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PERFORMANCE EVALUATION OF POPULATION-BASED 
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The Inverse Kinematic (IK) plays a crucial role in effectively controlling robots 

during real-time applications. However, solving the IK problem for continuum robots has 
proven to be an extremely complex and challenging task so far. Since analytical and 
numerical methods may not provide satisfactory solutions, Population-based 
Metaheuristic Algorithms (PbMAs) can offer an alternative approach. By leveraging 
Forward Kinematic (FK) relationships, various algorithms can be utilized. This research 
paper aims to evaluate the performance of five PbMAs, namely: Artificial Bee Colony 
(ABC), Ant Colony Optimization (ACO), Bat Algorithm (BA), Genetic Algorithm (GA), 
and Particle Swarm Optimization (PSO). The evaluation will focus on both execution time 
and position error when these algorithms are employed to solve the IK problem for a 
specific continuum robot known as Dual-Cross-Module Sections Cable-Driven 
Continuum Robot (DCM-S-CDCR). Firstly, an overview of each algorithm is provided, 
along with the FK relationships of the robot being examined and the mathematical 
formulation of the IK problem for optimization. Then, a series of numerical experiments 
are conducted. The findings reveal that out of all tested algorithms, PSO proves to be the 
most suitable as it delivers satisfactory tracking accuracy within a reasonable timeframe. 
Specifically, GA followed by PSO demonstrated superior accuracy when it came to 
position error; meanwhile, PSO and ABC ranked as the two swiftest algorithms 
respectively. In contrast, BA showcased inferior outcomes across both indicators whereas 
ACO's performance stood second last in terms of effectiveness. 

 
Keywords: Continuum robot, cable-driven continuum robot, inverse kinematic, 

population-based metaheuristic algorithms, optimization. 
 
1. Introduction 
 
Recently, the class of hyper-redundant robots known as continuum robots 

has gained a lot of attention in the robotic research community. These robots have 
been proven to be superior to rigid-link robot counterparts when it comes to their 
flexibility, dexterity, and ability to safely interact with humans [1]. Because of 
these exceptional characteristics, continuum robots are well-suited for various 
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applications including exploration and inspection in confined environments [2], 
medical fields [3], and rescue operations [4]. 

Due to their highly nonlinear mathematical expressions, continuum robots 
are more difficult to model compared to robots with rigid-link. However, in an 
effort to find practical solutions, researchers have relied on simplifications and 
assumptions to facilitate the modeling tasks. The commonly used kinematic 
approach is the Constant Curvature Kinematic Approach (CCKA) [5–6]. 
Consequently, researchers have developed numerous Forward Kinematic (FK) 
models for different continuum robots using various methods and theories such as 
[5–9]. Despite this simplification, solving Inverse Kinematic (IK) models of 
continuum robots still presents a challenge.  

 The fundamental problem of IK modeling in continuum robots is the 
infinite number of Degrees-of-Freedom (DoFs) provided by FK models. This 
results in multiple solutions or even an infinite number of solutions for any given 
IK problem. In the case of a regular robot with 6 DoFs, analytical methods such as 
that described in [10] can be utilized. However, for robots with more than 6 DoFs, 
numerical methods and optimization algorithms like those explained in [11–12] 
may be employed as they work independently from robot redundancy. Both 
approaches have their advantages and disadvantages. Closed-form solutions offer 
the advantage that all IK solutions are expressed as a function depending on End-
Effector (EE) pose variables and are computationally efficient, providing all 
possible IK solutions for a given EE pose along with natural ones. On the other 
hand, deriving closed-form expressions becomes challenging when dealing with 
robots exceeding 6 DoFs. 

Regarding numerical methods, they possess the advantage of being 
applicable regardless of the number of DoFs possessed by the robot. Nonetheless, 
there are various drawbacks associated with these methods such as high 
computational costs and lengthy execution times, along with common occurrences 
of singularities. Consequently, optimization algorithms persist as an alternative 
solution to mitigate these issues. However, it is worth mentioning that while 
optimization algorithms have been successfully employed in various research 
areas to resolve different optimization problems, their implementation within 
continuum robot modeling remains limited [13–16]. Therefore, it would be 
beneficial to investigate and evaluate the performance capabilities of certain 
optimization algorithms in solving the IK problem for continuum robots. Notably 
among these algorithms is the class known as Population-based Meta-heuristic 
Algorithms (PbMAs). 

