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PERFORMANCE EVALUATION OF POPULATION-BASED
METAHEURISTIC ALGORITHMS FOR SOLVING THE
INVERSE KINEMATIC OF A CLASS OF CONTINUUM

ROBOTS

Amel DJEDILI ', Ammar AMOURI !, Yazid LAIB DIT LEKSIR? and Ayman
BELKHIRI!

The Inverse Kinematic (IK) plays a crucial role in effectively controlling robots
during real-time applications. However, solving the IK problem for continuum robots has
proven to be an extremely complex and challenging task so far. Since analytical and
numerical methods may not provide satisfactory solutions, Population-based
Metaheuristic Algorithms (PbMAs) can offer an alternative approach. By leveraging
Forward Kinematic (FK) relationships, various algorithms can be utilized. This research
paper aims to evaluate the performance of five PbMAs, namely. Artificial Bee Colony
(ABC), Ant Colony Optimization (ACO), Bat Algorithm (BA), Genetic Algorithm (GA),
and Particle Swarm Optimization (PSO). The evaluation will focus on both execution time
and position error when these algorithms are employed to solve the IK problem for a
specific continuum robot known as Dual-Cross-Module Sections Cable-Driven
Continuum Robot (DCM-S-CDCR). Firstly, an overview of each algorithm is provided,
along with the FK relationships of the robot being examined and the mathematical
formulation of the IK problem for optimization. Then, a series of numerical experiments
are conducted. The findings reveal that out of all tested algorithms, PSO proves to be the
most suitable as it delivers satisfactory tracking accuracy within a reasonable timeframe.
Specifically, GA followed by PSO demonstrated superior accuracy when it came to
position error; meanwhile, PSO and ABC ranked as the two swiftest algorithms
respectively. In contrast, BA showcased inferior outcomes across both indicators whereas
ACO's performance stood second last in terms of effectiveness.

Keywords: Continuum robot, cable-driven continuum robot, inverse kinematic,
population-based metaheuristic algorithms, optimization.

1. Introduction

Recently, the class of hyper-redundant robots known as continuum robots
has gained a lot of attention in the robotic research community. These robots have
been proven to be superior to rigid-link robot counterparts when it comes to their
flexibility, dexterity, and ability to safely interact with humans [1]. Because of
these exceptional characteristics, continuum robots are well-suited for various
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applications including exploration and inspection in confined environments [2],
medical fields [3], and rescue operations [4].

Due to their highly nonlinear mathematical expressions, continuum robots
are more difficult to model compared to robots with rigid-link. However, in an
effort to find practical solutions, researchers have relied on simplifications and
assumptions to facilitate the modeling tasks. The commonly used kinematic
approach is the Constant Curvature Kinematic Approach (CCKA) [5-6].
Consequently, researchers have developed numerous Forward Kinematic (FK)
models for different continuum robots using various methods and theories such as
[5-9]. Despite this simplification, solving Inverse Kinematic (IK) models of
continuum robots still presents a challenge.

The fundamental problem of IK modeling in continuum robots is the
infinite number of Degrees-of-Freedom (DoFs) provided by FK models. This
results in multiple solutions or even an infinite number of solutions for any given
IK problem. In the case of a regular robot with 6 DoFs, analytical methods such as
that described in [10] can be utilized. However, for robots with more than 6 DoFs,
numerical methods and optimization algorithms like those explained in [11-12]
may be employed as they work independently from robot redundancy. Both
approaches have their advantages and disadvantages. Closed-form solutions offer
the advantage that all IK solutions are expressed as a function depending on End-
Effector (EE) pose variables and are computationally efficient, providing all
possible IK solutions for a given EE pose along with natural ones. On the other
hand, deriving closed-form expressions becomes challenging when dealing with
robots exceeding 6 DoFs.

Regarding numerical methods, they possess the advantage of being
applicable regardless of the number of DoFs possessed by the robot. Nonetheless,
there are various drawbacks associated with these methods such as high
computational costs and lengthy execution times, along with common occurrences
of singularities. Consequently, optimization algorithms persist as an alternative
solution to mitigate these issues. However, it is worth mentioning that while
optimization algorithms have been successfully employed in various research
areas to resolve different optimization problems, their implementation within
continuum robot modeling remains limited [13—16]. Therefore, it would be
beneficial to investigate and evaluate the performance capabilities of certain
optimization algorithms in solving the IK problem for continuum robots. Notably
among these algorithms is the class known as Population-based Meta-heuristic
Algorithms (PbMAs).

