U.P.B. Sci. Bull., Series C, Vol. 75, Iss. 2, 2013 ISSN 2286-3540

MATLAB MEDICAL IMAGES CLASSIFICATION ON
GRAPHICS PROCESSORS

Ramona DIN

Due to their massively parallel hardware design, graphic processors can
easily beat ordinary CPUs in applications which involve large amount of data.
Considering their great potential, the objective of this paper is to continue previous
work and optimize the speed and efficiency of texture and fractal analysis, as used
for medical images classification processes for early skin cancer detection. The
images are classified based upon Haralick features and fractal geometry, which
both proved to be traditionally computationally expensive.

Keywords: medical image processing, parallel computing, content based image
retrieval, texture analysis, fractal analysis, graphics processing unit

1. Introduction

We can nowadays easily identify information retrieval principles at the
core of almost all digital information related processes, as it forms the foundation
of any search engine. With a great impact on present day large scale systems and
services, information retrieval (IR) deals with searching and managing huge
volumes of data, mainly large collections of text, images, music and other human-
language data representations. Millions of people are relying on information
retrieval systems to accomplish their professional, academic or personal targets:
enterprise platforms, social, mobile, or web search engines, digital libraries,
medical simulations, computer aided diagnosis, image, news, video, or music
search — just to name few areas for which retrieval techniques are vital. As a
common basis, all engage at least one form of modern information retrieval,
overtaking traditional database searching style. The most sophisticated
information retrieval systems easily deal with unstructured data, i.e. data which
does not have semantically clear, easy for a computer to interpret, structure. As a
challenge for many years now, but emulating the latent linguistic structure of
human language, this represents exactly the opposite of structured data, the
canonical example of which is a classic relational database. Although its origins
are to be found in text processing algorithms, one of the most challenging and
pressing areas of IR still remains image retrieval. Over the last decade, image
retrieval systems were designed to deal with image collections as personal
pictures, domain-specific collections (e.g. medical databases, satellite images,
mathematical, physical or biological simulations), enterprises’ image collections,

18 Ramona Din

archives, and last, but definitely not least, with the world wide web. All of them
seek for a high degree of user satisfaction and thus, each focuses on different
features such as personalization, data display, browsing, processing speed, or
accuracy.

One considerable application area for image retrieval techniques is for
medical databases. Medical imaging produces great amounts of data which, once
investigated and classified, might be extremely valuable for future diagnoses. The
approach that most of existing medical information retrieval systems considered
so far was to analyze images’ content, extract relevant data, and exploit it in such
a way that it allows a meaningful classification. Most of the systems were
designed for computer aided diagnosis, but currently their features extends also to
assist physicians in treatment of diseases, in choosing or defining an adequate
therapy, or for surveying patient’s evolution during the treatment [1], [2].
Depending upon particular tasks, the classification process might use different
image features with various properties. Among the most common are the textural
properties, color, shape, or fractal properties. However, unstructured data,
heterogeneous tissues, undefined shapes, and the noise presence negatively
influence automated analysis. In order to address these challenges, one can either
simplify the scope of medical analysis or pre-process the image so that he exploits
some kind of a priori information about the imaged structured. This can refer to
anatomical knowledge (shape, position, gray levels) or to its statistical properties
[3]. Nevertheless, the medical image processing is still a heavy task as the
computing time increases with the image size and resolution. Fortunately, from a
technically perspective, the computation can be optimized and partitioned into
parallel units of work, and then each executed separately. In the beginning of
parallelization era, the parallelization was achieved at the virtual levels,
leveraging and synchronizing bunches of parallel threads. Once the multi-core
processors became available on the market, a great number of parallel algorithms
were readjusted to exploit CPU’s multicores. The application of parallelism and
distributed techniques introduced improvements for a large number of algorithms,
some of them applied for search systems as well. Although parallel computing
algorithms are, most of the time, more complex than their sequential equivalents,
they have always had the same major objective: achieving a performance which is
superior to the sequential processing one, whether this means identifying a
solution in less time, simply identifying a better solution, process a larger set of
data or even solving high complexity problems.