PbMAs are a class of approaches that use a set of candidate solutions and 
population characteristics to guide the search iteratively towards near-optimal or 
optimal solutions in a reasonable amount of time, thanks to their ability for global 
exploration and local exploitation. This class includes, but is not restricted to the 
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following algorithms: Artificial Bee Colony (ABC) [17], Ant Colony 
Optimization (ACO) [18], Bat Algorithm (BA) [19], Genetic Algorithm (GA) 
[20], and Particle Swarm Optimization (PSO) [21]. Among the various algorithms 
used to solve the IK problem in continuum robots, only GA and PSO have been 
previously applied [12]. A comprehensive comparative study was conducted to 
evaluate their performance. Additionally, another study [16] performed a 
comparative analysis of three algorithms: GA, PSO, and ABC. Unfortunately, this 
study was considered superficial and did not sufficiently evaluate the efficacy of 
these algorithms. The aim of this paper is to provide an in-depth evaluation of five 
different algorithms: GA and PSO which were previously studied along with ABC 
as well as BA and ACO when dealing with IK solutions for a specific type of 
continuum robot called Dual-Cross-Module Sections Cable-Driven Continuum 
Robot (DCM-S-CDCR). The specific focus will be on evaluating execution time 
as well as position error. 

To do so, the subsequent sections of the paper are organized as follows: 
The next section briefly introduces the selected PbMAs. Section 3 summarizes the 
FK of the studied DCM-S-CDCR and then describes the formulation of IK 
problem. Section 4 presents numerical experiments and summarizes a comparison 
of algorithm performances in terms of execution times and tracking accuracy. 
Concluding remarks and future scope for this work are discussed in Section 5. 

 
2. Population-based metaheuristic algorithms 
In this section, we briefly introduce the five population-based 

metaheuristic algorithms studied in this work. 
 
2.1. Artificial Bee Colony algorithm 
The Artificial Bee Colony (ABC) algorithm was proposed by D. Karaboga 

in 2005 [17]. The algorithm imitates the foraging behavior of honey bees that fly 
around their surroundings in search of high-quality food sources. It consists of 
three key components: employed bees, onlooker bees, and scouts. ABC begins 
with the random initialization of scout and employed bees, both primarily 
focusing on mutation. Selection is related to honey or objective; crossover is not 
explicitly present in this algorithm. In this method, employed bees examine their 
food sources using fitness values assigned to each bee's associated food source, 
sharing this information to recruit onlooker bees. Based on this shared information 
from the employed bees, the onlooker-bees make a decision when choosing a 
particular food source among options available. The quality evaluation made by 
an individual-employed bee for a given food source is defined as its “fitness 
value” associated with its position within it. Mathematically speaking, the 
expression for a specific iprob  food source can be represented as follows: 
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where ifit  is the fitness value of the solution i  evaluated by its employed bee, 
which is proportional to the nectar amount of the food source in position i , and 
N  represents the number of solutions in population. 
 

Accordingly, the employed bees share information with onlookers, and a 
potential new food source can be mathematically represented by replacing the old 
one using the following expression: 

( )rx  = x  + r xnew old old
i i i i x−

   
                                                        (2) 

where xnew
i  is the new food position, xold

i  is the previously assigned food source, 
ri  is a random number with uniform distribution between 0 and 1 used for 
adjustment, and rx  is the randomly selected food source { }1,2,...,i N∈ . 

