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ESSENTIAL COMPONENTS OF THE SOLUTION SET FOR 
MULTICLASS MULTICRITERIA TRAFFIC EQUILIBRIUM    

PROBLEMS 

Xiao-Jun YU1, Hui YANG2 

In this paper, we study multiclass multicriteria traffic equilibrium (MMTE) 
problem in the fixed demand case and investigate relations between vector 
variational inequality and weak vector equilibrium flows. We show that there exists 
at least one essential components of the solution set for each MMTE problem.  

Keywords: Weak vector equilibrium principle, vector variational inequality, 
traffic, essential component 

1. Introduction 

Wardrop [1] introduced the famous user equilibrium principle for traffic 
network, which is a scalar equilibrium principle. Smith [2] investigated that a 
Wardrop's user equilibrium flow is equivalent to the solution of a class of 
variational inequalities when the travel cost function is a scalar function. 
Recently, many researchers have proposed equilibrium models based on 
multicriteria consideration or vector-valued cost functions. Chen and Yen [3] first 
proposed (weak) vector equilibrium principle for a vector traffic network without 
capacity constraints, which is a generalization of the classic Wardrop's user 
equilibrium principle. In [4], Yang and Goh investigated equivalent relations 
between vector variational inequalities and vector equilibrium flows based on 
vector equilibrium principle. Daniele et al. [5, 6] studied a traffic equilibrium 
problem with capacity constraints in dynamic case and obtained sufficient and 
necessary conditions for a traffic equilibrium flow. Lin [7] extended weak vector 
equilibrium principle to the case of capacity constraints of arcs and showed that 
there exists at least one essential components of the solution set for traffic 
equilibrium problems with capacity constraints of arcs. However, all the 
researches mentioned above assumed that the users in the traffic network are 
homogenous. In reality, we have to group users in different classes due to their 
differences in the income, age, gender, education, travel destination, and so on. 
Nagurney [8], Nagurney and Dong [9] discussed MMTE problem without 
capacity constraints with fixed demand and elastic demand, respectively, and 
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obtained the equivalent relations between equilibrium flows and variational 
inequalities. Raciti [10] derived the relations between vector variational inequality 
and MMTE problems with path constraints. For other results of MMTE problems, 
we refer to [11-15], and for other results of essential components relating to 
equilibrium problems, we refer to [16-19] and the references therein. 

In this study, we investigate MMTE problems when demands are fixed. 
First, we derive a sufficient condition of weak vector equilibrium flows based on 
the weak vector equilibrium principle. Then, we obtain an existence result of 
MMTE problem. Finally, we show that there exists at least one essential 
components of the solution set for each MMTE problem. 

2. MMTE problems models 

Let ( ),G N E=  denote a transportation network, with a finite set of nodes 

N  and a finite set of directed links E  ( E is the number of all directed links in 
the network). Let W  be the set of all Origin-Destination (OD) pairs and P  be the 
set of all paths in network ( pn P= is the number of all paths in the network). Let 

wP  be the set of all paths between OD pair w W∈ . Assume that there are M  
classes of users in the network with a typical class denoted by m . The other 
notations used throughout this paper are as follows: m

wd  is the demand of class m  
between OD pair w W∈ , which is assumed to be constant ; m

av  is the flow of user 
class m  on link a E∈ ; av  is the aggregate flow on link a E∈ ;  the vector of link 

flow is ( )1 1

1 1, , , , , ,
E E

M M
a a a av v v v=v " " " ; m

pf  is the flow of class m  on path 

wp P∈ ; ( )1

T

, , p

np

nm m m
p pf f R= ∈f "  is the vector flow of the class m , where 

1, ,
pnp p"  denote pn  distinct paths in the network G ; 

( ) ( ) ( )( )TT T T1 2, , pMnM R= ∈f f f f"  is the vector of path flow in the network G ; 

( ) ( )( )T
, 1, 2, ,m m l

a jaC R j l= ∈ =C f f "  is the vector cost of class m  on link a ; 

( ) ( )( )T
, 1, 2, ,m m l

p jpC R j l= ∈ =C f f "  is the vector cost of class m  on path p ; 

1apδ =  if path p  traverses link a E∈ ,  and 0apδ =  otherwise. 
Therefore, the following relationship must be satisfied, i.e.  