The past few years, microprocessor design has followed two separate
paths: on the one hand, there were the multi-core multiprocessors (e.g. IntelCore
7 is a microprocessor with four processing cores, each of them implementing a
complete x86 instructions set); these were offering support for multiple hardware
threads and were mainly used for improving the execution of sequential

Matlab medical images classification on graphics processors 19

algorithms. A performance improvement of 100% could be achieved only by
doubling the number of processing cores within a microprocessor; therefore the
improvements were highly limited by hardware. On the other hand, the many-core
microprocessors (e.g. graphics processors) developed mainly by the video-card
manufacturers using a different design strategies, were trying to achieve a high
level of hardware parallelization. The technology used allowed the manufacturers
to build these microprocessors with a considerable number of cores (e.g.
NVIDIA’s GTX470 has 448 cores), each of them being highly parallelized at the
hardware level, massively reducing hardware constraints as opposed to the ones
above described. Since 2003, microprocessors having multiple execution cores,
especially graphics microprocessors, have managed to achieve performances
which are far better than those of multi-core microprocessors and this has been
well documented in literature [4]. Moreover, the performance improvement factor
can easily exceed the level of 100% - maximum allowed by CPU’s hardware
design.

There are fundamental design differences between the two presented
microprocessors types, differences which lead to performances of up to 20 times
better in the case of not optimized algorithms [5] and up to 400 times better in the
case of specialized algorithms [6]. More than that, a hardware structure which is
specialized in the rapid execution of sequential implementations, allows central
processing units (CPU) to use sophisticated logical mechanisms in order to be
able to execute a single thread’s instructions in parallel. In order to reduce the
execution time, these require a very large cache memory and high bandwidth,
both of which are currently hardware constrained. Many-core processors,
especially graphics processing units (GPUs), have led the race of performance
since 2003 [7]. While the performance improvement of CPUs has significantly
slowed, the GPUs conquer the market, improving relentlessly. As of 2009, the
ration between many-core GPUs and multi-core CPUs for peak floating-point
calculation throughput is about 10 to 1. Even more, graphic chips have been
operating at almost 10 times the bandwidth of contemporary CPU chips. G80
processors and their successors allow CUDA programs to run without going
through the graphic interface at all [6]. Instead, a brand new general-purpose
parallel programming interface on the chip serves all requests of CUDA enabled
programs. Nowadays, the graphic processor is already a market old-timer.
Associating its great potential with the reality that parallel algorithms as a concern
of programming paradigm, have as long of a tradition as the one of sequential
algorithms [8], this paper aims to introduce a novel approach for content-based
medical image retrieval based upon texture and fractal features computed on
graphical platforms. In [3] the authors proved that both texture and fractal analysis
may be successfully applied for medical image classification for early detection of
skin cancer. This paper aims to continue the previous work and optimize the

20 Ramona Din

processing speed and efficiency by implementing all the algorithms and
procedures on a parallel processing platform. The results will be compared and
presented against already published CPU results [3].

2. Image retrieval systems - state of the art

The early image retrieval systems were based upon metadata or so-called
annotations. Over the last decade, researchers have built numerous image
annotation-based and automatic annotation features for various image retrieval
systems. J. Li et al proposed automated annotation of pictures with a few
hundreds of words and using Markov models in [9]: their classification process
chooses a set of classes an image might belong to based on a set of annotations
defined using statistically salient words for given images. In some other
researches, annotations are considered to be translations in between a predefined
set of words and images [10]. Hierarchical statistical techniques which associate
images to words (i.e. automatically annotates images) has been also proposed in
[13], [12], and [11]. Generative language models have been used for the task of
image annotation in [14], [16]. Closely related, another approach was to involve
coherent language models, exploiting word-to-word correlations to strengthen
annotation decisions [15]. The proposed system automatically computes
annotation length for a given image, hence using annotations variable in size. The
authors attempted, this way, to provide a more accurate description, eliminating
irrelevant words. They have proved that automatically determined annotation
length might improve the accuracy of the image retrieval system, but only for a
relatively small range of text queries. In order to improve system’s performance,
they have introduced an active learning module, reducing the number of annotated
images. Their empirical studies have shown that the results were substantially
more effective than using a simple random sampling approach.