 
2.2. Ant Colony Optimization algorithm 
The Ant Colony Optimization (ACO) algorithm was proposed by M. 

Dorigo in 1992 [18]. This algorithm mimics the foraging behavior of ants, who 
use pheromones to find shorter paths between their colony and food sources. The 
effectiveness of the algorithm is closely linked to pheromone concentration, as it 
determines the probability for ants to select a route from one node to another 
using the following Equation: 
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where ,Ci j  is the pheromone concentration on the route between nodes i  and j , 

,di j  is the desirability of that same route, and α  and β  are positive parameters of 
influence.  
 

2.3. Bat Algorithm 
The Bat Algorithm (BA), proposed by X. S. Yang in 2010 [19], draws its 

inspiration from the echolocation abilities exhibited by small bat species. These 
bats emit exceptionally loud sonic pulses and then listen attentively for the echoes 
that bounce off their environment, employing this technique to either detect prey 
or navigate through challenging conditions during twilight hours. 

BA starts with the random initialization of the population in the search 
space. Each bat b  is associated with a velocity vt

b , position vector xt
b , variable 
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frequency bf , pulse emission factor bpe  and loudness factor bl . The current best 
solution among all bats is denoted as xbest . At each iteration ,t  each bat updates 
its velocity and position vector according to the following Equations: 

( )1v  = v  + f x xt t t
b b b b best
+ −

   
                                                        (4) 

1 1x x vt t t
b b b
+ += +                                                                               (5) 

such that: 
( )max max minf  = F F Fb γ −                                                         (6) 

where minf  and maxf  represent the minimum and maximum frequencies, and γ  is 
a random vector uniformly distributed between 0 and 1.  
 

In addition, the loudness and pulse emission rates are regulated by the 
following Equations: 

1l  = lt t
b bρ+

   
                                                                                (7) 

( )1 0p p 1t t
b be e e β+ −= −                                                                       (8) 

where 0 1ρ< <  and 0β >  are constant factors, 0p be  represents the initial value of 
emission rate. 
 

2.4. Genetic Algorithm 
The Genetic Algorithm (GA), proposed by Holland in 1975 [20], is a 

search optimization algorithm that is based on the mechanics of the natural 
selection process. More specifically, it utilizes biological factors like reproduction 
(selection), mutation, and crossover. In GA, convergence improvement often 
involves implementing the elitism procedure.  

 
2.5. Particle Swarm Optimization algorithm 
The Particle Swarm Optimization (PSO) algorithm was proposed by 

Kennedy and Eberhart in 1995 [21]. It simulates the movement of flocking birds 
and their interactions with neighbors within a swarm. The initial step in PSO 
involves randomly initializing a group of particles throughout the search space. 
Each particle, denoted as p , moves within this search space with its own velocity 
vector vt

p  and position vector xt
p . To update its velocity, each particle considers 

both the best previous positions bestP  it has attained so far as well as the global 
best position bestg  achieved by its neighboring particles using the following 
equation: 

( ) ( )1
1 1 2 2v  = v  + c r x c r xt t t t

p p best p best pP gω+ − + −                     (9) 
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where ω  is the inertia weight, 1c  and 2c  are positive constants, and 1r  and 2r  are 
random numbers with a uniform distribution between 0 and 1. 

In addition, the position vector of each particle p  is updated using the 
following Equation: 

1 1x x vt t t
p p p
+ += +                                                                             (10) 

 
3. IK problem formulation for optimization process 
3.1. Material and method 
To evaluate the effectiveness of the five PbMAs, a case study was 

undertaken using a continuum robot known as Dual-Cross-Module Sections 
Cable-Driven Continuum Robot (DCM-S-CDCR) [22]. The DCM-S-CDCR 
comprises four identical modules connected in series, with each module having 
one degree-of-freedom (1-DOF). Figure 1(a) presents an illustration of the scheme 
design for DCM-S-CDCR, while Table 1 provides information regarding its 
modules' basic geometric parameters and their corresponding kinematic 
nomenclature. The deformation of module k , with 1, , 4k = , upon actuation can 
be defined by three geometrical parameters ( ), ,k k kθ ϕ κ , as shown in Figure 1(b) 
where kθ  and kϕ  represent the bending and orientation angles respectively. 

k k klκ θ=  denotes the curvature, and kl  signifies the length of module k . 
 