( ) ( ) , , , 1, , , 1, ,m m
jp ja ap w

a E

C C p P w W m M j lδ
∈

= ∀ ∈ ∈ = =∑f f " " . 

The link flow and the path flow have relation as follows:  
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, , 1, 2, ,
w

m m
a p ap

w W p P
v f a E m Mδ

∈ ∈

= ∀ ∈ =∑ ∑ " . 

We denote the feasible path flow set  
{ | | , , 1, 2, , ;

                            0, , , 1, 2, , }

p

w

Mn m m
p w

p P

m
p w

R f d w W m M

f p P w W m M
∈

Λ = ∈ = ∀ ∈ =

≥ ∀ ∈ ∈ =

∑f f "

"
 

Clearly, Λ  is convex and compact. We introduce matrix-valued functions 
( )1, ,m m M=C "  from Λ  to pl nR ×  and a matrix-valued function C  from Λ  to 

pl MnR ×  as follows: 

( ) ( ) ( )( )
( ) ( )

( ) ( )

1

1

1

1 1

, ,
np

np

np

m m
p p

m m m
p p

m m
lp lp

C C

C C

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥⎣ ⎦

f f

C f C f C f
f f

"

" " " "
"

, 1, 2, ,m M= " . 

and ( ) ( ) ( )( )1 , , M=C f C f C f" . 
Now, we introduce following definitions. 
Definition 2.1. (Weak vector equilibrium principle)  A flow ∈Λf  is said 

to be in weak vector equilibrium if for each class m , for all OD pairs w  and for 
any path , wp q P∈  such that ( ) ( ) int 0m m l m

p q pR f+− ∈ ⇒ =C f C f ,where int lR+  is the 

interior of lR+ .  
f is said to be a weak vector equilibrium flow. A MMTE problem is 

usually denoted by { }, ,GΓ = Λ C (in brief,{ }C ). f  is said to be a solution of Γ  if 
f  is a weak vector equilibrium flow of Γ . 

Definition 2.2. Let ,X Y  are two Hausdorff topological vector space and 
K  is a nonempty subset of X , and H : 2YK 6  is a set-valued mapping, where 
2Y  denotes the family of all nonempty subset of Y , then 

(1) H  is said to be upper semicontinuous at x K∈ , if for each open set U  
in Y  with ( )U H x⊃ , there exists an open neighborhood ( )O x  of x  such that 

( )HU x′⊃  for any ( )x O x′∈ ; and upper semicontinuous on K  if it is upper 
semicontinuous at each point of K . 

(2) H  is said to be lower semicontinuous at x K∈ , if for each open set U  
in Y  with ( )U H x φ∩ ≠ , there exists an open neighborhood ( )O x  of x  such 

that ( )HU x φ′∩ ≠  for any ( )x O x′∈ ; and lower semicontinuous on K  if it is 
lower semicontinuous at each point of K . 
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(3) H  is said to be continuous at x K∈  if it is upper semicontinuous and 
lower semicontinuous at x K∈ ; and continuous on K  if it is continuous at each 
point of K . 

(4) H is an usco mapping, if H  is upper semicontinuous on Κ , and for 
each ( ),Hx K x∈  is compact. 

Definition 2.3.  Let ,X Y  are two Hausdorff topological vector space and 
K  is a nonempty subset of X  and :g K Y6  is a vector-valued function, and C  
is a nonempty closed, convex and pointed cone in Y  with int C φ≠ . g  is said to 
be C -continuous at 0x K∈ , if for any open set V  of the zero element θ  in Y , 
there exists an open neighborhood ( )0O x  of 0x  in K , for all 

( ) ( ) ( )0 0,x O x g x g x V C∈ ∈ + + ; and C -continuous on K  if it is C -continuous 
at every point of K . 

The following result is a particular form of a maximal element theorem for 
a family of set-valued mapping due to Deguire et al. (see [20], Theorem 1). 

Lemma 2.1.  Let K  be a nonempty compact convex subset of a Hausdorff 
topological vector space X . Suppose that { }H : 2KK φ∪6  is a set-valued 
mapping with following conditions: 

(i) for each ( ), Hx K x x∈ ∉ ; 

(ii) for each ( ),Hx K x∈  is convex; 

(iii) for each ( ) ( ){ }1, H : Hy K y x K y x−∈ = ∈ ∈  is open in K . 

