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MATLAB MEDICAL IMAGES CLASSIFICATION ON 
GRAPHICS PROCESSORS 

Ramona DIN 

Due to their massively parallel hardware design, graphic processors can 
easily beat ordinary CPUs in applications which involve large amount of data. 
Considering their great potential, the objective of this paper is to continue previous 
work and optimize the speed and efficiency of texture and fractal analysis, as used 
for medical images classification processes for early skin cancer detection. The 
images are classified based upon Haralick features and fractal geometry, which 
both proved to be traditionally computationally expensive.  

Keywords: medical image processing, parallel computing, content based image 
retrieval, texture analysis, fractal analysis, graphics processing unit 

1. Introduction 

We can nowadays easily identify information retrieval principles at the 
core of almost all digital information related processes, as it forms the foundation 
of any search engine. With a great impact on present day large scale systems and 
services, information retrieval (IR) deals with searching and managing huge 
volumes of data, mainly large collections of text, images, music and other human-
language data representations. Millions of people are relying on information 
retrieval systems to accomplish their professional, academic or personal targets: 
enterprise platforms, social, mobile, or web search engines, digital libraries, 
medical simulations, computer aided diagnosis, image, news, video, or music 
search – just to name few areas for which retrieval techniques are vital.  As a 
common basis, all engage at least one form of modern information retrieval, 
overtaking traditional database searching style. The most sophisticated 
information retrieval systems easily deal with unstructured data, i.e. data which 
does not have semantically clear, easy for a computer to interpret, structure. As a 
challenge for many years now, but emulating the latent linguistic structure of 
human language, this represents exactly the opposite of structured data, the 
canonical example of which is a classic relational database. Although its origins 
are to be found in text processing algorithms, one of the most challenging and 
pressing areas of IR still remains image retrieval. Over the last decade, image 
retrieval systems were designed to deal with image collections as personal 
pictures, domain-specific collections (e.g. medical databases, satellite images, 
mathematical, physical or biological simulations), enterprises’ image collections, 
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archives, and last, but definitely not least, with the world wide web. All of them 
seek for a high degree of user satisfaction and thus, each focuses on different 
features such as personalization, data display, browsing, processing speed, or 
accuracy.  

One considerable application area for image retrieval techniques is for 
medical databases. Medical imaging produces great amounts of data which, once 
investigated and classified, might be extremely valuable for future diagnoses. The 
approach that most of existing medical information retrieval systems considered 
so far was to analyze images’ content, extract relevant data, and exploit it in such 
a way that it allows a meaningful classification. Most of the systems were 
designed for computer aided diagnosis, but currently their features extends also to 
assist physicians in treatment of diseases, in choosing or defining an adequate 
therapy, or for surveying patient’s evolution during the treatment [1], [2]. 
Depending upon particular tasks, the classification process might use different 
image features with various properties. Among the most common are the textural 
properties, color, shape, or fractal properties. However, unstructured data, 
heterogeneous tissues, undefined shapes, and the noise presence negatively 
influence automated analysis. In order to address these challenges, one can either 
simplify the scope of medical analysis or pre-process the image so that he exploits 
some kind of a priori information about the imaged structured. This can refer to 
anatomical knowledge (shape, position, gray levels) or to its statistical properties 
[3]. Nevertheless, the medical image processing is still a heavy task as the 
computing time increases with the image size and resolution. Fortunately, from a 
technically perspective, the computation can be optimized and partitioned into 
parallel units of work, and then each executed separately. In the beginning of 
parallelization era, the parallelization was achieved at the virtual levels, 
leveraging and synchronizing bunches of parallel threads. Once the multi-core 
processors became available on the market, a great number of parallel algorithms 
were readjusted to exploit CPU’s multicores. The application of parallelism and 
distributed techniques introduced improvements for a large number of algorithms, 
some of them applied for search systems as well. Although parallel computing 
algorithms are, most of the time, more complex than their sequential equivalents, 
they have always had the same major objective: achieving a performance which is 
superior to the sequential processing one, whether this means identifying a 
solution in less time, simply identifying a better solution, process a larger set of 
data or even solving high complexity problems.  