All the annotation strategies discussed so far model visual and textual
features separately prior to association and none discusses or addresses the
problem of semantic gap. In [17], the authors tried to use latent semantic analysis
(LSA), direct match, and annotation by inference (PLSA) for both annotations and
visual features. The LSA model has been previously used to identify semantically
meaningful subspaces in the visual-textual feature space, but automated image
annotation still remained a difficult question. Humans learned to associate
multiple viewpoints to static images. The association of words and blobs become
truly meaningful only when blobs isolate objects well. Moreover, how exactly our
brain performs this association is still unclear. While Biology tries to answer this
fundamental question, researchers in information retrieval tend to take a pragmatic
stand in that they aim to build retrieval and annotation systems that have practical
significance [18].

Matlab medical images classification on graphics processors 21

Text-based image retrieval systems were a great step forward in digital
information processing, but they had few significant drawbacks. Firstly, they
involve significant amounts of manual work to be done: each image needs to be
manually annotated with relevant data by a human being. Beside the fact that this
requires effort, it is time consuming and it cannot be automated according to the
current approach. On the same note, different people may describe the content of
an image in different ways, which limits the search process to metadata used in
description. Moreover, most of the times, textual description is not capable of
comprising visual contents and their meanings; it may be the case that for some
images there is something that can not be conveyed by words at all. Even further,
the most intriguing challenge about multimedia retrieval is when the query itself
presents as a multimedia excerpt. For instance, doctors may use medical images
for searching similar previous cases before deciding on a diagnose, tourists may
use pictures trying to identify places they visit, meteorologists may have satellite
images as inputs for their weather prediction systems. Modern image retrieval
systems aim to accommodate all these and, the most successful approach so far is
based upon image features extraction. Weather the retrieval is good or not is not a
matter of subjectivity anymore; it depends on the selected features and their
extraction accuracy. In [19] image features have been classified by semantic
hierarchy into middle level features and low level features. The last class includes
color, texture, and inflection, whereas the former refer to shape and objects’
features. In medicine, computing textural properties and applying them for image
retrieval is not a novelty: Sutton and Hall proposed pulmonary diseases’
classifications based on them, Harms et al have also used a combination between
texture and color features to identify malignancy in blood cells, Insana et al
applied textural features to estimate tissue scattering parameters in ultrasound
images [3]. Recently, fractal geometry has been also exploited to investigate
epithelial complexity and malignancy of various tumors; this has been considered
as a promising approach for early diagnosis in gastric tumors [20], breast, and
pulmonary cancer [21], [22].

Several methods have been described in literature for texture feature
extraction. One might use statistical, structural, model-based and transformation
information, wherein a common technique bases on Gray Level Co-occurrence
Matrix (GLCM), proposed by Haralick in 1973 [23]. After computing the co-
occurrence matrix, Haralick suggested 14 most useful statistical features: angular
second moment, contrast, energy, correlation, variance, inverse difference
moment, sum average, sum entropy, entropy, difference variance, difference
entropy, information measure of correlation 1, information measure of correlation
2, and maximum correlation coefficient. GLCM is a useful tool in image
processing area and texture analysis; however it is a heavy and computational
intensive method, almost always being time-consuming. In [24], the authors

22 Ramona Din

presented an example of GLCM calculation for medical applications. The
computation tine for an image of 5000x5000 pixels was about 350 seconds using
one CPU running at 2400MHz. Inspecting where the bottleneck lies, they found
out that 75% of total time was spent calculating the GLCM matrix, 19%
extracting features and the rest for the classification. Previously, there were many
researches focused on accelerating the computation of GLCM and more then a
few methods have been analyzed and tested by researchers. Using a linked list
(Gray Level Co-occurrence Linked List — GLCLL) and storing just non-zero
values [25], or Gray Level Co-occurrence Hybrid Structure — GLCHS [26],
representing the image on 4 bits instead of 8, all were improvement suggestions
already investigated, but, to the best of our knowledge, none didn’t manage to
achieve outstanding results.

