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THE INCLUSION-EXCLUSION PRINCIPLE AND RECURRENCES
FOR PARTITION NUMBERS

by Cristina Ballantine and Mircea Merca

The inclusion-ezxclusion principle together with Legendre type theorems
for number of distinct restricted partitions weighted by the parity of their length
are used to give several recurrence relations for restricted partition numbers as
well as for overpartition numbers. In the case of overpartitions, POD partitions
and 3-color partitions, we give combinatorial proofs for the Legendre type theorems
and arrive to combinatorial proofs for the recurrence relations.
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1. Introduction

A partition of a non-negative integer n is a non-increasing sequence of positive
integers called parts that adds up to n. Denote by P(n) the set of partitions of n
and let p(n) := |P(n)|. For example, p(4) = 5 because

?(4) = {(4)’ (37 1)7 (27 2)7 (27 L, 1)a (17 L1, 1)}
Since P(0) = {0}, we have p(0) = 1. A distinct partition is a partitions with distinct
parts. See [2] for more on partitions.

Let A be any set of the positive integers. Denote by P(n|A) (respectively
D(n|A)) the set of partitions (respectively distinct partitions) of n with parts in
A and set p(n|A) = |P(n|A)| and d(n|A) := |D(n|A)|. Denote by D.(n|A) (re-
spectively D,(n|A)) the subset of partitions in D(n|A) with an even (respectively
odd) number of parts and set d¢(n|A) := |De(n|A)| and dy(n|A) = |Dy(nlA)|. If
f(n) is the number of partitions of n with certain restrictions and m is not a non-
negative integer, set f(m) := 0. In general, if the definition of f is unambiguous, we
use without further clarification fc.(n) (respectively f,(n)) for the number of par-
titions counted by f(n) with an even (respectively odd) number of parts and set
feo(n) := fe(n) — fo(n) and similarly for foe(n).

We have the following generating functions

S oAy =[]+ (11)

%
n>0 €A q
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> d(n|A)g" =[]0+ ) (1.2)

n>0 i€A

> deo(n|A)g" =[] (1 - &) (1.3)

n>0 €A
Multiplying identities (1.1) and (1.3) we obtain

D deo(nA)g™ | [ D p(nlA)q"

n>0 n>0

and

Equating coefficients in the above identity we have p(0|A) = 1 and for n > 0,
p(n|A) = Z doe(m|A) p(n — m|A). (1.4)

Identity (1.4) can be explained combinatorially using the principle inclusion-
exclusion (PIE). To our knowledge, the PIE was first used in to derive partitions
identities in [4]. We explain this for the convenience of the reader.

Let n > 1. Foreach 1 < j <nlet1l <4 <ip <--- <i; <n be distinct
integers in A. We denote by P;, 4, ..i.(n|A) the subset of P(n|A) with at least one

77777

occurrence of each part i1,42,...,%;. By the PIE,
[P(n]A)) =) (-1 > |Piria.....i; (0] A)]-
§>1 1< <ig<...<i;<n

We define a bijection
Pir i,y Pirsin,.iy (n|A) = P(n — (i1 +i2 + - +15)|A)

as follows. For a partition A = (A1, A2, ..., A\g) € Py 4y, (n|A) we define @i, 4, i (N)
to be the partition obtained from A by removing a single part equal to each iy, i, ..., ;.
The inverse of this mapping is obtained by inserting a single part equal to each
i1,%2,...,0; to a partition in P(n — (i1 + iz + --- +1i;)|A). Hence

|Piin,....i; (n|A)| = p(n — (i1 +i2 +--- +1i;)|A)

and
n

p(n]d) = (-1*! > p(n — (i1 + iz + - +1i;)|A). (1.5)