The past few years, microprocessor design has followed two separate 
paths: on the one hand, there were the multi-core multiprocessors (e.g. IntelCore 
i7 is a microprocessor with four processing cores, each of them implementing a 
complete x86 instructions set); these were offering support for multiple hardware 
threads and were mainly used for improving the execution of sequential 
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algorithms. A performance improvement of 100% could be achieved only by 
doubling the number of processing cores within a microprocessor; therefore the 
improvements were highly limited by hardware. On the other hand, the many-core 
microprocessors (e.g. graphics processors) developed mainly by the video-card 
manufacturers using a different design strategies, were trying to achieve a high 
level of hardware parallelization. The technology used allowed the manufacturers 
to build these microprocessors with a considerable number of cores (e.g. 
NVIDIA’s GTX470 has 448 cores), each of them being highly parallelized at the 
hardware level, massively reducing hardware constraints as opposed to the ones 
above described. Since 2003, microprocessors having multiple execution cores, 
especially graphics microprocessors, have managed to achieve performances 
which are far better than those of multi-core microprocessors and this has been 
well documented in literature [4]. Moreover, the performance improvement factor 
can easily exceed the level of 100% - maximum allowed by CPU’s hardware 
design. 

There are fundamental design differences between the two presented 
microprocessors types, differences which lead to performances of up to 20 times 
better in the case of not optimized algorithms [5] and up to 400 times better in the 
case of specialized algorithms [6]. More than that, a hardware structure which is 
specialized in the rapid execution of sequential implementations, allows central 
processing units (CPU) to use sophisticated logical mechanisms in order to be 
able to execute a single thread’s instructions in parallel. In order to reduce the 
execution time, these require a very large cache memory and high bandwidth, 
both of which are currently hardware constrained. Many-core processors, 
especially graphics processing units (GPUs), have led the race of performance 
since 2003 [7]. While the performance improvement of CPUs has significantly 
slowed, the GPUs conquer the market, improving relentlessly. As of 2009, the 
ration between many-core GPUs and multi-core CPUs for peak floating-point 
calculation throughput is about 10 to 1. Even more, graphic chips have been 
operating at almost 10 times the bandwidth of contemporary CPU chips. G80 
processors and their successors allow CUDA programs to run without going 
through the graphic interface at all [6]. Instead, a brand new general-purpose 
parallel programming interface on the chip serves all requests of CUDA enabled 
programs. Nowadays, the graphic processor is already a market old-timer. 
Associating its great potential with the reality that parallel algorithms as a concern 
of programming paradigm, have as long of a tradition as the one of sequential 
algorithms [8], this paper aims to introduce a novel approach for content-based 
medical image retrieval based upon texture and fractal features computed on 
graphical platforms. In [3] the authors proved that both texture and fractal analysis 
may be successfully applied for medical image classification for early detection of 
skin cancer. This paper aims to continue the previous work and optimize the 
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processing speed and efficiency by implementing all the algorithms and 
procedures on a parallel processing platform. The results will be compared and 
presented against already published CPU results [3].  

2. Image retrieval systems - state of the art 

The early image retrieval systems were based upon metadata or so-called 
annotations. Over the last decade, researchers have built numerous image 
annotation-based and automatic annotation features for various image retrieval 
systems. J. Li et al proposed automated annotation of pictures with a few 
hundreds of words and using Markov models in [9]: their classification process 
chooses a set of classes an image might belong to based on a set of annotations 
defined using statistically salient words for given images. In some other 
researches, annotations are considered to be translations in between a predefined 
set of words and images [10]. Hierarchical statistical techniques which associate 
images to words (i.e. automatically annotates images) has been also proposed in 
[13], [12], and [11]. Generative language models have been used for the task of 
image annotation in [14], [16]. Closely related, another approach was to involve 
coherent language models, exploiting word-to-word correlations to strengthen 
annotation decisions [15]. The proposed system automatically computes 
annotation length for a given image, hence using annotations variable in size. The 
authors attempted, this way, to provide a more accurate description, eliminating 
irrelevant words. They have proved that automatically determined annotation 
length might improve the accuracy of the image retrieval system, but only for a 
relatively small range of text queries. In order to improve system’s performance, 
they have introduced an active learning module, reducing the number of annotated 
images. Their empirical studies have shown that the results were substantially 
more effective than using a simple random sampling approach. 