Due to their massively parallel hardware design, GPUs for general-
purpose can easily beat ordinary CPUs in applications which involve large
amount of data. Historically, GPUs were born for being used in advanced graphics
and videogames [6]; still, more recently interfaces have been built to interact with
codes not related to graphical purposes. General-purpose computing on graphical
processing units (GPGPU) is an emerging method for achieving high performance
gains on various computing problems and scientific researches such as neural
networks, medical research, database operations, information retrieval, and
physics-based simulations. The higher number of cores and the more efficient
processing of complex mathematical calculations on GPUs in comparison with
CPUs, makes general purpose computation on graphics hardware (GPGPU) a
fascinating new method for deploying algorithms [27]. Whereas lots of studies
analyzed and proposed optimizations for CPU implementation, few tried to
exploit GPU for performing such a task as medical image classification. Given
their extremely high computing demands, image retrieval systems represent a very
interesting challenge for GPUs. The next section presents some already studied
techniques for content-based image retrieval, altogether with the architecture and
integration of a suite of Matlab routines specially designed for GPU’s platform.
The fourth section of the paper presents our experimental results, followed by
conclusions.

3. GPU Matlab implementations for image textural features extraction

3.1. Statistical methods to texture analysis

The most powerful statistical method for textured image analysis is based on
features extracted from the GLCM, proposed by Haralick. The co-occurrence
matrix considers the relationship between two neighboring pixels (one being the
reference, the other the neighbor pixel). The image used to determine the co-

Matlab medical images classification on graphics processors 23

occurrence matrix is an image with a predefined number of gray levels. Let’s
0<x<N,

0<y<N
The GLCM P/ is defined for a displacement vector d = (Ax,Ay) and direction &
as follows:
P (i, j) = Card {((x,»),(t,)/ 1(x,y) = i, I(t,v) = j},
(x,9),(t,v)e N xN (1)
{(t,v) =(x+Ax,y+Ay)

For each pixel, it has been considered a corresponding surrounding area,
considering 8 main directions for each neighborhood when determining the co-
occurrence matrix [28].

assume G the number of gray levels for an image /(x,y) with: {

2

[¥

Fig. 3.1. Directions used in co-occurrence matrix calculus

Haralick texture features

From GLCM one can easily compute a number of texture features as defined by
Haralick. All these features have a good discriminating power, being extremely
useful for content-base image retrieval. For the current application in this paper,
we have determined the entropy Ent , the contrast Con , the energy Eng, and the

correlation factor Cor for a NxN co-occurrence matrix [28].

Entropy

The term originates from thermodynamics and it refers to the quantity of energy
which is permanently lost in order to heat a reaction or other types of physical
transformation. Within the current context, it denotes the degree of disorder, as
opposed to homogeneity. Entropy’s large values indicate uniform GLCM. It can
be defined as:

Ent = —Z Z P, (i, j)log(P, (i, j)) ()

i=1 j=1
Contrast

It measures the gray-level variations between the reference pixel and its
neighbors; large values of contrast indicate large local variation of gray levels. In
case of performing the computation on color-based images, the contrast is

24 Ramona Din

determined by the difference in the color and brightness of one object and other
object within the same area.
N N
Con=Y">"(i—j)’ P, (i,)) 3)
=l j=1
In case ofi=j, the cell is on the diagonal and equality means the pixels are

entirely similar to their neighbors, considering thus their weight null. The weights
increase exponentially as (i — j) increases.