7j=1 1§ji1<'i2<..',<ij§n
11,02,...,i; €A

Next, we notice that the second sum on the right is indexed by partitions in
Ut<m<nD(m|A) with exactly j parts. For 1 < j < n, denote by d;(m|A) the
number of partitions in D(m|A) with exactly j parts. Then identity (1.5) becomes

p(nlA) = Z 17+ Z d;(m|A) p(n — m|A).
7j=1
Rearranging, we obtain

n n

p(n]A) =" (do(m|A) — de(m|A)) p(n — m|A) = doe(m|A) p(n — m|A).

m=1 m=1
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If A =N, Franklin’s involution [2, pg. 10] gives a combinatorial proof for

(_1)J’+1 if m = j(3j5 —1)/2 for some j € Z,
0 else.

dy(m|N) — de(m|N) = {

Combining Franklin’s involution with the application of the PIE above, gives a
combinatorial proof for Euler’s recurrence

> (=1)F p(n — k(3k — 1)/2) = 0.

keZ

We can expand the use of the PIE to other types of partition identities as
follows. A j-colored partition of n is a partition of n whose parts can come in j
different colors. For example, a 3-colored partition is a partition in which each part
k can come in 3 different colors denoted by subscripts: ki, ko, k3. The parts satisfy
the order:

11<12<13<21<22<23<31<32<33<...

Let A = Nj = {11,12,...,1j,21,22,...,2j,31,32,...,3j,...} be the set of
integers colored with j colors. Then, the argument above works for j-colored parti-
tions. Similarly, if we consider subsets of N; and use the PIE, we obtain identities
analogous to (1.4) for colored partitions with certain restrictions.

In the next sections we consider applications of this method to obtain combi-
natorial proofs of recurrence relations. We note that each time, once defined, the
set A remains unchanged for the rest of the respective section.

Before we proceed, we introduce some notation. If the parts of a partition A
add up to n, set |A| := n. The length of A, denoted ¢(\, is number of parts of A. Given
a partition A, we sometimes view the partition as a vector of partitions A = (A%, \?),
where A\® (respectively A?) is the partition consisting of the even (respectively odd)
parts of A.

2. Overpartitions

Recall that an overpartition of a positive integer n is a partition of n in which
the first occurrence of a part of each size may be overlined or not. Let P(n) denote the
set of overpartitions of an integer n and set p(n) := |P(n)|. For example, p(4) = 14
because

() ={4), (4, 3,1, 3.1), 3,1), 3.1, (2,2), (2,2),
(2,1,1),(2,1,1), (2,1,1), (2,1,1), (1,1,1,1), (1,1,1,1)}.
Here and throughout, if A € P(n), we view \ as the vector partition A = (), X~)
with A consisting of the overlined parts of A\ (with the overline removed) and A

consisting of the non-overlined parts of A. Thus, ) is a distinct partition and N is
an ordinary partition. So the generating function for overpartitions is given by

R G o 1
nZ:op(n)q (@9 (6%5¢P) 00 (522 (2.1)
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where we assume that ¢ is a complex number with |¢| < 1 and the standard ¢-
Pochhammer symbol (a; ¢)~ is defined by

oo

(@ 0)oe = [[(1 — ag™.

n=0
The last equality in (2.1) is derived using Euler’s identity (—¢;¢)so = 1/(¢;¢*)oo,
which can be proved combinatorially using, for example, a well-known bijection g
due to Glaisher.

Let A = {(2k)1, (2k — 1)1, (2k — 1)2 | k € N} be the subset of Ny in which
odd integers come in two colors while even integers come in one color. Set CP(n) :=
P(n|A), the subset of 2-colored partitions of n with parts in A, and cp(n) := |CP(n)|.
Moreover, let DCP(n) := D(n|A) and dep(n) = |DCP(n)|. Define the transformation
¥ : P(n) = CP(n) as follows. If A = (X, X) € P(n), let pg(X) be the partition with
odd parts obtained by applying Glaisher’s bijection to A. Define ¥()\) € CP(n) to
be the color partition consisting of the parts of X in color 1 and the parts of pg(N)
in color 2. The transformation v is clearly a bijection. Hence p(n) = cp(n).