 
 

Fig. 1. Schematic of DCM-S-CDCR and its kinematic nomenclature. Note that the intermediate 
components in the four modules are not shown, while the sheet-like backbones have been 

represented as circular arcs for better visual. 
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Table 1 
Geometric parameters of the DCM-S-CDCR. 

 
In this study, the forward kinematics of the DCM-S-CDCR was modeled 

by considering the constant curvature kinematic assumption [5]. Consequently, 
the FK can be formally expressed as follows:  

( ) ( )independent specificx k , with k qf f= =                                       (11) 

where x , k  and q  represent the task space variables, configuration space, and 
actuator space respectively. independentf  is a robot-independent mapping that 
transforms the configuration space to the task space, whereas specificf  is a robot-
specific mapping that transforms the actuator space to the configuration space. 
 

This part focuses on robot-independent mapping. Consequently, the 
homogeneous transformation matrix defining the position and orientation of the 
robot’s end-tip with respect to the reference frame ( )0 0 0 0o x y z  can be calculated 
as follows: 

( )
4

1
H H k

n

k k
k

=

=

=∏                                                                            (12) 

where Hk  is the ( )4 4×  homogeneous transformation matrix that contains both 

rotational Rk  and translational kx , defining the reference frame ( )k k k ko x y z  in 

frame ( )1 1 1 1k k k ko x y z− − − − . As stated in [22], the position vector and rotation matrix 
are given as follows: 

( )( ) ( ) ( )( ) ( ) ( ){ }1 1 c c , 1 c s , s
T

k k k k k k
k

x θ ϕ θ ϕ θ
κ

= − −               (13) 

( )1R rot ,k k ku θ−=                                                                        (14) 

where the abbreviations ( )c .  and ( ).s  respectively represent ( )cos .  and ( )sin . , 
and 1ku −  denotes the module's bending axis defined in Table 1. 

 Module 1 Module 2 Module 3 Module 4 
Bending angle (rad) 

1θ  2θ  3θ  4θ  
Orientation angle (rad) 

1 0ϕ =  2 2ϕ π=  3 0ϕ =  4 2ϕ π=  
Module’s length (mm) 

1 90l =  2 90l =  3 90l =  4 90l =  

Bending axis ( )1ku −  0y  1x  2y  3x  
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3.2. IK problem statement and the objective function 
By definition, Inverse Kinematic (IK) involves the task of finding a 

potential and achievable solution that enables a robotic system to attain a 
predetermined posture in terms of position and orientation. In mathematical terms, 
the IK of a continuum robot according to CCKA can be formally expressed as 
follows [5]: 

( )1
independentk xf −=                                                                         (15) 

 
However, the main issue with Eq. 15 is the challenge of obtaining 

analytical expressions for the IK function. Additionally, applying numerical 
methods becomes difficult, particularly for multi-section continuum robots. To 
tackle this problem, metaheuristic algorithms can be employed. This study utilizes 
each of the aforementioned algorithms to guide a search using a set of particles in 
order to find optimal or nearly optimal solutions to the IK problem for a 
continuum robot. In pursuit of this objective, solution quality is assessed using a 
quadratic objective function that naturally measures the distance error between the 
robot's end-tip generatedx  and its required target desiredx . Thus, the objective 
function can be written as follows:  

( )2desired generated
1
2objf x x= −                                                        (16) 

where generatedx  represents the first three components of the fourth column of the 

( )4 4×  homogeneous transformation matrix that defines the robot-independent 
transformation given by Eq. (12). 
 