Energy
It measures the degree distribution of gray levels; it has the highest value when
this is either constant or periodic. The energy is a measure of the textural
uniformity of the image and it can be defined as follows:

N N

Eng =Y > P/ (i,))’ 4)

i=l j=1
Correlation
It refers to the linear dependency of gray level values in the co-occurrence matrix,
or, simply put, to the pixel’s neighborhood influence over the entire image. A
reference pixel may be uncorrelated to its neighbor (having correlation factor
null), perfectly correlated (with a correlation factor of 1) or anywhere in between
(with a correlation factor in between 0 and 1).

COV:ZZR{(i,j)(i_ﬂi)(j_ﬂi) (5)

i=l j=l i

where g, , p1;,0,,0 ;are the means (6), respectively standard deviations (7)
computed from the histogram, #,, of the difference image [28]. In case of

symmetrical GLCM, x4, = u; ando, =o,.

Hy = %ixihd (x;) (6)
0% = 26—)y ())

i=1
3.2. Fractal dimension used in texture analysis

Fractal geometry has been previously applied to medical algorithms and
became popular in modeling biological properties in image processing especially
due to its capabilities of modeling complex shapes. By identifying contour

Matlab medical images classification on graphics processors 25

irregularities and computing fractal dimensions, one can discriminate between the
shapes of malign over benign tumors. Experimentally, it was established that most
of the information about the malignity of a tumor is contained in the contour of
the tumor shape. Doubtful tumors are characterized by blurred contours which are
changing by different threshold used to separate the tumor from background
(image segmentation). The outline of each image was analyzed by estimating the
global fractal dimension, the local fractal dimension and local connected fractal
dimension. One of the most relevant concepts in fractal geometry is self-
similarity: considering a bounded set 4 in a Euclidian n-space, one can state 4 is
self-similar when it represents the union of N distinct and scaled copies of itself.
The fractal dimension FDis defined as a function of N and the ratio between the
original image and the scaled down copies:

_ log, N(r)

" log, (1/1) ®
The algorithm calculates a mean fractal dimension MFD (9) from individual
values FD,of different image contours detected exploiting the initial gray-level

image:

k
MFD =1 > FD, ©)

i=1

In (9), k represents a predefined value which specifies the number of iterations for
contour extraction using a fixed neighborhood. The algorithm used to compute the
fractal dimension was a version of box-counting, its steps been described in a
previous paper [3]. Further, the current paper presents the implementation and
integration of a new set of Matlab routines dedicated to graphic platforms.

3.3. System architecture

Fig. 3.2 presents the system architecture, all modules being implemented

in Matlab and all, except from the one reading the database and saving back the
results, are running on graphic processors.
In order to parallelize the code and execute it in on the GPU, we have rewritten
previously used Matlab GPU routines using Jacket, a runtime platform that helps
to connect the M language to the GPU. It offers support for specific data types —
counterparts to CPU Matlab data types, and a set of GPU functions ranging from
basic implementations to complex arithmetic or signal processing solving
methods.

26 Ramona Din

Digital image pre-processing

Noise

(Image segmentation

RGB to grayscale
conversion

[GLCM Computing

[Texture analysis

Fig. 3.2. System architecture

It provides automated memory management and compilation-on-the-fly,
being in the same time transparent for programmer. Moreover, its capabilities
extends to integrating any custom CUDA-C (and other programming languages)
function into a suite of Matlab routines. The Fig. 3.3 presents the most relevant
Matlab functions, based upon the architecture presented in Fig. 3.1. The entry
point is represented by medicallmageAnalysis.m which transforms every image
into its grayscale correspondent, computes the co-occurrence matrix, extracts four
textural features (the entropy, the contrast, the energy, and the correlation), and
computes the fractal dimensions. In order to create the gray-level co-occurrence
matrix, pairs of horizontally adjacent pixels are evaluated within an image scaled
to 8 levels. Therefore, there are 8 x 8 possible ordered combinations of values for
each pixel pair and the result gets computed by adding the total occurrences of
each combination. The user can choose any custom value for offsets or a default
of /0, 1] is used when none was provided. If the corresponding neighbors defined
by the offset fall outside the image boundaries, the implementation ignores border
pixels. Also, pixels pairs are ignored if either of their values is NaN. The
elemSum.m uses as input an intermediate matrix computed from the grayscale
image, 0 and 1 — as the elements to be summed, and the output vector size,
returning an array with values determined by accumulating 1 according to the
subscripts from the first parameter. In order to compute the fractal properties, a
box-counting algorithm has been implemented to run on the GPU platform. The
implementation followed the example of a Matlab built-in function, using Jacket
GPU-dedicated data types.