Using the set A defined above, identity (1.4) becomes

Theorem 2.1. Forn >0
n
ep(n) = Z dcpoe(m) ep(n —m).
m=1

Next, we give a combinatorial proof of the following theorem.

Theorem 2.2. Forn >0

dcpee(n) = {

2. (=)™ ifnis a square,
0, otherwise.

Proof. Let p.(n) (respectively p,(n)) denote the number of overpartitions of n into
an even (respectively odd) number of parts. In [1], Andrews proved combinatorially
that

2(=1)™ if n = m? for some m > 0,

ﬁe(n) - ﬁo(n) =91 ifn=0

0 otherwise.
Thus, to prove the statement of the theorem, it suffices to prove combinatorially
that for n > 0 we have dcpoe(n) = p,(n) — p.(n).

Let Quqq(n) be the set of partitions of n into distinct odd parts. Gupta [7]

defined an involution pg, on P(n)\ Quqqs(n) that reverses the parity of the length of
a partition. It shows combinatorially that

pe(n) = po(n) = (=1)" Qoaa(n).
For each partition o with distinct parts and || < n define
Pa(n) == {A =X €P(n) | X=a,X & Quaa(n — |al)}.

Then, the transformation

(A A) = (A, pcu(N)
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shows that the number of overpartitions in P,(n) with an even number of parts
equals the number of overpartitions in P, (n) with an odd number of parts. The
transformation

A=) € P(n) | X € Qoga(n — [A))} = DEP(n)
that colors A in color 1 and A in color 2 is a bijection that preserves the length of
the overpartition. Thus, p,(n) — p.(n) = dcpo(n) — depe(n). O

Using the bijection 1, the next corollary is an immediate consequence of The-
orems 2.1 and 2.2 and our work above gives a combinatorial proof for its statement.

Corollary 2.1. [6, Corollary 4] For n > 0
Lvn]

p(n)+2 Y (1) p(n—j%) = 0.
j=1

3. POD partitions

Let POD(n) denote the set of the partitions of n with odd parts distinct
and even parts unrestricted and set pod(n) := |POD(n)|. Elementary techniques in
the theory of partitions give the following equivalent expressions for the generating
function for pod(n):

ipod(n) qn _ (—2(];(]2)00 _ (qz;q4)oo. (3'1)
=0

(@) (G9)
The last expression in (3.1) is the generating function for p(n|A), where
A={keN|k#2 (mod4)}.

For a combinatorial proof of pod(n) = p(n|A), see [3].
Set da¢(n) := de(n|A) and dp o(n) := dy(n|A). Then, using pod(n) = p(n|A),
identity (1.4) becomes

Theorem 3.1. Forn >0

pod(n Z d2,0e(m) pod(n — m).

Let PED(n) denote the set of the partitions of n with even parts distinct and
odd parts unrestricted and set ped(n) := |PED(n)|. Next, we give analytic and
combinatorial proofs of the following theorem.

Theorem 3.2. Forn >0
d2,eo(n) = pedeo(n)

Analytic proof. For n,k > 0, we denote by dz(n,k) the number of partitions in
D(n|A) into exactly k parts. We have the following two-variable generating function
for the number of all partitions of n into distinct parts incongruent to 2 modulo 4:

Dy(z,q) Zd2 n,k) 2 4" = (=26:6%)o0 (—2¢"5 ¢") oo
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Thus we deduce that

00 . 2. .2
Dy(—1,q) = nz:%dZ,eo(n) 0" = (0% (4" ¢") = (232 Zi;ooo = ((qé;(;z)):

Since
00 2. 2
Zpedeo(n) qn = (q 7.q )oo
n=0 (

this completes the proof. O

Combinatorial proof. Let A = (A, \°) € PED(n). Then, £(\) = £(\°) +n (mod 2).
Let p:= ¢g'(\°) and write p = (u°, u°). Let

PED*(n) := [\ = (A%, \%) € PED(n) | A # 4.