Then there exists x K∈  such that ( )H x φ= . 

3. Existence of weak vector equilibrium flows for MMTE problem 

First, we establish a sufficient condition for a weak vector equilibrium 
flow as follows: 

Theorem 3.1. The flow ∈Λ*f  is in weak vector equilibrium if *f  solves 
the following vector variational inequality problem: find ∈Λ*f  such that  

( )* *, int lR+∉−C f f - f  ,∀ ∈Λf .  

Proof:  Suppose that ∈Λ*f  satisfy above vector variational inequality but 
it is not a weak vector equilibrium flow. Then there exist * *1 ,m M w W≤ ≤ ∈ and 

*,
w

q r P∈  such that ( ) ( )* ** *m m
q r− ∈C f C f int lR+ , ( )

*
*

0
m

qf > . 

Construct a path flow vector f  to be as follows: If ( )* *,
mmm m≠ =f f , 

otherwise, the components of mf  is  
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( )

( ) ( )

*

* *

*

* *

,                   , ;

0,                            ;

,    .

m

p

m
p

m m

q r

f p q r

f p q

f f p r

⎧ ≠⎪
⎪= =⎨
⎪

+ =⎪⎩

 

It is easy to verify that ∈Λf . So, we have  

( ) ( ) ( ) ( ) ( ) ( )
*

* ** * * * * * *

1

, , , int
M m mm m m m l

p p p r q q
m p P

f f f R+
= ∈

− = − = − ∈−∑∑C f f f C f C f C f

which is a contradiction. The proof is complete. 
The following theorem is our existence result. 
Theorem 3.2. Consider a MMTE problem { }Γ = C .Assume that for each 

( )1 pi i n≤ ≤ , ( )1m m M≤ ≤  and each ∈Λh , ( )( )i i i

m m m
p p ph f−C f  is lR+−  

continuous on Λ , then Γ  has a solution. 
Proof:  Define the set-valued mapping { }: 2S φΛΛ → ∪  by  

( ) ( )( ){ }: int lS R+= ∈Λ ∈−f h C f h - f . 

(1) It is easy to verify that for each ∈Λf , ( )S∉f f .  

(2) For each ∈Λf , let ( )S∈1 2h ,h f , then ( )( )1 int lR+∈−C f h - f  and 

( )( )2 int lR∈−C f h - f . Since int lR+−  is convex, we obtain that for any 

[ ]0,1λ∈ ( )( ) ( ) ( )( )1 21 int lRλ λ ++ − ∈−C f h - f C f h - f .Thus, 

( ) ( )( ) ( )( ) ( ) ( )( )1 2 1 21 1 int lRλ λ λ λ ++ − = + − ∈−C f h h - f C f h - f C f h - f . 

Therefore, the set ( )S f  is convex. 

(3) If ( )S∈h f , then ( )( ) int lR+∈−C f h - f , which implies that there is an 

open neighborhood V  of the zero element θ  such that ( )( ) int lV R++ ⊂ −C f h - f . 

Thus, there is an open neighborhood ( )Ο f  of f  such that, for each ( )′∈Οf f , 

( )( ) ( ) ( )( )'

1
i i i

i

M mm m
p p p

m p P

h f
= ∈

⎡ ⎤′ ′ ′= −⎢ ⎥⎣ ⎦∑∑C f h - f C f  

( ) ( )( )
( )( )

'

1
                   

                   int int

i i i

i

M mm m l
p p p

m p P p

l l l l

Vh f R
Mn

V R R R R

+
= ∈

+ + + +

⎡ ⎤
′∈ − + −⎢ ⎥

⎢ ⎥⎣ ⎦
⊂ + − ⊂ − − ⊂ −

∑∑ C f

C f h - f

 

which implies that ( ) ( ) ( )( ){ }1 : int lS R−
+Ο ⊂ = ∈Λ ∈−f h f C f h - f , i.e., ( )1S − h  is 

open. By lemma 2.1, the result follows and our proof is finished. 
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4. Essential components of weak vector equilibrium flows 

By theorem 3.2, it is easy to obtain the following corollary: 
Corollary 4.1. Consider a MMTE problem { }Γ = C .Suppose that for each 

( )1 pi i n≤ ≤  ( )1m m M≤ ≤ , ( )
i

m
p ⋅C is continuous on Λ , then Γ  has a solution. 