All the annotation strategies discussed so far model visual and textual 
features separately prior to association and none discusses or addresses the 
problem of semantic gap. In [17], the authors tried to use latent semantic analysis 
(LSA), direct match, and annotation by inference (PLSA) for both annotations and 
visual features. The LSA model has been previously used to identify semantically 
meaningful subspaces in the visual-textual feature space, but automated image 
annotation still remained a difficult question. Humans learned to associate 
multiple viewpoints to static images. The association of words and blobs become 
truly meaningful only when blobs isolate objects well. Moreover, how exactly our 
brain performs this association is still unclear. While Biology tries to answer this 
fundamental question, researchers in information retrieval tend to take a pragmatic 
stand in that they aim to build retrieval and annotation systems that have practical 
significance [18].  
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Text-based image retrieval systems were a great step forward in digital 
information processing, but they had few significant drawbacks. Firstly, they 
involve significant amounts of manual work to be done: each image needs to be 
manually annotated with relevant data by a human being. Beside the fact that this 
requires effort, it is time consuming and it cannot be automated according to the 
current approach. On the same note, different people may describe the content of 
an image in different ways, which limits the search process to metadata used in 
description. Moreover, most of the times, textual description is not capable of 
comprising visual contents and their meanings; it may be the case that for some 
images there is something that can not be conveyed by words at all. Even further, 
the most intriguing challenge about multimedia retrieval is when the query itself 
presents as a multimedia excerpt. For instance, doctors may use medical images 
for searching similar previous cases before deciding on a diagnose, tourists may 
use pictures trying to identify places they visit, meteorologists may have satellite 
images as inputs for their weather prediction systems. Modern image retrieval 
systems aim to accommodate all these and, the most successful approach so far is 
based upon image features extraction. Weather the retrieval is good or not is not a 
matter of subjectivity anymore; it depends on the selected features and their 
extraction accuracy. In [19] image features have been classified by semantic 
hierarchy into middle level features and low level features. The last class includes 
color, texture, and inflection, whereas the former refer to shape and objects’ 
features. In medicine, computing textural properties and applying them for image 
retrieval is not a novelty: Sutton and Hall proposed pulmonary diseases’ 
classifications based on them, Harms et al have also used a combination between 
texture and color features to identify malignancy in blood cells, Insana et al 
applied textural features to estimate tissue scattering parameters in ultrasound 
images [3]. Recently, fractal geometry has been also exploited to investigate 
epithelial complexity and malignancy of various tumors; this has been considered 
as a promising approach for early diagnosis in gastric tumors [20], breast, and 
pulmonary cancer [21], [22]. 

Several methods have been described in literature for texture feature 
extraction. One might use statistical, structural, model-based and transformation 
information, wherein a common technique bases on Gray Level Co-occurrence 
Matrix (GLCM), proposed by Haralick in 1973 [23]. After computing the co-
occurrence matrix, Haralick suggested 14 most useful statistical features: angular 
second moment, contrast, energy, correlation, variance, inverse difference 
moment, sum average, sum entropy, entropy, difference variance, difference 
entropy, information measure of correlation 1, information measure of correlation 
2, and maximum correlation coefficient. GLCM is a useful tool in image 
processing area and texture analysis; however it is a heavy and computational 
intensive method, almost always being time-consuming. In [24], the authors 
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presented an example of GLCM calculation for medical applications. The 
computation tine for an image of 5000x5000 pixels was about 350 seconds using 
one CPU running at 2400MHz. Inspecting where the bottleneck lies, they found 
out that 75% of total time was spent calculating the GLCM matrix, 19% 
extracting features and the rest for the classification. Previously, there were many 
researches focused on accelerating the computation of GLCM and more then a 
few methods have been analyzed and tested by researchers. Using a linked list 
(Gray Level Co-occurrence Linked List – GLCLL) and storing just non-zero 
values [25], or Gray Level Co-occurrence Hybrid Structure – GLCHS [26], 
representing the image on 4 bits instead of 8, all were improvement suggestions 
already investigated, but, to the best of our knowledge, none didn’t manage to 
achieve outstanding results.  