We define an involution ¢ on PED*(n) as follows. Let i be the smallest positive
integer such that A{ # pf. If AY > puf remove part AY from A® and insert it into
1€, otherwise remove part pf from p© and insert it intro A°. Denote the obtained
partitions A®* and p¢*. Write p* = (u*, u°) and define ((\) := (A\°*, o (p*)). Then
¢ is an involution on PED*(n) that reverses the parity of £(\).

Define

£ PED™ (n) := {A = (A, X°) € PED(n) | A = 1} — D(n|A)

by £(A) = (2A¢, u°), where 2)€ is the partition obtained from A¢ by doubling each
part. For the inverse, if yu = (u¢, u°) € D(n|A), since each part of u€ is divisible
by 4, the partition p¢/2 obtained from p¢ by dividing each part by 2 is a distinct
partition into even parts and A := (u®/2, pg(uc/2,u°)) € PED**(n). Clearly, & is
an involution that reverses the parity of £(\). Hence pedeo(n) = daeo(n). O

Corollary 3.1. Forn >0
pod(n) = Z pedoe(m) pod(n —m).
m=1

Our combinatorial proofs for Theorems 3.1 and 3.2 together with Andrews’
combinatorial proof [1] for

(=)™, ifn=k(k+1)/2
0, otherwise,

pedeo(n) = {

lead to a new combinatorial proof of the following result.

Corollary 3.2. [3, Theorem 1.6] For n >0
> (=12 pod(n — j(j +1)/2) = 0. (3.2)
j=0
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4. 3-color partitions

Let A = {kl, ko, k3 | ke N} Nj3. Further let Gng(
D(n|A) the set of 3-color partitions, and set cps(n) =
|DCP3(n)|. Set depse(n) := de(n]A) and depso(n) = do(n]

Then, (1.4) becomes

) == P(n|A), DEP3(n) :=
|CP3(n)| and deps(n) :=
A),

Theorem 4.1. Forn > 0,
cps(n Z depsoe(J) cps(n — j).

The generating function for the sequence d3 ¢,(n) is

> dseo(n) ¢" = (g:9)%
n=0

Jacobi [8] gave the following cubic analog of Euler’s Pentagonal Number Theorem

o

(@:0)% = D (=1)" (20 +1) g""FD/2, (4.1)

n=0
For an analytic proof of (4.1), see for example [5, Eq. (0.49), p. 17]. Joichi and
Stanton [9] gave a combinatorial proof of (4.1). Hence, for n > 0

—1)k ifn=
dcp&eo(n)_{( DFE2k+1), ifn==kk+1)/2,

0, otherwise.
and combining Joichi and Stanton’s combinatorial proof [9] with the PIE proof of
we obtain a combinatorial proof of Theorem 4.1, we obtain a combinatorial proof of
the following recurrence.

Corollary 4.1. Forn >0

o0

ST 25+ Veps(n—j(G +1)/2) =0.

=0
5. (3,5)-color partitions

A (3,5)-color partition is a partition in which each even part can come in 3
different colors and each odd part can come in 5 different colors. Let

A={(2k);,(2k—1); | keN,1<i<3,1<j<5}.

Let CP35(n) := P(n|A), DCP35(n) := D(n|A) and set cp35(n) := [CP35(n)| and
deps5(n) == |DCP35(n)|. Set depsse(n) := de(n|A) and deps 5.(n) := do(n|A)
Then, (1.4) becomes

Theorem 5.1. Forn > 0,
cp3,5(n chp:asoe )ep3s(n —j) = 0.

Next, we give an analytic proof of the following theorem.
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Theorem 5.2. Forn > 0,

1—6k, ifn=k(3k—1)/2, keZ
dcpg,s,,eo(n):{ fn=k(3k=1)/ |

0, otherwise.