Matlab medical images classification on graphics processors 27

medical Ivageinalysis. mﬁ

for i = Linoffs grayMatrix.m |

offsetrnat = [offsetmat; i*[101];

GLCME = corrputeGrayMatrix], 'Offset’ offsstmat); parsel mputs (vararg)

tic; .

textureProps = GLCMFeaturesUnvectorized(GLOWZ,0); cornputeGLCMMatr i (row, calumin, offset, si, nl)
iy = toc;

fractalProps=fractalFeatures);
end

e lemsZum.m
:I, SCCUT_aaray sUm. m

GLCMFeaturesnvector ized. mﬁ

fractalFeatures.m

checkInputColor
remapiectors
computeBox Count

checkInputhatrix
extractFeatures

Fig. 3.3. Matlab routines integration

Once extracted, all features are written in a file. Further, the results file is
used for image comparison and classification.

bad_cpu = isnan(v1l_cpu) | isnan(v2_cpu);
bad=glogical(bad_cpu); % start using the GPU
if any(bad)
wid = sprintf(‘Images:%s:are not supported’,mfilename);
warning (wid, ‘Cannot compute GLCM matrix.’);
end
%if everithing okay, start processing: remove elements from the original matrix
Ind_cpu = [vl_cpu v2_cpu];
Ind=gsingle(Ind_cpu); %move the computation on the GPU
size(Ind)
if isempty(Ind)
oneGLCM = zeros(nl);

else

% compute the co-occurrence matrix on the GPU (using GPU-specific data) by
accumulating the elems according to their subscripts

oneGLCM = elemSum(ind, 1, [nl nl]);
end

4. Experimental results

The software system has been tested using a collection of ten test complex
medical images with fractal textures; an example is provided in Fig. 4.1. The
images were acquired using a high-precision dermoscope, a device which
magnifies a pigmented lesion and allows the dermatologists to see and take

28 Ramona Din

pictures through the bottom of the outermost layer of skin. The resolution of the
test pictures starts at 1600x1200 pixels and increases until 2592x1944 pixels.
When trying to execute traditional algorithms for features extraction, the runtime
exceeded expectations: for the largest images, there were necessary from 20 to
150 seconds to be processed. The hardware configuration has a strong impact on
both CPU and GPU execution results, thus it is imperative to consider it during
performance evaluation. The presented results are based on executing the
algorithms on a system configuration with an AMD Turion64 X2 TL-62, running
at 2.2GHz with 2 GB DDRAM400 of memory and one CUDA-enabled GTX470
graphics card with 1280 MB GDDRS of global memory and 448 CUDA cores.

.
“ Fig. 4.1..:Fest image

The first implementation integrated the custom routines presented in Fig.
3.2. We have used the Matlab profiler to debug and optimize the code by tracking
the execution time. We have recorded the execution time and the number of calls
for each function presented in Fig. 3.2 and we discovered that using the standard
accum_arraysum.m routine was extremely time-consuming. Therefore, we have
rewritten the function in CUDA C and integrated it at runtime using Jacket SDK.

Although, Matlab is well-known as a powerful programming language,
dedicated especially for complex technical computations, the code is still
interpreted at runtime, whereas faster languages like C or C++ are compiled ahead
of time into the computer’s native language, offering significant speed
improvements. Since we have chosen to implement and execute the system using
Matlab, to compensate the above presented drawback, we developed a second
version applying memory pre-allocation and vectorization techniques as
recommended by MathWorks documentation [29]. In terms of efficiency, current
results were confirmed by the results already presented in [3], i.e. the image
comparison conducted to the same classification, while the processing time has
been significantly reduced. The current processing time is still highly dependent
on the image resolution, but, as expected, the computation speed has been
increased, even if the rest of the system remained as previously presented (i.e.
running on the CPU).