PbMAs are a class of approaches that use a set of candidate solutions and
population characteristics to guide the search iteratively towards near-optimal or
optimal solutions in a reasonable amount of time, thanks to their ability for global
exploration and local exploitation. This class includes, but is not restricted to the
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following algorithms: Artificial Bee Colony (ABC) [17], Ant Colony
Optimization (ACO) [18], Bat Algorithm (BA) [19], Genetic Algorithm (GA)
[20], and Particle Swarm Optimization (PSO) [21]. Among the various algorithms
used to solve the IK problem in continuum robots, only GA and PSO have been
previously applied [12]. A comprehensive comparative study was conducted to
evaluate their performance. Additionally, another study [16] performed a
comparative analysis of three algorithms: GA, PSO, and ABC. Unfortunately, this
study was considered superficial and did not sufficiently evaluate the efficacy of
these algorithms. The aim of this paper is to provide an in-depth evaluation of five
different algorithms: GA and PSO which were previously studied along with ABC
as well as BA and ACO when dealing with IK solutions for a specific type of
continuum robot called Dual-Cross-Module Sections Cable-Driven Continuum
Robot (DCM-S-CDCR). The specific focus will be on evaluating execution time
as well as position error.

To do so, the subsequent sections of the paper are organized as follows:
The next section briefly introduces the selected PbMAs. Section 3 summarizes the
FK of the studied DCM-S-CDCR and then describes the formulation of IK
problem. Section 4 presents numerical experiments and summarizes a comparison
of algorithm performances in terms of execution times and tracking accuracy.
Concluding remarks and future scope for this work are discussed in Section 5.

2. Population-based metaheuristic algorithms
In this section, we briefly introduce the five population-based
metaheuristic algorithms studied in this work.

2.1. Artificial Bee Colony algorithm

The Artificial Bee Colony (ABC) algorithm was proposed by D. Karaboga
in 2005 [17]. The algorithm imitates the foraging behavior of honey bees that fly
around their surroundings in search of high-quality food sources. It consists of
three key components: employed bees, onlooker bees, and scouts. ABC begins
with the random initialization of scout and employed bees, both primarily
focusing on mutation. Selection is related to honey or objective; crossover is not
explicitly present in this algorithm. In this method, employed bees examine their
food sources using fitness values assigned to each bee's associated food source,
sharing this information to recruit onlooker bees. Based on this shared information
from the employed bees, the onlooker-bees make a decision when choosing a
particular food source among options available. The quality evaluation made by
an individual-employed bee for a given food source is defined as its “fitness
value” associated with its position within it. Mathematically speaking, the
expression for a specific prob; food source can be represented as follows:



36 Amel Djedili, Ammar Amouri, Yazid Laib Dit Leksir and Ayman Belkhiri

fit;
N
Zq:l Jit;

where fit; is the fitness value of the solution i evaluated by its employed bee,

prob; = (1)

which is proportional to the nectar amount of the food source in position i, and
N represents the number of solutions in population.

Accordingly, the employed bees share information with onlookers, and a
potential new food source can be mathematically represented by replacing the old
one using the following expression:

new _ _old old
X; | =X +rl.(xl- —xr) (2)

old

where x;“" is the new food position, x;“ is the previously assigned food source,

1, is a random number with uniform distribution between 0 and 1 used for

adjustment, and x, is the randomly selected food source i € {1, 2. N } .

2.2. Ant Colony Optimization algorithm
The Ant Colony Optimization (ACO) algorithm was proposed by M.
Dorigo in 1992 [18]. This algorithm mimics the foraging behavior of ants, who
use pheromones to find shorter paths between their colony and food sources. The
effectiveness of the algorithm is closely linked to pheromone concentration, as it
determines the probability for ants to select a route from one node to another
using the following Equation:
c* .d”.
prob; ; = ﬁ 3)
Zi,jzl Ci,jdi,j

where C, ; is the pheromone concentration on the route between nodes i and j,
d; ; is the desirability of that same route, and @ and f are positive parameters of

influence.

2.3. Bat Algorithm

The Bat Algorithm (BA), proposed by X. S. Yang in 2010 [19], draws its
inspiration from the echolocation abilities exhibited by small bat species. These
bats emit exceptionally loud sonic pulses and then listen attentively for the echoes
that bounce off their environment, employing this technique to either detect prey
or navigate through challenging conditions during twilight hours.

BA starts with the random initialization of the population in the search

space. Each bat b is associated with a velocity v}, position vector X}, variable
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frequency f,, pulse emission factor pe, and loudness factor 1, . The current best
solution among all bats is denoted as x,,, . At each iteration ¢, each bat updates
its velocity and position vector according to the following Equations:

VZH = VZ + fb (X;) - Xbesl) (4)

X =x! 4 viH (5)
such that:

fb = Fmax 4 (Fmax - Fmin) (6)
where f_; and f_,  represent the minimum and maximum frequencies, and y is

a random vector uniformly distributed between 0 and 1.