3.3. Boundary conditions  
Naturally, for a stationary continuum robot, two boundary conditions must 

be satisfied regarding the mapping of the curve of the central axis of the robot to 
both its base and end-tip. Formally, these terms can be expressed as follows:  

0 base desiredx x , x xn= =                                                                (17) 
 

3.4. Physical limitations 
To ensure effective operation of the robot and prevent any overlapping in 

their bending sections (refer to [5]), it is important to take into account additional 
constraints on actuator variables. In order to meet these requirements, these 
limitations can be defined in terms of bending angles as follows: 

min max , with 1,..., 4.k k k kθ θ θ≤ ≤ =                                               (18) 
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3.5. Problem Setting 
To determine the bending angles kθ , with 1, , 4k = , that allow the robot 

to track a specified reference trajectory accurately, the aforementioned 
population-based metaheuristic algorithms are employed. These algorithms aim to 
minimize the objective function described in Eq. (16). At each sampling instant, 
the applied optimization algorithm generates sequences of bending angles as 
solutions to the IK problem, but only the last one is considered to be the optimal 
solution for application on the robot.  

In the search space, the dimension of the problem is 2n. The particle or 
individual's coordinates in each optimization algorithm represent the variables of 
the optimization problem, specifically referring to bending angles in this case. The 
population within all algorithms can be regarded as a set consisting of potential 
solutions. Generally speaking, Eq. (16) often possesses an infinite number of 
solutions. To effectively choose a suitable solution from these multiple ones, 
additional constraints can be incorporated into the objective function. 

 
4. Numerical experiments 
To evaluate the performance of the aforementioned PbMAs in solving the 

IK problem for a specific continuum robot known as Dual-Cross-Module Sections 
Cable-Driven Continuum Robot (DCM-S-CDCR), three numerical experiments 
were conducted. The first experiment focused on a target point, while the second 
one involved tracking a trajectory. Both experiments were conducted in a free 
environment. After comparing and analyzing the results obtained from all five 
PbMAs, a third experiment was conducted to evaluate the performance of the best 
algorithm in a confined environment for a specific target point. All numerical 
experiments were performed using MATLAB R2016a software on a computer 
with the following specifications: Intel(R) Xeon(R) CPU E5-1620 0 @ 3.60 GHz, 
16 GB of RAM, and a 64-bit Windows 7 operating system. Additionally, each 
optimization was conducted considering a search swarm/agents/population size of 
20 and a maximum limit of 80 iterations. 

 
4.1. Obtaining the IKs for a target point 
This numerical experiment aims to randomly search for solutions to the IK 

problem in a free environment, meaning there are no additional constraints on the 
cost function. The target point chosen to position the robot's end-tip is at 
coordinates [ ]60,60,270 (mm), and its initial position is at coordinates [ ]0,0,360  

(mm) relative to reference frame ( )0 0 0 0o x y z . To achieve this purpose, each 
algorithm is repeated 50 times and their results are recorded and visually 
presented using box plots in Figure 2. Noteworthy results are highlighted in Table 
2 where information such as minimum, maximum, mean values of Execution time 
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(Ex. time) and Position error (P. error), as well as the number of outlier results are 
provided. 

 

 
(a)                                                                 (b) 

Fig. 2. Results of target point tracking in a free environment: (a) Execution time box plot, (b) 
Position error box plot. 

 
Table 2 

The notable results of target point tracking in a free environment. 
 Minimum value Mean value Maximum value Number of outliers 
 Ex. time P. error  Ex. time P. error  Ex. time P. error  Ex. time P. error   (ms) (mm) (ms) (mm) (ms) (mm) 

ABC 28.47 0.00294 30.01 0.04976 95.41 0.24402 6 1 
ACO 63.32 0.00095 66.59 0.09237 139.76 0.18610 4 0 
BA 41.58 0.00838 102.85 0.10670 166.01 0.29773 13 7 
GA 56.30 0.00020 59.19 0.00923 108.86 0.09073 11 2 
PSO 01.45 0.00214 21.33 0.01774 .27.37 0.14830 11 3 

 
Based on the results obtained, it is evident that PSO followed by ABC 

perform better in terms of execution time compared to other algorithms. Their 
mean execution time values are less than 22 ms and 31 ms respectively, whereas 
BA has the highest mean value at around 103 msec. While all algorithms exhibit 
outlier results, PSO shows a smaller data distribution. However, when considering 
position error as the metric for evaluation, GA followed by PSO achieve superior 
results with mean values less than 0.01 mm and 0.018 mm respectively; where 
BA ranks last with a mean position error value of approximately 0.107 mm. 
Additionally, GA demonstrates a smaller data distribution while ACO does not 
produce any outlier results. 