Assume that Θ  is the collection of all MMTE problems { }Γ = C  
satisfying the conditions of corollary 4.1. 

For each { } { }ˆˆ,Γ = Γ = ∈ΘC C , define 

( ) ( ) ( )
1 ,1

1 ,

ˆˆ, max i i
p

m M j l
m m
jp jp

i n
C Cρ

≤ ≤ ≤ ≤

≤ ≤ ∈Λ

Γ Γ = −
f

f f  

Clearly, ( ),ρΘ  is a metric space. For each Γ∈Θ , denote by ( )F Γ  the solution 
set of Γ . Then F  defines a set-valued mapping form Θ  into Λ  and, by corollary 
4.1, ( )F φΓ ≠  for any Γ∈Θ . 

Lemma 4.2 : 2F ΛΘ→  is an usco mapping. 
Proof: Since Λ  is compact, by Theorem 7.1.16 of [21], it suffices to show 

that F  is a closed mapping, i.e., the graph ( )Graph F  of F  is closed in Θ×Λ , 

where ( ) ( ) ( ){ }, :Graph F F= Γ ∈Θ×Λ ∈ Γf f . 

Let  ( ){ },n n

n Z +∈
Γ f  be an arbitrary net in ( )Graph F  with 

( ) ( )* *,n nΓ → Γ ∈Θ×Λf , f , where { } { }* *,n nΓ = Γ =C C  and ( )n nF∈ Γf . Next 

we need to prove that ( )* *F∈ Γf . Suppose that ( )* *F∉ Γf , then there exist 

*
* *1 , , ,

w
m M w W q r P≤ ≤ ∈ ∈  such that ( ) ( ) ( ) ( )

* *
* * * * int

m m l
q r R+− ∈C f C f  and 

( )
*

* 0
m

qf > , which implies that there is an open neighborhood V  of the zero 

element θ  in lR  such that ( ) ( ) ( ) ( )
* *

* * * *m m

q r V− + ∈C f C f  int lR+ . Moreover, since 
* *,n n→ →C C f f , there exist 0N Z +∈  such that, for any 0n N≥        
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

* *

* * * * *

* * * * *

* *

* * * * * *

* * * * * *

* * * * int

m mn n n n
q r

m m m m mn n n n
q q q q q

m m m m mn n n n
r r r r r

m m l
q r V R+

−

⎡ ⎤ ⎡ ⎤= − + − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤− − − − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∈ − + ∈

C f C f

C f C f C f C f C f

C f C f C f C f C f

C f C f

 

and ( )
*

0
mn

qf > , which is a contradiction. Therefore, ( ) ( ),n n Graph FΓ ∈f , and 

thus ( )Graph F  is closed. The proof is complete. 

For each Γ∈Θ , the component of a point ( )F∈ Γf  is the union of all 

connected subsets of ( )F Γ  containing f . Note that each component of ( )F Γ  is 

connected closed subset of ( )F Γ  (see [22], p.356), thereby a connected compact 

subset as well. The connected components of two distinct points of ( )F Γ are 

either superposition or no-intersection. So ( )F Γ  can be decompounded a family 

of each other non-intersection summation set, i.e., ( ) ( )
I

F Fα
α∈

Γ = Γ∪ , where I  is 

index set, for each ( ),I Fαα ∈ Γ  is a nonempty connected compact subset of 

( )F Γ  and for any ( ) ( ), , ,I F Fα βα β α β∈ ≠ Γ ∩ Γ = .φ  

Definition 4.3.  Let Γ∈Θ  and Z  is a nonempty closed subset of ( )F Γ , 

Z  is said to be an essential set of ( )F Γ  if, for any open set O Z⊃ , there exists 

0δ >  such that for any ′Γ ∈Θ  with ( ) ( ), , F Oρ δ φ′ ′Γ Γ < Γ ∩ ≠ . If a component 

( )Fα Γ  of ( )F Γ  is an essential set, then ( )Fα Γ  is said to be an essential 

component of ( )F Γ . An essential set Z of ( )F Γ  is said to be a minimal essential 

set of ( )F Γ  if Z is a minimal element of the family sets in ( )F Γ  ordered by set 
inclusion. 