In addition, the loudness and pulse emission rates are regulated by the
following Equations:

1 = plt (7)
pe,! =pey (1 — e_ﬁt) (8)

where 0< p<1 and g >0 are constant factors, peg represents the initial value of
emission rate.

2.4. Genetic Algorithm

The Genetic Algorithm (GA), proposed by Holland in 1975 [20], is a
search optimization algorithm that is based on the mechanics of the natural
selection process. More specifically, it utilizes biological factors like reproduction
(selection), mutation, and crossover. In GA, convergence improvement often
involves implementing the elitism procedure.

2.5. Particle Swarm Optimization algorithm

The Particle Swarm Optimization (PSO) algorithm was proposed by
Kennedy and Eberhart in 1995 [21]. It simulates the movement of flocking birds
and their interactions with neighbors within a swarm. The initial step in PSO
involves randomly initializing a group of particles throughout the search space.
Each particle, denoted as p , moves within this search space with its own velocity

t
p

both the best previous positions £, it has attained so far as well as the global

vector v and position vector x;. To update its velocity, each particle considers

best position g, achieved by its neighboring particles using the following

equation:

t+1 _ t t t
Vp - a)Vp + Cin (Pbest _Xp) + Chy (gbest _Xp) (9)
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where o is the inertia weight, ¢, and c, are positive constants, and r; and r, are
random numbers with a uniform distribution between 0 and 1.

In addition, the position vector of each particle p is updated using the
following Equation:

t+1 _ ot t+1
XU = x4t (10)

3. IK problem formulation for optimization process

3.1. Material and method

To evaluate the effectiveness of the five PbMAs, a case study was
undertaken using a continuum robot known as Dual-Cross-Module Sections
Cable-Driven Continuum Robot (DCM-S-CDCR) [22]. The DCM-S-CDCR
comprises four identical modules connected in series, with each module having
one degree-of-freedom (1-DOF). Figure 1(a) presents an illustration of the scheme
design for DCM-S-CDCR, while Table 1 provides information regarding its
modules' basic geometric parameters and their corresponding kinematic
nomenclature. The deformation of module £, with £ =1,...,4, upon actuation can

be defined by three geometrical parameters (Qk, O /ck), as shown in Figure 1(b)
where 6, and ¢, represent the bending and orientation angles respectively.

Kk =0, /1, denotes the curvature, and /, signifies the length of module £ .

Fig. 1. Schematic of DCM-S-CDCR and its kinematic nomenclature. Note that the intermediate
components in the four modules are not shown, while the sheet-like backbones have been
represented as circular arcs for better visual.
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Table 1
Geometric parameters of the DCM-S-CDCR.
Module 1 Module 2 Module 3 Module 4
Bending angle (rad) 6, 0, 0, 0,
Orientation angle (rad) @ =0 P, = ﬂ/ 2 @, =0 @, = ;z/ 2
Module’s length (mm) 1, =90 1, =90 I, =90 I, =90
Bending axis (uk_l) Yo X, Y, X,

In this study, the forward kinematics of the DCM-S-CDCR was modeled
by considering the constant curvature kinematic assumption [5]. Consequently,
the FK can be formally expressed as follows:

X= independent (k) s with k = fspeciﬁc (q) (1 1)

where x, k and q represent the task space variables, configuration space, and
actuator space respectively. fijependent 1S @ robot-independent mapping that

transforms the configuration space to the task space, whereas f; is a robot-

pecific

specific mapping that transforms the actuator space to the configuration space.

This part focuses on robot-independent mapping. Consequently, the
homogeneous transformation matrix defining the position and orientation of the

robot’s end-tip with respect to the reference frame (0yx,y,z,) can be calculated
as follows:

n=4

H=[]H,; (k) (12)

k=1
where H, is the (4><4) homogeneous transformation matrix that contains both

rotational R, and translational x,, defining the reference frame (kak ykzk) in

frame (oj_x;_;4_1Z¢_; ) - As stated in [22], the position vector and rotation matrix

are given as follows:

xkz,}k{o—c(ek))c(cok),<1—c<ek>>s<¢k>,s<ek>}T (13)
R, =rot(u;_;,6; ) (14)

where the abbreviations c(.) and s(.) respectively represent cos(.) and sin(.),

and u;_, denotes the module's bending axis defined in Table 1.
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3.2. IK problem statement and the objective function

