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THE FOURIER IMAGES OF SOME HOMOGENOUS 
DISTRIBUTIONS WITH SINGULARITIES IN )( 2RD′  
AND )( 3RD ′  WITH APPLICATIONS IN ELASTICITY  

Antonela TOMA1 

In aceasta lucrare se determină imaginile Fourier ale unor distribuţii 
omogene cu singularităţi, din )( 2RD′  si )( 3RD ′ . Se arată utilitatea formulelor 
stabilite în studiul vibraţiilor barelor elastice precum şi la determinarea soluţiei 
generalizate a problemei planului elastic în tensiuni şi a problemei spaţiului elastic 
în deplasări. 

 
In this paper the Fourier Images of some homogenous distributions with 

singularities in )( 2RD′  and )( 3RD ′  are obtained. These are useful in the study of 
the vibrations of the elastic rods and thin elastic plans as well as in obtaining the 
generalised solutions of the problems in strains of the elastic plane and of the 
problems in displacements of the elastic space. 

Keywords: elasticity, The Fourier transforms, distributions. 

1. Introduction  

The distributions generated by homogenous functions are useful in the 
study of the problems of the elastic plane  as well as in the study of the problems 
of the elastic space. The way of computing the derivates of such distributions as 
well as their Fourier Images are very important.  

According to [3], [5], if )( nRD∈ϕ is a test – function from the space of 
infinite differentiable functions with compact supports D , and )( nRDf ′∈ is a 
distributions, then its Fourier Transform )]([)( ξξ fFf = is defined by the 
relation: ),()2(),( ϕπϕ ff n= , where ∫==

nR

dxxixF ,)),(exp()()]([)( ξϕξϕξϕ  

nn xxx ξξξ ++= ...),( 11  the inverse Fourier Transform F-1 acts by the formula:  

),(
)2(

1)),(( 1 ϕ
π

ϕ ffF n=− . 
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The following formulas hold: 1)]([ =ξδF , ( ) )(2)](1[ ξδπξ nF = , 
,]][[( 1 ffFF =− ffFF =− ]][[ 1 , )( nRDf ′∈ , where )( nRD′∈δ represents the 

Dirac distribution concentrated at the origin. 
 

2. General Results 
 
We use distributions generated by the homogenous functions in the study 

of the static problems of the elastic plane, of the elastic half plan as well as of the 
elastic space.  
Taking into account [5], [3] we have the following result:  

Proposition 2.1 Let { } CRf n →0\:  be o homogenous functions of λ 
degree having (x=0), the singularity. Then its derivative in the distributions sense 
is computed by the formula:  
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Where              )0)((rezf = ∫
1

1cos)(
S

idSxf α     (2.2) 

represents the residuum of the function f in the singularity x=0 corresponding to 
Oxi axes. 

The symbol 
ix∂

∂
~

represents the derivative in the common sense, S1 

represents the unit sphere centrated at the origin, dS1 the area element and αi the 
angle between the exterior norm at S1 and Oxi axes. From [5] we have: 
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Applying Fourier Transform in )( 2RD′  to [2.3] we obtained: 
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Analogue we have: 2
2

2
1

2
2122 2),]([

ξξ
ξ

πξξ
+

=
+

i
yx

yF    (2.6) 

Taking into account (2.6) we have: 
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We remark that the function 2
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homogenous function with the degree λ=-1=-n+1, n=2, where 021 == ξξ is the 
discontinuity point. 
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Where C1 represents the unit circle centrated at the origin, ds1 =dθ,  
21 sin,cos ξθξθ ==  
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Consequently from (2.7) we have: 
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The following relations hold: 
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From [2.6] we have:  
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Substituting in (2.12) we obtaining the formula (2.4) 
Similarly   
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From (2.10) and (2.11) we obtained  
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Proof:  

Using the inverse Fourier Transform F-1 in the distributions space )( 2RD′  
we have: 
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Taking into account (2.5) we obtained:  
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Since the function 22 yx
xy
+

, 
2

),( Ryx ∈ \{(0,0)}is a homogenous function with the 

degree λ=0>-n+1, n=2, based on (2.1) we have 
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We remark that the Fourier Images permit the determination of the 

generalised solution in )( 2RD′  of the problem of infinite elastic plan. 
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3. The problem in strains of the infinite elastic plane  
 
Let )(),(),,( 2RDyxYyxX ′∈ be the components of the mass forces which 

act on the homogeneous elastic plane, written in distributions from )( 2RD′ . 

We denote by 222 ))((
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tensor of strain of second degree ),(),( yxyx yxxy σσ = . 

The problem in strains of the elastic plane in distributions consists in finding the 
tensor 222 ))(()( ×′∈ RDσ  that satisfies the balance equation: 
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as well as the compatibility equation: 
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where )1,0(∈μ represents the Poissons coefficient. 
The solution of this problem has the following form: 

),(),(),(),(),( 21 yxYyxuyxXyxuyxxx ∗+∗=σ      (2.21) 
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),(),(),(),(),( 21 yxYyxwyxXyxwyxyy ∗+∗=σ  

where ""∗ represents the convolution product in )( 2RD′  with respect to the 
variables 2),( Ryx ∈ . 
In order to determine ,3,2,1),(,, 2 =′∈ iRDwvu iii we consider the cases: 

1. 0),,( == YyxX δ  

2. ),(,0 yxYX δ== where ∈),( yxδ )( 2RD′ represents the Dirac distribution 
concentrated at the origin of 0xy axes. 

Applying the Fourier Transform in )( 2RD′ to (2.19) and (2.20) we 
determine. 
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For the existence of the convolution product, we 
consider )(, 2REYX ′∈ distributions with compact support. 

4. The Fourier Images of some homogenous distributions with 
singularities in )( 3RD′  

Let 
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Then from [3], [5], the following relation holds: 
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These functions are homogeneous with degrees 0,0,-1 respectively, and 
0=r  singularity. 

One can use (2.1) in order to compute the derivatives of these functions 
and we will compute the Fourier Images of (2.24). 
Thus we have: 
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Proof: 
Applying to (2.23) the Fourier Transform with respect to the variables 
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In order to prove (2.26), we have: 
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5. The generalised solution of the problem in displacements of elastic 
space 

Let us consider ,,3,2,1),()(),( 33 RxiRDxXxu ii ∈=′∈ the components of the 
displacements and the projections of the volume forces that act on the 
homogeneous elastic space. 
The problem of the elastic space on the action of the volume forces 

),()( 3RDxX i ′∈ consists in the determination of the distributions 
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Lame's elastic constants, and Δ represents Laplace’s operator.  
The solution of the problem [6] can be written in the following manner: 
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In order to determine the distributions 3,2,1,),( 3 =′∈ jiRDEij  we consider the 
following cases: 
1. 0),( 321 === XXxX δ  

2. 0),( 312 === XXxX δ  

3. 0),( 123 === XXxX δ  
Applying the Fourier Transform to (2.30) and (2.32) we determine the 

Fourier Images  [ ] )(ˆ ξijij EFE = . 
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Applying the inverse Fourier Transform 1−F and taking into account the 
established Fourier Images already established, we obtain: 
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Thus, the solution in displacements (2.32) of the problem of the elastic 
space is determined. 

For the existence of the convolution product from (2.32), the volume 
forces iX are distributions with compact supports, which means ).( 3RX i Ε′∈  
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