Due to their massively parallel hardware design, GPUs for general-
purpose can easily beat ordinary CPUs in applications which involve large 
amount of data. Historically, GPUs were born for being used in advanced graphics 
and videogames [6]; still, more recently interfaces have been built to interact with 
codes not related to graphical purposes. General-purpose computing on graphical 
processing units (GPGPU) is an emerging method for achieving high performance 
gains on various computing problems and scientific researches such as neural 
networks, medical research, database operations, information retrieval, and 
physics-based simulations. The higher number of cores and the more efficient 
processing of complex mathematical calculations on GPUs in comparison with 
CPUs, makes general purpose computation on graphics hardware (GPGPU) a 
fascinating new method for deploying algorithms [27]. Whereas lots of studies 
analyzed and proposed optimizations for CPU implementation, few tried to 
exploit GPU for performing such a task as medical image classification. Given 
their extremely high computing demands, image retrieval systems represent a very 
interesting challenge for GPUs. The next section presents some already studied 
techniques for content-based image retrieval, altogether with the architecture and 
integration of a suite of Matlab routines specially designed for GPU’s platform. 
The fourth section of the paper presents our experimental results, followed by 
conclusions.  

3. GPU Matlab implementations for image textural features extraction 

3.1. Statistical methods to texture analysis 
 
The most powerful statistical method for textured image analysis is based on 
features extracted from the GLCM, proposed by Haralick. The co-occurrence 
matrix considers the relationship between two neighboring pixels (one being the 
reference, the other the neighbor pixel). The image used to determine the co-
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occurrence matrix is an image with a predefined number of gray levels. Let’s 

assume G the number of gray levels for an image ),( yxI  with: 
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For each pixel, it has been considered a corresponding surrounding area, 
considering 8 main directions for each neighborhood when determining the co-
occurrence matrix [28].  

 
Fig. 3.1. Directions used in co-occurrence matrix calculus 

 
Haralick texture features 
From GLCM one can easily compute a number of texture features as defined by 
Haralick. All these features have a good discriminating power, being extremely 
useful for content-base image retrieval. For the current application in this paper, 
we have determined the entropy Ent , the contrastCon , the energy Eng , and the 
correlation factor Cor for a NxN co-occurrence matrix [28]. 
 
Entropy 
The term originates from thermodynamics and it refers to the quantity of energy 
which is permanently lost in order to heat a reaction or other types of physical 
transformation. Within the current context, it denotes the degree of disorder, as 
opposed to homogeneity. Entropy’s large values indicate uniform GLCM. It can 
be defined as: 
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Contrast 
It measures the gray-level variations between the reference pixel and its 
neighbors; large values of contrast indicate large local variation of gray levels. In 
case of performing the computation on color-based images, the contrast is 
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determined by the difference in the color and brightness of one object and other 
object within the same area.  
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In case of ji = , the cell is on the diagonal and equality means the pixels are 
entirely similar to their neighbors, considering thus their weight null. The weights 
increase exponentially as )( ji − increases.  
 
Energy 
It measures the degree distribution of gray levels; it has the highest value when 
this is either constant or periodic. The energy is a measure of the textural 
uniformity of the image and it can be defined as follows: 
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Correlation 
It refers to the linear dependency of gray level values in the co-occurrence matrix, 
or, simply put, to the pixel’s neighborhood influence over the entire image. A 
reference pixel may be uncorrelated to its neighbor (having correlation factor 
null), perfectly correlated (with a correlation factor of 1) or anywhere in between 
(with a correlation factor in between 0 and 1).  
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where iμ , jμ , iσ , jσ are the means (6), respectively standard deviations (7) 
computed from the histogram, dh , of the difference image [28]. In case of 
symmetrical GLCM, ji μμ =  and ji σσ = . 
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3.2. Fractal dimension used in texture analysis  
 