By definition, Inverse Kinematic (IK) involves the task of finding a
potential and achievable solution that enables a robotic system to attain a
predetermined posture in terms of position and orientation. In mathematical terms,
the IK of a continuum robot according to CCKA can be formally expressed as
follows [5]:

k= fi‘lqéependent (X) (1 5 )

However, the main issue with Eq. 15 is the challenge of obtaining
analytical expressions for the IK function. Additionally, applying numerical
methods becomes difficult, particularly for multi-section continuum robots. To
tackle this problem, metaheuristic algorithms can be employed. This study utilizes
each of the aforementioned algorithms to guide a search using a set of particles in
order to find optimal or nearly optimal solutions to the IK problem for a
continuum robot. In pursuit of this objective, solution quality is assessed using a
quadratic objective function that naturally measures the distance error between the
robot's end-tip Xgeperaeq @nd its required target xy...q. Thus, the objective

g
function can be written as follows:
1 2
f obj = 5 (xdesired ~ Xgenerated ) (16)
Where X,ereq Tepresents the first three components of the fourth column of the

(4><4) homogeneous transformation matrix that defines the robot-independent

transformation given by Eq. (12).

3.3. Boundary conditions

Naturally, for a stationary continuum robot, two boundary conditions must
be satisfied regarding the mapping of the curve of the central axis of the robot to
both its base and end-tip. Formally, these terms can be expressed as follows:

X0 = Xpase> Xn = Xdesired (17)

3.4. Physical limitations

To ensure effective operation of the robot and prevent any overlapping in
their bending sections (refer to [5]), it is important to take into account additional
constraints on actuator variables. In order to meet these requirements, these
limitations can be defined in terms of bending angles as follows:

oM <9, <™, with k=1,...,4. (18)
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3.5. Problem Setting
To determine the bending angles 6, , with k£ =1,...,4, that allow the robot

to track a specified reference trajectory accurately, the aforementioned
population-based metaheuristic algorithms are employed. These algorithms aim to
minimize the objective function described in Eq. (16). At each sampling instant,
the applied optimization algorithm generates sequences of bending angles as
solutions to the IK problem, but only the last one is considered to be the optimal
solution for application on the robot.

In the search space, the dimension of the problem is 2n. The particle or
individual's coordinates in each optimization algorithm represent the variables of
the optimization problem, specifically referring to bending angles in this case. The
population within all algorithms can be regarded as a set consisting of potential
solutions. Generally speaking, Eq. (16) often possesses an infinite number of
solutions. To effectively choose a suitable solution from these multiple ones,
additional constraints can be incorporated into the objective function.

4. Numerical experiments

To evaluate the performance of the aforementioned PbMAs in solving the
IK problem for a specific continuum robot known as Dual-Cross-Module Sections
Cable-Driven Continuum Robot (DCM-S-CDCR), three numerical experiments
were conducted. The first experiment focused on a target point, while the second
one involved tracking a trajectory. Both experiments were conducted in a free
environment. After comparing and analyzing the results obtained from all five
PbMAs, a third experiment was conducted to evaluate the performance of the best
algorithm in a confined environment for a specific target point. All numerical
experiments were performed using MATLAB R2016a software on a computer
with the following specifications: Intel(R) Xeon(R) CPU E5-1620 0 @ 3.60 GHz,
16 GB of RAM, and a 64-bit Windows 7 operating system. Additionally, each
optimization was conducted considering a search swarm/agents/population size of
20 and a maximum limit of 80 iterations.

4.1. Obtaining the IKs for a target point

This numerical experiment aims to randomly search for solutions to the IK
problem in a free environment, meaning there are no additional constraints on the
cost function. The target point chosen to position the robot's end-tip is at

coordinates [60,60,270](mm), and its initial position is at coordinates [0,0,360]

(mm) relative to reference frame (ooxoyozo). To achieve this purpose, each

algorithm is repeated 50 times and their results are recorded and visually
presented using box plots in Figure 2. Noteworthy results are highlighted in Table
2 where information such as minimum, maximum, mean values of Execution time
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(Ex. time) and Position error (P. error), as well as the number of outlier results are
provided.
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Fig. 2. Results of target point tracking in a free environment: (a) Execution time box plot, (b)
Position error box plot.