5. Conclusions

This paper’s main objective was to present an improvement meant to
continue previous work and increase the speed of texture and fractal analysis, as

Matlab medical images classification on graphics processors 29

used for medical images classification processes for early skin cancer detection.
The system designed so far uses the GPU for the most computationally expensive
operations, executing features comparison and images classification still on the
CPU platform. The results both have shown that previously costly computation
phases can be speed-up keeping the same results in terms of result’s quality and
they have also confirmed the fact that recent hardware and software technology
can lead to achieving outstanding performances, especially when it comes to large
amounts of data. Although, for the moment, the system has been tested only on a
test database, it presents itself promising for cancer diagnosticians and, in the
future, we intend to optimize it to use parallel workers for concurrent multiple
images. Yet, the main downside proved to be the fact that results are highly
dependent on the platform the algorithm runs on, although the software
implementation is easily portable across similar hardware and the GPUs represent
an inexpensive alternative to reconfigurable parallel hardware. The complex
memory access patterns and the portability of the code are now almost transparent
to programmer by using a runtime platform which bounds Matlab, C, or other
programming languages to the graphic platform.

REFERENCES

[1]1 H. Muller, N. Michous, D. Bandon, A. Geissbuhler, “A review of content based image retrieval
systems in medical applications — clinical benefits and future directions”, in Instrumental
Journal of Medical Informatics, vol. 73, no. 1, 2004, pp. 1-23

[2] P.Y. Lau, S. Ozawa, “An image based analysis for classifying multimodal brain images in the
image-guided medical diagnosis model”, in Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, vol. 26, Ed. D. Hudson, New Jersey, 2004,
pp. 3400-3403

[3] R.Dobrescu, M. Dobrescu, St. Mocanu, D. Popescu, “Medical images classification for skin
cancer diagnosis based on combined texture and fractal analysis”, WSEAS Transactions on
Biology and Biomedicine, vol. 7, no. 3, 2010, pp. 223-232

[4] J.A. Stratton, S.S. Stone, W.W. Hwu, “An efficient implementation of CUDA kernels for multi-
core CPUs”, in Proceedings of the 21% International Workshop on Languages and
Compilers for Parallel Computing (LCPC), Canada, 2008

[5]1 R. Dobrescu, St. Mocanu, Daniela Saru, A. Grumadzescu, Ramona Din, “Aplicatii pentru
procesarea de imagini pe platforma CUDA — studiu de caz (CUDA Platform Based Image
Processing Applications — A Case Study)”, Revista Romana de Informatica si Automaticd,
vol. 21, no. 2, 2011, pp. 81-86

[6] ***, NVIDIA — GPU Computing, NVIDIA Documentation, 2012

[7] D.B. Kirk, W.W. Hwu, “Programming massively parallel processors. A hands-on approach”,
Elsevier, United States of America, 2010

[8] St. Mocanu, R. Dobrescu, Daniela Saru, Ramona Din, A. Grumdzescu, “Arhitecturi complexe
folosite in prelucrarea paraleld a imaginilor (Complex Architectures Used for Image Parallel
Processing)”, Revista Roméana de Informatica i Automaticd, vol. 20, no. 1, 2010, pp. 97-
105

[9]1J. Li, R. M. Gray, E. Y. Chang, “Confidence-based dynamic ensemble for image annotation and
semantics discovery”, ACM Multimedia, 2003

30 Ramona Din

[10] P. Duygulu, K. Barnard, N. de Freitas, D. Forsyth, ,,Object recognition as machine
translation: learning a lexicon for a fixed image vocabulary®, in 7th European Conference
on Computer Vision, 2002, pp. 97-112

[11] L Bartolini, P. Ciaccia, M. Patella, “WARP: Accurate retrieval of shapes using phase of
Fourier descriptors and time warping distance”, IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 27, no. 1, 2005, pp. 142-147

