m,n)z(ω)∥ dµ(ω)

=
1

m− [m/2] + 1

m∑
i=[m/2]

(m
n

)d 1∫
Ω
∥Aω(m, i)Aω(i, n)z(ω)∥ dµ(ω)

≤ 2M

m

m∑
i=[m/2]

(m
n

)d (m
i

)β 1∫
Ω
∥Aω(i, n)z(ω)∥ dµ(ω)

≤ 2M

m∑
i=[m/2]

1

i

(
i

n

)d (
m

[m/2]

)d+β
1∫

Ω
∥Aω(i, n)z(ω)∥ dµ(ω)

≤ 22(d+β)+1M

∞∑
i=n

1

i

(
i

n

)d
1∫

Ω
∥Aω(i, n)z(ω)∥ dµ(ω)

≤ 22(d+β)+1MD∫
Ω
∥z(ω)∥ dµ(ω)

.

If (m,n) ∈ ∆ with n ≤ m < 2n, then it follows from (4) that(m
n

)d 1∫
Ω
∥Aω(m,n)z(ω)∥ dµ(ω)

≤ M
(m
n

)d+β 1∫
Ω
∥z(ω)∥ dµ(ω)

≤ 2d+βM∫
Ω
∥z(ω)∥ dµ(ω)

.

From the above two cases, we conclude that (3) holds withN = 22(d+β)+1MD and v = d. □
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