Table 2
The notable results of target point tracking in a free environment.
Minimum value Mean value Maximum value Number of outliers
Ex.time P.error Ex.time P.error Ex.time P. error .
Ex.time P. error
(ms) (mm) (ms) (mm) (ms) (mm)

ABC 28.47  0.00294  30.01 0.04976  95.41 0.24402 6
ACO 63.32  0.00095 66.59  0.09237 139.76  0.18610 4
BA 41.58  0.00838  102.85 0.10670 166.01  0.29773 13
GA 56.30  0.00020  59.19  0.00923  108.86  0.09073 11
PSO 01.45 0.00214  21.33 0.01774  .27.37  0.14830 11

W3O~

Based on the results obtained, it is evident that PSO followed by ABC
perform better in terms of execution time compared to other algorithms. Their
mean execution time values are less than 22 ms and 31 ms respectively, whereas
BA has the highest mean value at around 103 msec. While all algorithms exhibit
outlier results, PSO shows a smaller data distribution. However, when considering
position error as the metric for evaluation, GA followed by PSO achieve superior
results with mean values less than 0.01 mm and 0.018 mm respectively; where
BA ranks last with a mean position error value of approximately 0.107 mm.
Additionally, GA demonstrates a smaller data distribution while ACO does not
produce any outlier results.

4.2. Obtaining the IKs for tracking a trajectory in a free environment
In this numerical experiment, the point-to-point technique was used to

track a line-shaped trajectory defined as: [101,0,360—10t]. Randomly generated
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IK solutions were used. The obtained results are presented in Figures 3 and 4.
From Figure 3 depicting execution time analysis, it is evident that PSO followed
by ABC algorithms outperformed other algorithms while BA algorithm showed
the worst performance. In terms of position error analysis shown in Figure 4, GA
followed by PSO demonstrated superior performance compared to other
algorithms whereas BA exhibited poor performance.

|—=ABC —=—ACO —BA -* GA---PSO]

Execution time (sec)

Samples
Fig. 3. Results of line-shaped trajectory tracking in a free environment: Execution time graphs.
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Fig. 4. Results of line-shaped trajectory tracking in a free environment: Position error graphs.

To sum up, Table 3 presents notable results, with the best ones highlighted
in bold. According to the Table, PSO achieved the minimum execution time
value. However, in terms of position error, GA performed better and was followed
closely by PSO.

Table 3
The Notable results of line-shaped trajectory tracking in a free environment.
ABC ACO BA GA PSO
Mean execution time (ms) 36.3 70.1 104.7 53.6 24.7

Mean position error (mm) 0.0689 0.0908 0.1153 0.0118 0.0234

4.3. Obtaining the IKs for a target point in a confined environment
Based on the results from the first two numerical experiments, which
showed that the PSO algorithm has a shorter execution time and lower position
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error compared to other algorithms, a third experiment was conducted using the
PSO algorithm. This experiment aimed to evaluate the ability of the algorithm to
track target points within a confined environment, specifically in the presence of

obstacles. The robot began at its initial position at [O, 0,360] (mm) and had to
navigate towards a goal located at [40,100,180] (mm). Two static obstacles were
positioned during this experiment; one obstacle was placed at [30,0,180] (mm)

while another was positioned at [30, 0, 280] (mm).

First, a random search is conducted 50 times to find solutions for the IK
problem. Figure 5(a) displays different robot configurations that reach the goal,
with some being feasible while others collide with static obstacles. In this Figure,
collision and non-collision configurations are depicted by red and blue colors
respectively. Secondly, in order to avoid collisions with obstacles, a penalty is
added to the objective function when the distance between an obstacle and
specific points on the robot falls below a certain value. The obtained results in
terms of robot's configurations are shown in Figure 5(b). However, in order to
select the appropriate solution to the IK problem among the multiple IK solutions,
additional constraints must be added to the objective function.

Start
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200 S~ Colision . 200 /
E configurations E Ohs 1
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configurations
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2 base ¥ )200
Y (mm) Zﬁ (mm _29'0 . 50
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Fig. 5. Results of target point tracking in the presence of obstacles: (a) Randomly generated IK
solutions, (b) No-collision IK solutions.
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5. Conclusion

This study compared the performances of five population-based
algorithms, namely: Artificial Bee Colony (ABC), Ant Colony Optimization
(ACO), Bat Algorithm (BA), Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO). These algorithms were evaluated in terms of their tracking
accuracy and execution time for solving the Inverse Kinematics problem of a
Dual-Cross-Module Sections Cable-Driven Continuum Robot. The results
indicated that PSO outperformed GA in tracking accuracy and ABC in execution
time, making it the best overall algorithm. However, this study has some
limitations that should be addressed in future research. Firstly, although PSO
showed good performance in terms of execution time, its runtimes could be
improved further by considering its variants. Secondly, this study only compared
basic versions of the algorithms while there are many improved versions available
that may yield better results for solving IK problems. Lastly, more algorithms
should be included to ensure a comprehensive comparison. Overall findings from
this research not only provide valuable insights for solving IK problems but also
guide researchers working on similar complex issues.
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