[12]1 D. M. Blei, M. I. Jordan, ,Modeling annotated data®, in Proceedings of ACM Conference on
Research and Development in Information Retrieval, 2003

[13] K. Barnard, P. Duygulu, D. Forsyth, N. de Freitas, M.I. Jordan, “Matching words and
pictures”, Journal of Machine Learning Research, vol. 3, 2003, pp. 1107-1135

[14] J. Jeon, V. Lavrenko, and R. Manmatha, “Automatic image annotation and retrieval using
cross-media relevance models”, in Proceedings of the 26™ annual international ACM SIGIR
conference on research and development in information retrieval, USA, 2003, pp. 119-126

[15] R. Jin, Joyce .Y. Chai, and L. Si, “Effective automatic image annotation via a coherent
language model and active learning”, in Proceedings of the 12™ annual ACM international
conference in Multimedia, 2004, pp. 892-899

[16] V. Lavrenko, R. Manmatha, and J. Jeon, “A model for learning the semantics of pictures”, in
Proceedings Advances in Neutral Information Processing Systems, 2003

[17] F. Monay, D. Gatica-Perez, “On image auto-annotation with the latent space models”, IEEE
Trans. Pattern Analysis and Machine Intelligence, 2003

[18] R. Datta, J. Li, J.Z. Wang, “Content-based image retrieval — approaches and trends of the new
age”, in Proceedings of the 7" ACM SIGMM International Workshop on Multimedia
Information Retrieval, New York, USA, 2005, pp. 253-262

[19] Yu Xiaohong, Xu Jinhua, “The related Techniques of Content-based Image Retrieval”,
International Symposium on Computer Science and Computational Technology, ISCSCT
’08, vol. 1, 2008, pp. 154-158

[20] C. Vasilescu, A. Herlea, B. Ivanov, R. Dobrescu, F. Talos, “A survey on differences
between intestinal and diffuse type of gastric carcinoma”, in Interdisciplinary
Applications of Fractal and Chaos Theory, Romanian Academy Ed., Bucharest, 2004

[21]1 4. D. Crisan, “Image processing using fractal techniques”, PhD Thesis, Politehnica
University Bucharest, 2005

[22]1 T. C. Wang, N.B. Karayiannis, “Detection of microcalcifications in digital mammograms
using walvets,” IEEE Trans. On Medical Imaging, vol.17, no.4, 1998, pp. 498-509

[23] R M. Haralick, K. Shanmugan, I.H. Dinstein, “Textural features for image classification”,
IEEE Transactions on Systems, Man and Cybernetics, vol. 3, 1973, pp. 610-621

[24] A. Bouridane, M.A. Tahir, F. Kurugollu, “An fpga based coprocessor for GLCM and Haralick
texture features and their application in prostate cancer classification”, Analog Integrated
Circuits and Signal Processing, vol. 43, no. 2, 2005, pp. 205-215

[25] D. A. Clausi, M. Jernigan, “A fast method to determine cooccurence texture features using a
linked list implementation”, Remote Sensing of Environment, vol. 36, 1996, pp. 506-509

[26] D. A. Clausi, M. Jernigan, “A fast method to determine co-occurence texture features”, IEEE
Trans. On Geoscience and Remote Sensing, vol. 36, 1998, pp. 298-300

[27] T. Sullivan, Heather Nelson, T. McBee, M. Alvino, “General-Purpose Computing on Graphics
Processing Units: GPU Processing of Protein Structure Comparisons”, Technical Report,
2007

[28] D. Popescu, R. Dobrescu, Nicoleta Angelescu, “Statistical texture analysis of road for moving
objects,” U.P.B. Scientific Bulletin, Series C, vol. 70, 2008, pp. 75-84

[29] *** “Techniques for improving performance,” Matlab Documentation, 2012,
http://www.mathworks.com/help/matlab/matlab_prog/techniques-for-improving-
performance.html#f8-790494