 Fractal geometry has been previously applied to medical algorithms and 
became popular in modeling biological properties in image processing especially 
due to its capabilities of modeling complex shapes. By identifying contour 
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irregularities and computing fractal dimensions, one can discriminate between the 
shapes of malign over benign tumors. Experimentally, it was established that most 
of the information about the malignity of a tumor is contained in the contour of 
the tumor shape. Doubtful tumors are characterized by blurred contours which are 
changing by different threshold used to separate the tumor from background 
(image segmentation). The outline of each image was analyzed by estimating the 
global fractal dimension, the local fractal dimension and local connected fractal 
dimension. One of the most relevant concepts in fractal geometry is self-
similarity: considering a bounded set A in a Euclidian n-space, one can state A is 
self-similar when it represents the union of N distinct and scaled copies of itself. 
The fractal dimension FD is defined as a function of N and the ratio between the 
original image and the scaled down copies: 
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The algorithm calculates a mean fractal dimension MFD (9) from individual 
values iFD of different image contours detected exploiting the initial gray-level 
image: 

∑
=

=
k

i
iFD

k
MFD

1

1  (9)

 
In (9), k represents a predefined value which specifies the number of iterations for 
contour extraction using a fixed neighborhood. The algorithm used to compute the 
fractal dimension was a version of box-counting, its steps been described in a 
previous paper [3]. Further, the current paper presents the implementation and 
integration of a new set of Matlab routines dedicated to graphic platforms.  
 
3.3. System architecture 

 
Fig. 3.2 presents the system architecture, all modules being implemented 

in Matlab and all, except from the one reading the database and saving back the 
results, are running on graphic processors.  
In order to parallelize the code and execute it in on the GPU, we have rewritten 
previously used Matlab GPU routines using Jacket, a runtime platform that helps 
to connect the M language to the GPU. It offers support for specific data types – 
counterparts to CPU Matlab data types, and a set of GPU functions ranging from 
basic implementations to complex arithmetic or signal processing solving 
methods.  
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Fig. 3.2. System architecture 
 

It provides automated memory management and compilation-on-the-fly, 
being in the same time transparent for programmer. Moreover, its capabilities 
extends to integrating any custom CUDA-C (and other programming languages) 
function into a suite of Matlab routines. The Fig. 3.3 presents the most relevant 
Matlab functions, based upon the architecture presented in Fig. 3.1. The entry 
point is represented by medicalImageAnalysis.m which transforms every image 
into its grayscale correspondent, computes the co-occurrence matrix, extracts four 
textural features (the entropy, the contrast, the energy, and the correlation), and 
computes the fractal dimensions. In order to create the gray-level co-occurrence 
matrix, pairs of horizontally adjacent pixels are evaluated within an image scaled 
to 8 levels. Therefore, there are 8 x 8 possible ordered combinations of values for 
each pixel pair and the result gets computed by adding the total occurrences of 
each combination. The user can choose any custom value for offsets or a default 
of [0, 1] is used when none was provided. If the corresponding neighbors defined 
by the offset fall outside the image boundaries, the implementation ignores border 
pixels. Also, pixels pairs are ignored if either of their values is NaN. The 
elemSum.m uses as input an intermediate matrix computed from the grayscale 
image, 0 and 1 – as the elements to be summed, and the output vector size, 
returning an array with values determined by accumulating 1 according to the 
subscripts from the first parameter. In order to compute the fractal properties, a 
box-counting algorithm has been implemented to run on the GPU platform. The 
implementation followed the example of a Matlab built-in function, using Jacket 
GPU-dedicated data types. 
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Fig. 3.3. Matlab routines integration 

 
Once extracted, all features are written in a file. Further, the results file is 

used for image comparison and classification.  
 