 
4.2. Obtaining the IKs for tracking a trajectory in a free environment 
In this numerical experiment, the point-to-point technique was used to 

track a line-shaped trajectory defined as: [ ]10 ,0,360 10t t− . Randomly generated 
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IK solutions were used. The obtained results are presented in Figures 3 and 4. 
From Figure 3 depicting execution time analysis, it is evident that PSO followed 
by ABC algorithms outperformed other algorithms while BA algorithm showed 
the worst performance. In terms of position error analysis shown in Figure 4, GA 
followed by PSO demonstrated superior performance compared to other 
algorithms whereas BA exhibited poor performance. 

 

 
Fig. 3. Results of line-shaped trajectory tracking in a free environment: Execution time graphs. 

 

 
Fig. 4. Results of line-shaped trajectory tracking in a free environment: Position error graphs. 

 
To sum up, Table 3 presents notable results, with the best ones highlighted 

in bold. According to the Table, PSO achieved the minimum execution time 
value. However, in terms of position error, GA performed better and was followed 
closely by PSO. 

 
Table 3 

The Notable results of line-shaped trajectory tracking in a free environment. 
 ABC ACO BA GA PSO 

Mean execution time (ms) 36.3 70.1 104.7 53.6 24.7 
Mean position error (mm) 0.0689 0.0908 0.1153 0.0118 0.0234 

 
4.3. Obtaining the IKs for a target point in a confined environment 
Based on the results from the first two numerical experiments, which 

showed that the PSO algorithm has a shorter execution time and lower position 
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error compared to other algorithms, a third experiment was conducted using the 
PSO algorithm. This experiment aimed to evaluate the ability of the algorithm to 
track target points within a confined environment, specifically in the presence of 
obstacles. The robot began at its initial position at [ ]0,0,360  (mm) and had to 

navigate towards a goal located at [ ]40,100,180  (mm). Two static obstacles were 

positioned during this experiment; one obstacle was placed at [ ]30,0,180  (mm) 

while another was positioned at [ ]30,0,280  (mm). 
First, a random search is conducted 50 times to find solutions for the IK 

problem. Figure 5(a) displays different robot configurations that reach the goal, 
with some being feasible while others collide with static obstacles. In this Figure, 
collision and non-collision configurations are depicted by red and blue colors 
respectively. Secondly, in order to avoid collisions with obstacles, a penalty is 
added to the objective function when the distance between an obstacle and 
specific points on the robot falls below a certain value. The obtained results in 
terms of robot's configurations are shown in Figure 5(b). However, in order to 
select the appropriate solution to the IK problem among the multiple IK solutions, 
additional constraints must be added to the objective function.  

 

               
(a)                                                              (b) 

Fig. 5. Results of target point tracking in the presence of obstacles: (a) Randomly generated IK 
solutions, (b) No-collision IK solutions. 
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5. Conclusion 
This study compared the performances of five population-based 

algorithms, namely: Artificial Bee Colony (ABC), Ant Colony Optimization 
(ACO), Bat Algorithm (BA), Genetic Algorithm (GA) and Particle Swarm 
Optimization (PSO). These algorithms were evaluated in terms of their tracking 
accuracy and execution time for solving the Inverse Kinematics problem of a 
Dual-Cross-Module Sections Cable-Driven Continuum Robot. The results 
indicated that PSO outperformed GA in tracking accuracy and ABC in execution 
time, making it the best overall algorithm. However, this study has some 
limitations that should be addressed in future research. Firstly, although PSO 
showed good performance in terms of execution time, its runtimes could be 
improved further by considering its variants. Secondly, this study only compared 
basic versions of the algorithms while there are many improved versions available 
that may yield better results for solving IK problems. Lastly, more algorithms 
should be included to ensure a comprehensive comparison. Overall findings from 
this research not only provide valuable insights for solving IK problems but also 
guide researchers working on similar complex issues. 
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