Proof. For n,k > 0, we denote by d35(n, k) the number of 3-color partitions of n
into distinct parts, with & parts. The generating function for ds 5(n, k) is given by

D35(2,9) = Y das(n,k) 2" = (—24;4))% (—2¢% ¢*)2%.
n,k
Thus we deduce that

. (:9)2
D3s(—1,9) = Y dsseo(n) ¢" = (¢:4°)% (%5 6°)2 = (2723‘2’
oward 7 4%

The generating function for the sequence d3 5 co(n) can be expressed as
(% d*)%

According to [5, Eq. (0.48), p. 17], this product can be expressed as

- 205 /.2, 2\3 (Q'Q)5
)

D depzseo(n) ¢ = (4;0°)% (675 6%)% = v

n=0

(¢ Q)io _ - 1 — 6n) g"Bn=1)/2 5.1
(qg, q2)2 - Z ( - n) q . ( . )
? o0 n=—00
This concludes the proof. ]

Corollary 5.1. Forn >0
> (1= 6k) cps 5(n — k(3k — 1)/2) =0.

k€EZ
6. (3,2,1,2)-color partitions

A (3,2,1,2)-color partition is a partition in which each part congruent to 0
modulo 4 can come in 3 different colors and each part congruent to 1 or 3 modulo
4 can come in 2 different colors Let P31 2(n) denote the set of (3,2,1,2)-color

partitions of n. We set p32.12(n) := |P3212(n)[. So the generating function for
p321.2(n) is given by

(o) . 1

D ps212(n)d" =

(4;0%)% (0% 4o (g% g3

n=0

In this context, we remark that

> (¢:9)2
E (=1)"p3212(n) ¢" = —5—5%.
~ (4% ¢%)2

Forn > 0, we denote by d3 2 12 .(n) (respectively d3 2 1.2 ,(n)) the number of (3,2, 1, 2)-
color partitions in P32 1 2(n) with an even (respectively odd) number of distinct parts
and set d3212.c0(n) = d32,12,6(n) — dep32,1,2,0(n).

Then, (1.4) becomes
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Theorem 6.1. Forn > 0,

n

p3212(n) =D (1) d3212.0(j) pp,1,2(n — 5) = 0.
j=1

Next, we give an analytic proof of the following theorem.

Theorem 6.2. Forn >0
(-D*@Bk+1), ifn=k(Bk+2),kcZ

0, otherwise.

deps i 2,e0(n) = {

Analytic proof. For n,k > 0, we denote by d321.2(n, k) the number of (3,2,1,2)-
color partitions of n into distinct parts, with k parts. The generating function for
d3212(n, k) is given by

D3ora(z,0) =Y diaia(n k) 2" ¢" = (—2¢;¢°)% (—2¢%: ¢") oo (20" 41
n,k

Thus we deduce that

o0 2. 2\5
q-;q
Dso12(=1,9) = > d3212.60(n) 4" = (4672 (4% 4o (4% 013 = ((3“
n=0 q; q)oo
According to [5, Eq. (0.47), p. 17], this product can be expressed as
(@ a3 _ <
(qT);O = > ()" (Bn+1)g"C) (6.1)
11/00 n=—00
This concludes the proof. ]

Corollary 6.1. Forn >0

D (1) 3k 4+ 1) ps a2 (n — k(3k + 2)) =0.
kEZ

We conclude the article with an observation. Jacobi’s cubic analog of Euler’s
Pentagonal Number Theorem (4.1) can be deduced analytically from the Jacobi
triple product identity. However, existing the combinatorial proofs of the Jacobi
triple product identity do not reduce to combinatorial proofs of (4.1). Using the
Involution Principle, Joichi and Stanton [9] argue that the existence of an involution
proving combinatorially the Jacobi triple product identity implies the existence of
an involution for (4.1). They were able to find an explicit involution proving (4.1)
and did so without the use of the Involution Principle. Similarly, identities (5.1) and
(6.1) can be obtained analytically from the quintuple product identity. It would be
interesting to find explicit involutions in the spirit of Joichi and Stanton to prove
identities (5.1) and (6.1) combinatorially.
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