bad_cpu = isnan(v1_cpu) | isnan(v2_cpu); 
bad=glogical(bad_cpu); % start using the GPU 
if any(bad) 
    wid = sprintf(‘Images:%s:are not supported’,mfilename); 
    warning (wid, ‘Cannot compute GLCM matrix.’); 
end 
 %if everithing okay, start processing: remove elements from the original matrix 
Ind_cpu = [v1_cpu v2_cpu]; 
Ind=gsingle(Ind_cpu); %move the computation on the GPU 
size(Ind)  
if isempty(Ind) 
    oneGLCM = zeros(nl); 
 
else 
    % compute the co-occurrence matrix on the GPU (using GPU-specific data) by   
accumulating the elems according to their subscripts 
   oneGLCM = elemSum(Ind, 1, [nl nl]); 
end 

4. Experimental results 

The software system has been tested using a collection of ten test complex 
medical images with fractal textures; an example is provided in Fig. 4.1. The 
images were acquired using a high-precision dermoscope, a device which 
magnifies a pigmented lesion and allows the dermatologists to see and take 
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pictures through the bottom of the outermost layer of skin. The resolution of the 
test pictures starts at 1600x1200 pixels and increases until 2592x1944 pixels. 
When trying to execute traditional algorithms for features extraction, the runtime 
exceeded expectations: for the largest images, there were necessary from 20 to 
150 seconds to be processed. The hardware configuration has a strong impact on 
both CPU and GPU execution results, thus it is imperative to consider it during 
performance evaluation. The presented results are based on executing the 
algorithms on a system configuration with an AMD Turion64 X2 TL-62, running 
at 2.2GHz with 2 GB DDRAM400 of memory and one CUDA-enabled GTX470 
graphics card with 1280 MB GDDR5 of global memory and 448 CUDA cores. 

 
Fig. 4.1. Test image 

The first implementation integrated the custom routines presented in Fig. 
3.2. We have used the Matlab profiler to debug and optimize the code by tracking 
the execution time. We have recorded the execution time and the number of calls 
for each function presented in Fig. 3.2 and we discovered that using the standard 
accum_arraysum.m routine was extremely time-consuming. Therefore, we have 
rewritten the function in CUDA C and integrated it at runtime using Jacket SDK.  

Although, Matlab is well-known as a powerful programming language, 
dedicated especially for complex technical computations, the code is still 
interpreted at runtime, whereas faster languages like C or C++ are compiled ahead 
of time into the computer’s native language, offering significant speed 
improvements. Since we have chosen to implement and execute the system using 
Matlab, to compensate the above presented drawback, we developed a second 
version applying memory pre-allocation and vectorization techniques as 
recommended by MathWorks documentation [29]. In terms of efficiency, current 
results were confirmed by the results already presented in [3], i.e. the image 
comparison conducted to the same classification, while the processing time has 
been significantly reduced. The current processing time is still highly dependent 
on the image resolution, but, as expected, the computation speed has been 
increased, even if the rest of the system remained as previously presented (i.e. 
running on the CPU). 

5. Conclusions 

This paper’s main objective was to present an improvement meant to 
continue previous work and increase the speed of texture and fractal analysis, as 
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used for medical images classification processes for early skin cancer detection. 
The system designed so far uses the GPU for the most computationally expensive 
operations, executing features comparison and images classification still on the 
CPU platform. The results both have shown that previously costly computation 
phases can be speed-up keeping the same results in terms of result’s quality and 
they have also confirmed the fact that recent hardware and software technology 
can lead to achieving outstanding performances, especially when it comes to large 
amounts of data. Although, for the moment, the system has been tested only on a 
test database, it presents itself promising for cancer diagnosticians and, in the 
future, we intend to optimize it to use parallel workers for concurrent multiple 
images. Yet, the main downside proved to be the fact that results are highly 
dependent on the platform the algorithm runs on, although the software 
implementation is easily portable across similar hardware and the GPUs represent 
an inexpensive alternative to reconfigurable parallel hardware. The complex 
memory access patterns and the portability of the code are now almost transparent 
to programmer by using a runtime platform which bounds Matlab, C, or other 
programming languages to the graphic platform. 
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