In order to prove the following theorem, we firstly present the following 
condition (c): Let ( ) ( ), , ,X d Y ρ  are two metric spaces, : 2YH X →  is a set-
valued mapping. There exists 0b >  such that for any two nonempty closed sets 

1 2,K K  in Y  with ( )1 2, 0K Kρ > , there exists 0a >  such that for any 1 2,x x X∈  

with ( ) ( )1 1, ,d x x a H x K φ< ∩ =2 1,  ( )2 2H x K φ∩ = , there is x X′∈  satisfying 

( ) ( ) ( ) ( )1 1 2 2 1 2,d x x bd x x d x x bd x x′ ′≤ ≤, , , ,  and ( ) [ ]1 2H x K K φ′ ∩ ∪ = . 
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The following lemma is Theorem 2.1 in [23]. 
Lemma 4.4.  Let : 2YH X →  be an usco mapping, and condition (c) 

holds. Then , 
(1) for any x X∈ , there is at least one minimal essential set of ( )H x , and 

every minimal essential set must be connected; 
(2)  for any x X∈ , there is at least one essential component of ( )H x . 
Theorem 4.5.  For any Γ∈Θ , there exists at least one essential 

component of ( )F Γ . 
Proof: Since F  is an usco mapping, by lemma 4.4, we only need to verify 

the condition (c) holds. Let 1b = , for any two nonempty closed subsets 1 2,K K  of 

Λ  with ( )1 2, 0d K K >  and any ˆ,Γ Γ∈Θ  with ( )ˆ, 1aρ Γ Γ < =  such that 

( ) ( )1 2
ˆ,F K F Kφ φΓ ∩ = Γ ∩ = . We construct { }Γ = C�� : for each  1 ,1pi n m≤ ≤ ≤    

M≤  and each ∈Λf , ( ) ( ) ( ) ( ) ( )ˆ
i i i

m m m
p p pλ μ= +C f f C f f C f� ,Where 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
2 1

1 2 1 2

, ,
,

, , , ,
d K d K

d K d K d K d K
λ μ= =

+ +
f f

f f
f f f f

 

Note that ( ) ( ),λ μf f  are continuous and for any ( ) ( ), 0, 0λ μ∈Λ ≥ ≥f f f , 

( ) ( ) 1λ μ+ =f f . It can be easily checked that Γ∈Θ� . We have  

( ) ( ) ( )

( ) ( ) ( )

( )

1 ,1

1 ,

1 ,1

1 ,

,

ˆ            

ˆ           ,

max

max

i i
p

i i
p

m M j l
m m
jp jp

i n

m M j l
m m
jp jp

i n

C C

C C

ρ

μ

ρ

≤ ≤ ≤ ≤

≤ ≤ ∈Λ

≤ ≤ ≤ ≤

≤ ≤ ∈Λ

Γ Γ = −

= −

≤ Γ Γ

f

f

f f

f f f

��

 

Similarly, ( ) ( )ˆ ˆ, ,ρ ρΓ Γ ≤ Γ Γ� . 

If 1K∈f , then ( ) ( ) ( ) ( )1, 0,λ μ= = =f f C f C f� . Since ( )F∉ Γf , we have 

( )F∉ Γf � . If 2K∈f , then ( ) ( ) ( ) ( )ˆ0, 1,λ μ= = =f f C f C f� . Since ( )ˆF∉ Γf , we 

have ( )F∉ Γf � . Hence, ( ) [ ]1 2F K K φΓ ∩ ∪ =� . Thus condition (c) holds. The 
proof is complete. 
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5. Conclusions 

This paper studies the stability of MMTE problem with fixed demand. A 
sufficient condition of weak vector equilibrium flows of MMTE problem is 
obtained. Thus, an existence result of MMTE problem is derived and the stability 
of the solution set for MMTE problem is investigated. 

Future work aims at the existence result and stability of MMTE problem 
with elastic demand. 
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